
Deep
Reinforcement

Learning

CS440/ECE448
Lecture 35

Mark Hasegawa-Johnson, 4/2022
CC-BY 4.0: you may remix or redistribute if
you cite the source

Image: Megajuice, CC0,
https://commons.wikimedia.org/

w/index.php?curid=57895741

https://commons.wikimedia.org/

Outline

• Review: MDP and Q-Learning
• Deep Q-Learning
• Imitation Learning
• Actor-Critic Learning

Review: Markov Decision Process
A Markov decision process (MDP) is
defined by the rewards earned in each
state:

𝑅(𝑠) = &
+1 𝑠 = (4,3)
−1 𝑠 = (4,2)
−0.04 otherwise

…and the transition probability function,
which tells the probability of reaching
state 𝑠’ if you take action 𝑎 in state 𝑠:

𝑃 𝑠! 𝑠, 𝑎 = &
0.8 intended
0.1 fall left
0.1 fall right

…and the discount factor, 0 ≤ 𝛾 ≤ 1,
which tells you what fraction of a reward
today is worth one reward tomorrow.

0.81 0.87 0.92

0.76 0.66

0.71 0.66 0.61 0.39

An MDP is “solved” by finding:
• 𝑈(𝑠), the “utility,” which is defined to be

the expected sum of all future rewards
obtained by starting in state 𝑠 and
proceeding according to the best
possible policy, and

• 𝜋(𝑠), the “policy”, defined as the best
action to take in each state.

Review: Markov Decision Process

The solution to an MDP is found by
solving Bellman’s equation:
𝑈 𝑠 = 𝑅 𝑠 + 𝛾 max

!∈#(%)
-
%'

𝑃 𝑠' 𝑠, 𝑎 𝑈(𝑠')

Bellman’s equation gives the exact
solution. The only reasons we might
choose not to use it are:
• It is N nonlinear equations in N

unknowns, so exact solution may be
NP-complete (exhaustive search).

• In many real-world scenarios, we don’t
know 𝑃(𝑠’|𝑠, 𝑎), so we can’t use
Bellman’s equation anyway.

Review: Markov Decision Process
0.81 0.87 0.92

0.76 0.66

0.71 0.66 0.61 0.39

Review: Q-Learning
Suppose we don’t know 𝑃(𝑠’|𝑠, 𝑎), and we don’t care to learn it. We
can avoid learning it by instead learning 𝑄(𝑠, 𝑎), defined as the
maximum expected sum of all future rewards if we start with action
𝑎 in state 𝑠. In other words, divide Bellman’s equation:

𝑈 𝑠 = 𝑅 𝑠 + 𝛾 max
!∈#(%)

-
%'

𝑃 𝑠' 𝑠, 𝑎 𝑈(𝑠')

…into two parts:

𝑄 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾-
%'

𝑃 𝑠' 𝑠, 𝑎 𝑈(𝑠')

𝑈(𝑠) = max
!∈#(%)

𝑄(𝑠, 𝑎)

Review: Q-Learning
Rewrite Bellman’s equation in terms of only Q:

𝑄 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾 max
!'∈#(%)

-
%'

𝑃 𝑠' 𝑠, 𝑎 𝑄(𝑠′, 𝑎′)

Here are the problems we need to solve.
• 𝑅 𝑠 is unknown ⟹ use 𝑅(𝑠 , the reward at the 𝑡() time step.
• 𝑃(𝑠’|𝑠, 𝑎) is unknown ⟹ perform action 𝑎(in state 𝑠(, observe the

resulting state 𝑠(*+, and pretend that 𝑃 𝑠(*+ 𝑠(, 𝑎(= 1.
• 𝑄(𝑠′, 𝑎′) is unknown ⟹ use 𝑄((𝑠′, 𝑎′), our current estimate.
Result:

𝑄,-.!, 𝑠(, 𝑎(= 𝑅(𝑠(+ 𝛾 max
!'∈#(%!"#)

𝑄((𝑠(*+, 𝑎′)

Review: Q-Learning

𝑄,-.!, 𝑠(, 𝑎(= 𝑅(𝑠(+ 𝛾 max
!'∈#(%!"#)

𝑄((𝑠(*+, 𝑎′)

𝑄,-.!, has a high variance because of all the approximations involved.
The variance can be reduced by averaging it over time using some
averaging constant 0 < 𝛼 < 1:

