CS 440/ECE 448 Lecture 2: Probability

Mark Hasegawa-Johnson, 1/2022

All content CC-BY-4.0 unless otherwise noted

CC-BY-3.0 Image by Diacritica, 2010
https://commons.wikimedia.org/wiki/File:6sided_dice.jpg
Outline

• Motivation: Why use probability?
• Random variables
• The axioms of probability
• Conditional probability
• Mutually exclusive vs. Independent vs. Conditionally Independent
Why use probability?

• Stochastic environment: outcome of an action might be truly random.
• Multi-agent environment:
 • If other players are rational and their goals are known, then you don’t need probability; you just work out what their rational actions will be.
 • If other players have unknown goals, then model them as random.
• Unknown environment: outcome of an action is not truly random, but you don’t know what the outcome will be.
 • In this case, “probability” measures your belief: $P(Q|A)=$the degree to which you believe that action A will produce outcome Q.
• Computational complexity:
 • Instead of searching 10^{100} possible outcomes, you could randomly choose 1000 paths to try, and then choose the best of those.
Why NOT use probability?

• Multi-agent environment:
 • Maybe it’s better to find out what the other players really want?

• Unknown environment:
 • Maybe it’s better to learn the rules of the game?

• Computational complexity:
 • Maybe it’s better to do a complete search, instead of just a partial search?

Notice: these are quantitative questions. “Better” requires some metric: how much better, and with what probability?
What is probability?

• Latin *probabilis* = probable, commendable, believable, from *probare* = to test something
• If tested, it will (probably) turn out to be true
Outline

• Motivation: Why use probability?
• Random variables
• The axioms of probability
• Conditional probability
• Mutually exclusive vs. Independent vs. Conditionally Independent
Random variables

• A random variable is a function that maps from the outcomes of an experiment to a set of values
• Example: throw four dice, all different colors. X = number of pips showing on the green die.
• Then run the experiment...

• In this particular outcome, X=3.
• In some other outcome, X would have taken a different value.
• We totally ignore aspects of the outcome that are irrelevant to X, e.g., the pips on the red, purple, and blue dice.
Notation: $P(X = x)$ is a number

- Capital letters are random variables. Small letters are values that the random variable might take.
- "$X = 3$" is a possible outcome of the experiment, which we call an "event." We denote the probability of that event as $P(X = 3)$:

$$P(X = 3) = \frac{1}{6}$$
Notation: $P(X)$ is a table

Let’s use $P(X)$ to mean the complete probability table, specifying $P(X = x)$ for all possible values of x:

$$P(X) = \begin{array}{ccccccc}
 x & 1 & 2 & 3 & 4 & 5 & 6 \\
 P(X = x) \hline
 1 & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\
\end{array}$$

We call this table of numbers, $P(X)$, a **probability distribution**.
Outline

• Motivation: Why use probability?
• Random variables
• The axioms of probability
• Conditional probability
• Mutually exclusive vs. Independent vs. Conditionally Independent
Outcomes, events, and binary random variables

• Let’s define an ”outcome” to be a particular result of the experiment (e.g., particular settings for the red, blue, purple and green dice).

• Let’s define an “event” to be a set of possible outcomes. For example, the event $X = 3$ is defined to be the set of all outcomes in which $X = 3$.

• A binary random variable is equal to true if the event occurred, and false otherwise. For example, we could define a binary random variable A in this way:

$$ A = \begin{cases}
T & \text{if } X = 3 \\
F & \text{if } X \neq 3
\end{cases} $$
Outcomes, events, and binary random variables

• We will do a LOT in this class with binary random variables, because they are so useful. For example, consider a weather-prediction task:

$$A = \begin{cases} T & \text{if it is raining} \\ F & \text{otherwise} \end{cases}$$

• A binary random variable is an indicator of an event. The random variable is “T” if the event occurs, and “F” otherwise.
The axioms of probability

Axiom 1: every event has a non-negative probability.
\[P(A = T) \geq 0 \]

Axiom 2: If an event always occurs, we say it has probability 1.
\[\Omega = \begin{cases} T & \text{always} \\ F & \text{never} \end{cases} \]
\[P(\Omega = T) = 1 \]

Axiom 3: probability measures behave like set measures.
\[P(A \lor B = T) = P(A = T) + P(B = T) - P(A \land B = T) \]
Axiom 3: probability measures behave like set measures.

Area of the whole rectangle is $P(\Omega = T) = 1$.

Area of this circle is $P(A = T)$.

Area of this circle is $P(B = T)$.

Area of their intersection is $P(A \cap B = T)$.

