CS 440/ECE 448 Lecture 2: Probability

Mark Hasegawa-Johnson, 1/2022
All content CC-BY-4.0 unless otherwise noted

CC-BY-3.0 Image by Diacritica, 2010
https://commons.wikimedia.org/wiki/File:6sided_dice.jpg

Outline

- Motivation: Why use probability?
- Random variables
- The axioms of probability
- Conditional probability
- Mutually exclusive vs. Independent vs. Conditionally Independent

Why use probability?

- Stochastic environment: outcome of an action might be truly random.
- Multi-agent environment:
- If other players are rational and their goals are known, then you don't need probability; you just work out what their rational actions will be.
- If other players have unknown goals, then model them as random.
- Unknown environment: outcome of an action is not truly random, but you don't know what the outcome will be.
- In this case, "probability" measures your belief: $\mathrm{P}(\mathrm{Q} \mid \mathrm{A})=$ the degree to which you believe that action A will produce outcome Q .
- Computational complexity:
- Instead of searching 10^{100} possible outcomes, you could randomly choose 1000 paths to try, and then choose the best of those.

Why NOT use probability?

- Multi-agent environment:
- Maybe it's better to find out what the other players really want?
- Unknown environment:
- Maybe it's better to learn the rules of the game?
- Computational complexity:
- Maybe it's better to do a complete search, instead of just a partial search?

Notice: these are quantitative questions. "Better" requires some metric: how much better, and with what probability?

What is probability?

- Latin probabilis = probable, commendable, believable, from probare = to test something
- If tested, it will (probably) turn out to be true

Outline

- Motivation: Why use probability?
- Random variables
- The axioms of probability
- Conditional probability
- Mutually exclusive vs. Independent vs. Conditionally Independent

Random variables

- A random variable is a function that maps from the outcomes of an experiment to a set of values
- Example: throw four dice, all different colors. $\mathrm{X}=$ number of pips showing on the green die.
- Then run the experiment...
- In this particular outcome, $\mathrm{X}=3$.
- In some other outcome, X would have taken a different value.
- We totally ignore aspects of the outcome that are irrelevant to X, e.g., the pips on the red, purple, and blue dice.

Notation: $P(X=x)$ is a number

- Capital letters are random variables. Small letters are values that the random variable might take.
- " $X=3$ " is a possible outcome of the experiment, which we call an "event." We denote the probability of that event as $P(X=3)$:

$$
P(X=3)=\frac{1}{6}
$$

Notation: $P(X)$ is a table

Let's use $P(X)$ to mean the complete probability table, specifying $P(X=x)$ for all possible values of x :

$P(X)=$| x | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $P(X=x)$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ |

We call this table of numbers, $P(X)$, a probability distribution.

Outline

- Motivation: Why use probability?
- Random variables
- The axioms of probability
- Conditional probability
- Mutually exclusive vs. Independent vs. Conditionally Independent

Outcomes, events, and binary random variables

- Let's define an "outcome" to be a particular result of the experiment (e.g., particular settings for the red, blue, purple and green dice).
- Let's define an "event" to be a set of possible outcomes. For example, the event $X=3$ is defined to be the set of all outcomes in which $X=3$.
- A binary random variable is equal to true if the event occurred, and false otherwise. For example, we could define a binary random variable A in this way:

$$
A= \begin{cases}T & \text { if } X=3 \\ F & \text { if } X \neq 3\end{cases}
$$

Outcomes, events, and binary random variables

- We will do a LOT in this class with binary random variables, because they are so useful. For example, consider a weather-prediction task:

$$
A=\left\{\begin{array}{lc}
T & \text { if it is raining } \\
F & \text { otherwise }
\end{array}\right.
$$

- A binary random variable is an indicator of an event. The random variable is " T " if the event occurs, and " F " otherwise.

The axioms of probability

Axiom 1: every event has a non-negative probability.

$$
P(A=T) \geq 0
$$

Axiom 2: If an event always occurs, we say it has probability 1.

$$
\begin{gathered}
\Omega= \begin{cases}T & \text { always } \\
F & \text { never }\end{cases} \\
P(\Omega=\mathrm{T})=1
\end{gathered}
$$

Axiom 3: probability measures behave like set measures.

$$
P(A \bigvee B=T)=P(A=T)+P(B=T)-P(A \wedge B=T)
$$

Axiom 3: probability measures behave like set measures.