𝑄(*+ 𝑠(, 𝑎(= 1− 𝛼 𝑄(𝑠(, 𝑎(+ 𝛼𝑄,-.!, 𝑠(, 𝑎(

= 𝑄(𝑠(, 𝑎(+ 𝛼 𝑄,-.!, 𝑠(, 𝑎(−𝑄(𝑠(, 𝑎(

Summary: Q-Learning
• Q(s,a) – the “quality” of an action

𝑄 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾)
$%

𝑃 𝑠% 𝑠, 𝑎 𝑈(𝑠%)

𝑈(𝑠) = max
&∈(($)

𝑄(𝑠, 𝑎)

• Q-learning
• Off-policy learning: TD

𝑄+,-&+ 𝑠. , 𝑎. = 𝑅.(𝑠.) + 𝛾 max
&%∈(($!"#)

𝑄.(𝑠./0, 𝑎′)

𝑄./0 𝑠. , 𝑎. = 𝑄. 𝑠. , 𝑎. + 𝛼 𝑄+,-&+ 𝑠. , 𝑎. − 𝑄. 𝑠. , 𝑎.
• On-policy learning: SARSA

𝑎./0 = 𝜋.(𝑠./0)
𝑄+,-&+ 𝑠. , 𝑎. = 𝑅.(𝑠.) + 𝛾𝑄.(𝑠./0, 𝑎./0)

Outline

• Review: MDP and Q-Learning
• Deep Q-Learning
• Imitation Learning
• Actor-Critic Learning

Deep Q learning
Instead of discrete 𝑠, suppose 𝑠
is a vector of real numbers, e.g.,
the image from the robot’s eye
camera:

𝑠 = 𝑠!, … , 𝑠" =
Instead of discrete 𝑎, suppose 𝑎⃗
is a vector, e.g., cannon angle
and velocity,

𝑎⃗ = 𝑎!, … , 𝑎#
Deep Q-learning uses a neural
network to compute an estimate
𝑄((𝑠, 𝑎⃗) which is as close as
possible to 𝑄(𝑠, 𝑎⃗). 𝑎! … 𝑎# 1

𝑄((𝑠, 𝑎⃗)

1

1

𝑠! … 𝑠"

1

1
Copyright Taito.

MMSE Deep Q learning
Suppose we train the neural network
weights in order to minimize the mean-
squared error (MMSE):

ℒ =
1
2𝐸 𝑄(𝑠, 𝑎⃗ − 𝑄(𝑠, 𝑎⃗) $

(where I’m using 𝐸 / as a lazy way to
write “average over all training runs of the
game”).
Then, for each weight 𝑤, we update as

𝑤 ← 𝑤 − 𝜂
𝑑ℒ
𝑑𝑤

𝑎! … 𝑎# 1

𝑓 𝑠, 𝑎⃗

1

1

𝑠! … 𝑠"

1

1

What makes deep Q learning harder than
normal neural network training

• We don’t know the true value of
𝑄(𝑠, 𝑎⃗) for any of the training runs!

• 𝑄 𝑠, 𝑎⃗ is defined to be the expected
value of performing action 𝑎⃗. We
never know its true expected value: all
we know is whether we won or lost
that particular game.

• So we can’t compute ℒ, and we can’t
compute %ℒ

%'
, and we can’t update 𝑤! 𝑎! … 𝑎# 1

𝑓 𝑠, 𝑎⃗

1

1

𝑠! … 𝑠"

1

1

The solution: 𝑄!"#$!
Remember that Q learning was defined as

𝑄./0 𝑠. , 𝑎.
= 𝑄. 𝑠. , 𝑎. + 𝛼 𝑄+,-&+ 𝑠. , 𝑎. − 𝑄. 𝑠. , 𝑎.

where 𝑄+,-&+ 𝑠. , 𝑎. is defined, e.g., in TD as

𝑄+,-&+ 𝑠. , 𝑎. = 𝑅.(𝑠.) + 𝛾 max
&%

𝑄.(𝑠./0, 𝑎′)

…for 𝑠./0 equal to the next state we reach after
action 𝑎. on this particular game.

The solution: 𝑄!"#$!
Let’s define deep Q learning using the same
𝑄+,-&+:

ℒ =
1
2
𝐸 𝑄. 𝑠. , 𝑎⃗. − 𝑄+,-&+(𝑠. , 𝑎⃗.) 1

where 𝑄+,-&+(𝑠. , 𝑎⃗.) is:
𝑄+,-&+(𝑠. , 𝑎⃗.) = 𝑅.(𝑠.) + 𝛾 max

&%
𝑄. 𝑠./0, 𝑎⃗′

Now we have an L that depends only on things
we know (𝑄. 𝑠. , 𝑎⃗. , 𝑅.(𝑠.), and 𝑄. 𝑠./0, 𝑎⃗′), so
it can be calculated, differentiated, and used to
update the neural network.