Area of their union is

$$P(A \cup B = T) = P(A = T) + P(B = T) - P(A \cap B = T)$$
Example

• A = “it will rain tomorrow.” Suppose $P(A = T) = 0.4$.
• B = “it will snow tomorrow.” Suppose $P(B = T) = 0.2$.
• $A \land B = “it will both rain and snow tomorrow.”$ Suppose $P(A \land B = T) = 0.1$

Then the probability that it will either rain or snow tomorrow is

$$P(A \lor B = T) =$$

$$P(A = T) + P(B = T) - P(A \land B = T) =$$

$$0.4 + 0.2 - 0.1 =$$

$$0.5$$
Outline

• Motivation: Why use probability?
• The axioms of probability
• Random variables
• Conditional probability
• Mutually exclusive vs. Independent vs. Conditionally Independent
Joint and Conditional probabilities: definitions

- \(P(A \land B = T) \) is the probability that both event A and event B happen. This is called their **joint probability**.
- \(P(B = T | A = T) \) is the probability that event B happens, given that event A happens. This is called the **conditional probability** of B given A.

Example:
- A = “it will rain tomorrow”
- B = “it will snow tomorrow”
- \(P(A \land B = T) \) = probability that it will both snow and rain
- \(P(B = T | A = T) \) = probability that it will snow, given that it rains
Joint probabilities are usually given in the problem statement.

Area of the whole rectangle is $P(\text{True}) = 1$.

Suppose $P(A = T) = 0.4$

Suppose $P(B = T) = 0.2$

Suppose $P(A \land B = T) = 0.1$
Conditioning events change our knowledge!
For example, given that A is true...

Most of the events in this rectangle are no longer possible!

Only the events inside this circle are now possible.
Conditioning events change our knowledge! For example, given that \(A \) is true...

If \(A \) always occurs, then by the axioms of probability, the probability of \(A = T \) is 1. We can say that

\[
P(A = T | A = T) = 1.
\]

The probability of \(B \), given \(A \), is the size of the event \(A \land B \), expressed as a fraction of the size of the event \(A \):

\[
P(B = T | A = T) = \frac{P(A \land B = T)}{P(A = T)}
\]
Joint and Conditional distributions of random variables

• $P(X, Y)$ is the **joint probability distribution** over all possible outcomes $P(X = x, Y = y)$.

• $P(X|Y)$ is the **conditional probability distribution** of outcomes $P(X = x|Y = y)$.

$$P(X = x|Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$
Joint and Conditional distributions of random variables

Example:

$X =$ number of pips on the bone die.

$Y = X \text{ modulo } 2.$

The joint probability $P(X = 5, Y = 1) = \frac{1}{6}$.

Their joint distribution is:

$$P(X, Y) = \begin{array}{c|c|c|c|c|c|c|c}
 y & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\hline
 0 & 0 & \frac{1}{6} & 0 & \frac{1}{6} & 0 & \frac{1}{6} & 0 \\
 1 & \frac{1}{6} & 0 & \frac{1}{6} & 0 & \frac{1}{6} & 0 & 0 \\
\end{array}$$
Joint and Conditional distributions of random variables

- Suppose we’re given the complete table $P(X = x, Y = y)$, and we want to find $P(X = 5|Y = 1)$. How do we do that?

<table>
<thead>
<tr>
<th>$P(X = x, Y = y)$</th>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$\frac{1}{6}$</td>
<td>$\frac{1}{6}$</td>
<td>$\frac{1}{6}$</td>
<td>$\frac{1}{6}$</td>
<td>$\frac{1}{6}$</td>
<td>$\frac{1}{6}$</td>
<td>$\frac{1}{6}$</td>
</tr>
</tbody>
</table>

Bone die found at Cantonment Clinch. CC-BY-3.0, Colby Kirk, 2007.
Joint and Conditional distributions of random variables

- Suppose we’re given the complete table $P(X = x, Y = y)$, and we want to find $P(X = 5|Y = 1)$. How do we do that?
- Well, we know that the event $Y = 1$ occurred, so we eliminate all outcomes in which $Y \neq 1$

<table>
<thead>
<tr>
<th>$P(X = x, Y = y)$</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>y</td>
<td>1/6</td>
</tr>
</tbody>
</table>

Bone die found at Cantonment Clinch. CC-BY-3.0, Colby Kirk, 2007.
Joint and Conditional distributions of random variables

- Suppose we’re given the complete table $P(X = x, Y = y)$, and we want to find $P(X = 5|Y = 1)$. How do we do that?
- Well, we know that the event $Y = 1$ occurred, so we eliminate all outcomes in which $Y \neq 1$.
- But we know that the sum of all entries should be $P(\text{True})=1$, so we renormalize the table so that it adds up to 1.