Area of their intersection is $P(A \wedge B=T)$.
Area of their union is $P(A \bigvee B=T)=P(A=T)+P(B=T)-P(A \wedge B=T)$

Example

- $\mathrm{A}=$ "it will rain tomorrow." Suppose $P(A=T)=0.4$.
- $\mathrm{B}=$ "it will snow tomorrow." Suppose $P(B=T)=0.2$.
- $A \wedge B=$ "it will both rain and snow tomorrow." Suppose

$$
P(A \wedge B=T)=0.1
$$

Then the probability that it will either rain or snow tomorrow is

$$
\begin{gathered}
P(A \bigvee B=T)= \\
P(A=T)+P(B=T)-P(A \wedge B=T)= \\
0.4+0.2-0.1= \\
0.5
\end{gathered}
$$

Outline

- Motivation: Why use probability?
- The axioms of probability
- Random variables
- Conditional probability
- Mutually exclusive vs. Independent vs. Conditionally Independent

Joint and Conditional probabilities: definitions

- $P(A \wedge B=T)$ is the probability that both event A and event B happen. This is called their joint probability.
- $P(B=T \mid A=T)$ is the probability that event B happens, given that event A happens. This is called the conditional probability of B given A.
- Example:
- $A=$ "it will rain tomorrow"
- $\mathrm{B}=$ "it will snow tomorrow"
- $P(A \wedge B=T)=$ probability that it will both snow and rain
- $P(B=T \mid A=T)=$ probability that it will snow, given that it rains

Joint probabilities are usually given in the problem statement

Conditioning events change our knowledge! For example, given that A is true...

Only the events inside this circle are now possible.

Most of the events in this rectangle are no longer possible!

Conditioning events change our knowledge! For example, given that A is true...

If A always occurs, then by the axioms of probability, the probability of A=T is 1.
We can say that
$P(A=T \mid A=T)=1$.

The probability of B, given A, is the size of the event $A \wedge B$, expressed as a fraction of the size of the event A:

$$
P(B=T \mid A=T)
$$

$A \wedge B$

Joint and Conditional distributions of random variables

- $P(X, Y)$ is the joint probability distribution over all possible outcomes $P(X=x, Y=y)$.
- $P(X \mid Y)$ is the conditional probability distribution of outcomes $P(X=x \mid Y=y)$.

$$
P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)}
$$

Joint and Conditional distributions of random variables

Example:
$\mathrm{X}=$ number of pips on the bone die.
$\mathrm{Y}=\mathrm{X}$ modulo 2.
The joint probability $\boldsymbol{P}(\boldsymbol{X}=5, Y=\mathbf{1})=\frac{\mathbf{1}}{\mathbf{6}}$.
Their joint distribution is:

Bone die found at Cantonment Clinch. CC-BY-3.0, Colby Kirk, 2007.

Joint and Conditional distributions of random variables
 rem

- Suppose we're given the complete table $\boldsymbol{P}(\boldsymbol{X}=\boldsymbol{x}, \boldsymbol{Y}=\boldsymbol{y})$, and we want to find $\boldsymbol{P}(\boldsymbol{X}=\mathbf{5} \mid \boldsymbol{Y}=\mathbf{1})$. How do we do that?

Bone die found at Cantonment Clinch. CC-BY-3.0, Colby Kirk, 2007.

$P(X, Y)=$	$P(X=x, Y=y)$		x					
			1	2	3	4	5	6
	y	0	0	$\frac{1}{6}$	0	$\frac{1}{6}$	0	$\frac{1}{6}$
		1	$\frac{1}{6}$	0	$\frac{1}{6}$	0	$\frac{1}{6}$	0

Joint and Conditional distributions of random variables

- Suppose we're given the complete table $\boldsymbol{P}(\boldsymbol{X}=\boldsymbol{x}, \boldsymbol{Y}=\boldsymbol{y})$, and we want to find $\boldsymbol{P}(\boldsymbol{X}=\mathbf{5} \mid \boldsymbol{Y}=\mathbf{1})$. How do we do that?
- Well, we know that the event $Y=1$ occurred, so we eliminate all outcomes in which $Y \neq 1$

Bone die found at Cantonment Clinch. CC-BY-3.0, Colby Kirk, 2007.

$P(X=x, Y=y)$		x							
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	6			
y	1	$\frac{1}{6}$	0	$\frac{1}{6}$	0	$\frac{1}{6}$	0		

Joint and Conditional distributions of random variables

- Suppose we're given the complete table $\boldsymbol{P}(\boldsymbol{X}=\boldsymbol{x}, \boldsymbol{Y}=\boldsymbol{y})$, and we want to find $\boldsymbol{P}(\boldsymbol{X}=\mathbf{5} \mid \boldsymbol{Y}=\mathbf{1})$. How do we do that?
- Well, we know that the event $Y=1$ occurred, so we eliminate all outcomes in which $Y \neq 1$
- But we know that the sum of all entries should be $P($ True $)=1$, so we renormalize the

Bone die found at Cantonment Clinch. CC-BY-3.0, Colby Kirk, 2007.

\[

\]

Joint and Conditional distributions of random variables

- Thus, the conditional probability is

$$
P(X=5 \mid Y=1)=\frac{1}{3}
$$

Bone die found at Cantonment Clinch. CC-BY-3.0, Colby Kirk, 2007.

$$
\begin{gathered}
P(X \mid Y=1) \\
= \\
\hline
\end{gathered}
$$

Outline

- Motivation: Why use probability?
- Random variables
- The axioms of probability
- Conditional probability
- Mutually exclusive vs. Independent vs. Conditionally Independent

Mutually exclusive events

Mutually exclusive events never occur simultaneously:

$$
\begin{aligned}
P(A \bigvee B=T) & =P(A=T)+P(B=T)-P(A \wedge B=T) \\
& =P(A=T)+P(B=T)
\end{aligned}
$$

Examples of mutually exclusive events

- If A is the event "tomorrow it rains," and B is the event "tomorrow it does not rain," then A and B are mutually exclusive.
- If A is the event "the number on the die is 5 or 6 ," and B is the event "the number on the die is 1 or 2 ", then A and B are mutually exclusive.