Dealing with training instability
• Challenges

– Target values are not fixed
– Successive experiences are correlated and dependent on the policy
– Policy may change rapidly with slight changes to parameters, leading to

drastic change in data distribution
• Solutions

– Freeze target Q network
– Use experience replay

Experience replay
• At each time step:

– Take action 𝑎⃗. according to epsilon-greedy policy
– Store experience (𝑠. , 𝑎⃗. , 𝑅. , 𝑠./0) in replay memory buffer

(𝑠!, 𝑎⃗!, 𝑅!, 𝑠$)
(𝑠$, 𝑎⃗$, 𝑅$, 𝑠()

…
(𝑠), 𝑎⃗), 𝑅), 𝑠)*!)

• Learning:
– Randomly sample a

minibatch, 𝒟, from the replay
buffer.

𝒟 =randomly
sampled set of

tuples

Deep Q learning in Atari

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Deep Q learning in Atari
• End-to-end learning of 𝑄. 𝑠, 𝑎 from pixels 𝑠
• Output is 𝑄. 𝑠, 𝑎 for 𝑎 ∈18 joystick/button configurations
• Reward is change in score for that step

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

Q(s,a1)
Q(s,a2)
Q(s,a3)
.
.
.
.
.
.
.
.
.
.
.
Q(s,a18)

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Deep Q learning in Atari
• Input state 𝑠 is stack of raw pixels from last 4 frames
• Network architecture and hyperparameters fixed for all games

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Deep Q learning in Atari

Deep Q-Learning Playing Atari Breakout

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Outline

• Review: MDP and Q-Learning
• Deep Q-Learning
• Imitation Learning
• Actor-Critic Learning

Policy Learning

Why can’t we just learn a model (neural net, or even a table
lookup) that does this:

Model 𝑎 = 𝜋(𝑠)𝑠

Policy Learning
Actually, let’s redefine 𝜋(𝑠) to be a probability vector:

𝜋< 𝑠 =
exp 𝑤<=ℎ(𝑠)

∑>?@
|B| exp 𝑤>=ℎ(𝑠)

= 𝑃 𝐴 = 𝑎|𝑆 = 𝑠

Model

Choose
𝐴 = 𝑎 with
probability
𝜋! 𝑠

𝑠

Probabilistic Policy

If we have |𝐴| possible, actions, 1 ≤ 𝑎 ≤ |𝐴|, we could train
the network to learn a hidden layer ℎ(𝑠) so that:

𝜋< 𝑠 =
exp 𝑤<=ℎ(𝑠)

∑>?@
|B| exp 𝑤>=ℎ(𝑠)

= 𝑃 𝐴 = 𝑎|𝑆 = 𝑠

Meaning “the probability that the best action is a.”

How do we train it?
• Training data only give us
𝑠C , 𝑎C , 𝑅C , 𝑠CD@ .

• BAD IDEA: train the network to choose
A = 𝑎/ that maximizes the immediate
reward, 𝑅/, and just ignore future
rewards.

• GOOD IDEA: Train the network to
maximize 𝑅/ + 𝛾𝑈 𝑠/*+ = sum of all
future rewards.

• PROBLEM: we don’t know 𝑈 𝑠CD@ .

𝑠8, 𝑎8, 𝑅8, 𝑠9
𝑠9, 𝑎9, 𝑅9, 𝑠:
𝑠:, 𝑎:, 𝑅:, 𝑠;
𝑠;, 𝑎;, 𝑅;, 𝑠<
𝑠<, 𝑎<, 𝑅<, 𝑠=

⋮

How to make Policy Learning trainable

1. Watch a human perform the task,
2. assume that each of the human’s actions is the best

action that could possibly have been taken at that time,
3. train the neural net to imitate the human’s actions with

high probability.

This is called “apprenticeship learning,” which is a type of
“imitation learning.”