$P(X|Y = 1) = \frac{P(X = x, Y = y)}{P(Y = 1)}$
Joint and Conditional distributions of random variables

- Thus, the conditional probability is
 \[P(X = 5|Y = 1) = \frac{1}{3}. \]
Outline

• Motivation: Why use probability?
• Random variables
• The axioms of probability
• Conditional probability
• Mutually exclusive vs. Independent vs. Conditionally Independent
Mutually exclusive events

Mutually exclusive events never occur simultaneously:
\[P(A \lor B = T) = P(A = T) + P(B = T) - P(A \land B = T) \]
\[= P(A = T) + P(B = T) \]
Examples of mutually exclusive events

• If A is the event “tomorrow it rains,” and B is the event “tomorrow it does not rain,” then A and B are mutually exclusive.
• If A is the event “the number on the die is 5 or 6,” and B is the event “the number on the die is 1 or 2”, then A and B are mutually exclusive.
Independent events

Independent events occur with equal probability, regardless of whether or not the other event has occurred:

\[P(A = T | B = T) = P(A = T) \]
Examples of independent events

• If A is the event “it rains,” and B is the event “the stock market goes down,” those are probably independent events.

• If A is the event “the number on the green die is 5”, and B is the event “the number on the red die is 2”, those are probably independent events.
Independent events

We can re-write the definition of independent events in an interesting and useful way, by plugging in the definition of conditional probability:

\[P(A = T|B = T) = \frac{P(A \cap B = T)}{P(B = T)} = P(A = T) \]
Independent events: A useful alternate definition

Re-arranging terms in the previous slide gives us this alternative definition of independent events:

\[P(A \land B = T) = P(A = T)P(B = T) \]
Independent vs. Mutually Exclusive

- **Independent events:**
 \[P(A \land B = T) = P(A = T)P(B = T) \]

- **Mutually exclusive events:**
 \[P(A \lor B = T) = P(A = T) + P(B = T) \]

Don’t confuse them! Mutually exclusive events are not independent. Quite the contrary. Think about the set pictures.

\[P(A \land B = T) = \]

\[0 \]

\[P(A \land B = T) = P(A = T)P(B = T) \]
Conditionally independent events

Events A and B are conditionally independent, given C, if

\[P(A = T | B = T, C = T) = P(A = T | C = T) \]
Events A and B are conditionally independent, given C, if

$$P(A = T|B = T, C = T) = \frac{P(A \land B = T|C = T)}{P(B = T|C = T)} = P(A = T|C = T)$$
Conditionally independent events

Events A and B are conditionally independent, given C, if

\[P(A \land B = T|C = T) = P(A = T|C = T)P(B = T|C = T) \]
Toothache = patient has a toothache

Cavity = the patient has a cavity

Catch = dentist’s probe catches on something in the mouth

Independence ≠ Conditional Independence
These Events are not Independent

• If the patient has a toothache, then it’s likely he has a cavity. Having a cavity makes it more likely that the probe will catch on something.

 \[P(\text{Catch} = T|\text{Toothache} = T) > P(\text{Catch} = T) \]

• If the probe catches on something, then it’s likely that the patient has a cavity. If he has a cavity, then he might also have a toothache.

 \[P(\text{Toothache} = T|\text{Catch} = T) > P(\text{Toothache} = T) \]

• So Catch and Toothache are not independent
...but they are Conditionally Independent

- Here are some reasons the probe might not catch, despite having a cavity:
 - The dentist might be really careless
 - The cavity might be really small
- Those reasons have nothing to do with the toothache!
 \[P(\text{Catch} = T|\text{Cavity} = T, \text{Toothache} = T) = P(\text{Catch} = T|\text{Cavity} = T) \]
- **Catch** and **Toothache** are **conditionally independent** given knowledge of **Cavity**
...but they are Conditionally Independent

These statements are all equivalent:

\[P(\text{Catch} = T|\text{Cavity} = T, \text{Toothache} = T) = P(\text{Catch} = T|\text{Cavity} = T) \]
\[P(\text{Toothache} = T|\text{Cavity} = T, \text{Catch} = T) = P(\text{Toothache} = T|\text{Cavity} = T) \]
\[P(\text{Toothache} \land \text{Catch}|\text{Cavity}) = P(\text{Toothache}|\text{Cavity}) \cdot P(\text{Catch}|\text{Cavity}) \]

...and they all mean that \text{Catch} and \text{Toothache} are \textbf{conditionally independent} given knowledge of \text{Cavity}
Summary

• A random variable is a function that maps from the outcome of an experiment to a particular value.
• The axioms of probability are (1) every probability is non-negative, (2) an event that always occurs has probability 1.0, (3) probability measures behave like set measures.

\[
P(B = T | A = T) = \frac{P(A \land B = T)}{P(A = T)}
\]

• A and B are **mutually exclusive** iff \(P(A \land B = T) = 0 \)
• A and B are **independent** iff \(P(A = T | B = T) = P(A = T) \)
• A and B are **conditionally independent given C** iff:

\[
P(A = T | B = T, C = T) = P(A = T | C = T)
\]