Independent events

Independent events occur with equal probability, regardless of whether or not the other event has occurred:

$$
P(A=T \mid B=T)=P(A=T)
$$

Examples of independent events

- If A is the event "it rains," and B is the event "the stock market goes down," those are probably independent events.
- If A is the event "the number on the green die is 5 ", and B is the event "the number on the red die is 2 ", those are probably independent events.

Independent events

We can re-write the definition of independent events in an interesting and useful way, by plugging in the definition of conditional probability:

$$
P(A=T \mid B=T)=\frac{P(A \wedge B=T)}{P(B=T)}=P(A=T)
$$

Independent events: A useful alternate definition
Re-arranging terms in the previous slide gives us this alternative definition of independent events:

$$
P(A \wedge B=T)=P(A=T) P(B=T)
$$

Independent vs. Mutually Exclusive

- Independent events:

$$
P(A \wedge B=T)=P(A=T) P(B=T)
$$

- Mutually exclusive events:

$$
P(A \bigvee B=T)=P(A=T)+P(B=T)
$$

Don't confuse them! Mutually exclusive events are not independent. Quite the contrary. Think about the set pictures.

Conditionally independent events
Events A and B are conditionally independent, given C, if

$$
P(A=T \mid B=T, C=T)=P(A=T \mid C=T)
$$

Conditionally independent events
Events A and B are conditionally independent, given C, if

$$
P(A=T \mid B=T, C=T)=\frac{P(A \wedge B=T \mid C=T)}{P(B=T \mid C=T)}=P(A=T \mid C=T)
$$

Conditionally independent events

Events A and B are conditionally independent, given C, if

$$
P(A \wedge B=T \mid C=T)=P(A=T \mid C=T) P(B=T \mid C=T)
$$

Independence $=$ Conditional Independence

These Events are not Independent

- If the patient has a toothache, then it's likely he has a cavity. Having a cavity makes it more likely that the probe will catch on something.

$$
P(\text { Catch }=\mathrm{T} \mid \text { Toothache }=\mathrm{T})>P(\text { Catch }=\mathrm{T})
$$

- If the probe catches on something, then it's likely that the patient has a cavity. If he has a cavity, then he might also have a toothache.

$$
P(\text { Toothache }=\mathrm{T} \mid \text { Catch }=\mathrm{T})>P(\text { Toothache }=T)
$$

- So Catch and Toothache are not independent

...but they are Conditionally Independent

- Here are some reasons the probe might not catch, despite having a cavity:
- The dentist might be really careless
- The cavity might be really small
- Those reasons have nothing to do with the toothache!

$$
P(\text { Catch }=\mathrm{T} \mid \text { Cavity }=\mathrm{T}, \text { Toothache }=\mathrm{T})=P(\text { Catch }=\mathrm{T} \mid \text { Cavity }=\mathrm{T})
$$

- Catch and Toothache are conditionally independent given knowledge of Cavity

...but they are Conditionally Independent

These statements are all equivalent:
$P($ Catch $=\mathrm{T} \mid$ Cavity $=\mathrm{T}$, Toothache $=\mathrm{T})=P($ Catch $=\mathrm{T} \mid$ Cavity $=\mathrm{T})$ $P($ Toothache $=T \mid$ Cavity $=\mathrm{T}$, Catch $=\mathrm{T})=P($ Toothache $=T \mid$ Cavity $=T)$
$P($ Toothache \wedge Catch \mid Cavity $)=P($ Toothache \mid Cavity $) P($ Catch \mid Cavity $)$...and they all mean that Catch and Toothache are conditionally independent given knowledge of Cavity

Summary

- A random variable is a function that maps from the outcome of an experiment to a particular value
- The axioms of probability are (1) every probability is non-negative, (2) an event that always occurs has probability 1.0, (3) probability measures behave like set measures.
- $P(B=T \mid A=T)=\frac{P(A \wedge B=T)}{P(A=T)}$
- A and B are mutually exclusive iff $P(A \wedge B=T)=0$
- A and B are independent iff $P(A=T \mid B=T)=P(A=T)$
- A and B are conditionally independent given C iff:

$$
\overline{P(A=T \mid B=T, C=T)=P(A=T \mid C=T)}
$$