Imitation learning

• In some applications, you cannot bootstrap
yourself from random policies
– High-dimensional state and action spaces where

most random trajectories fail miserably
– Expensive to evaluate policies in the physical world,

especially in cases of failure
• Solution: learn to imitate sample trajectories or

demonstrations
– This is also helpful when there is no natural reward

formulation

Imitation learning

• 𝑠E = a representation of the state of the environment at
time t (can be a real-valued vector)

• 𝑎E= the action that a human actor performed in response
to this state (must be discrete)

• 𝜋> 𝑠E = 𝑘EF element in the softmax output of a neural
network, given 𝑠E as the input

• Training criterion: train the neural network in order to
minimize the cross-entropy:

ℒ = − log𝜋<+ 𝑠E

How do we train it?
• Now our training data don’t even require
𝑅/ or 𝑠/*+!

• All we need is a set of state vectors, 𝑠/,
and the action that the human performed
in the same situation, 𝑎/.

𝑠8, 𝑎8
𝑠9, 𝑎9
𝑠:, 𝑎:
𝑠;, 𝑎;
𝑠<, 𝑎<
⋮

Overview of imitation learning methods

Hussein et al. Imitation Learning: A Survey of Learning Methods, 2018.

Apprenticeship learning (copy the
human’s action) needs a lot of
human supervision. Sometimes we
can benefit by combining
apprenticeship learning with other
methods (active learning, transfer
learning, structured prediction,
reinforcement learning,
optimization).

https://dl.acm.org/doi/abs/10.1145/3054912?casa_token=ncsnlHnKn7kAAAAA:mSlkKdc2HTg8BMnGGo3g9yncEeGTRc3q6eRC4fEopc1M6QAwdiuS2vAowztAhHh7dHMxEwlO77U

Overview of imitation learning methods

Hussein et al. Imitation Learning: A Survey of Learning Methods, 2018.

Other ways to make imitation
learning efficient:
• Use many sensors
• Use designed features, or

features extracted w/a pre-trained
neural net

• Balance between classification
(discrete actions) vs regression
(continuous actions)

https://dl.acm.org/doi/abs/10.1145/3054912?casa_token=ncsnlHnKn7kAAAAA:mSlkKdc2HTg8BMnGGo3g9yncEeGTRc3q6eRC4fEopc1M6QAwdiuS2vAowztAhHh7dHMxEwlO77U

Example: Coarse-to-Fine Imitation Learning

Edward Johns, Coarse-to-Fine Imitation Learning: Robot Manipulation from a Single Demonstration, 2021.

https://www.youtube.com/watch?v=4JxQ81NqOIM

Outline

• Review: MDP and Q-Learning
• Deep Q-Learning
• Imitation Learning
• Actor-Critic Learning

The Deep RL Methods We’ve Learned So
Far

• Deep Q-learning gives us a network Q(s,a) which is very
noisy, so we don’t really want to trust it

• A policy network can directly estimate 𝜋(𝑠). The only
problem is that we have no way to train it, unless we
imitate human behavior.

Actor-critic
algorithm

So let’s train two neural nets!
• 𝑄) 𝑠, 𝑎 is the critic, and is

trained according to the
deep Q-learning algorithm
(MMSE).

• 𝜋! 𝑠 is the actor, and is
trained to satisfy the critic

The Critic, by Lajos Tihanyi.
Oil on canvas, 1916.

Public Domain,
https://commons.wikimedia.or
g/w/index.php?curid=178374

38

Actors from the Comédie Française, by Antoine
Watteau, 1720. Public Domain,

https://commons.wikimedia.org/w/index.php?curi
d=15418670

The Actor-Critic Algorithm

Main idea:
• The actor is a policy network that decides what action to

perform:
𝜋< 𝑠 = Probability that 𝑎 is the best action in state 𝑠

• The critic is a deep Q-learning network that estimates the
quality of that action (𝑄(𝑠, 𝑎)).

𝑄 𝑠, 𝑎 = Expected sum of future rewards if (𝑠, 𝑎)
• The critic is noisy, so they don’t get to decide the action.

Instead, we only use the critic to help us to train the actor.

The Actor-Critic Algorithm

𝜋< 𝑠 = Probability that 𝑎 is the best action in state 𝑠
𝑄 𝑠, 𝑎 = Expected sum of future rewards if (𝑠, 𝑎)

• The critic is noisy, so they don’t get to decide the action.
Instead, we only use the critic to help us to train the actor.

ℒ = −B
<

𝜋<(𝑠)𝑄(𝑠, 𝑎)

• The training loss = negative expected sum of future
rewards given action 𝑎, averaged over the probability with
which the actor chooses action 𝑎.

The Actor-Critic Algorithm: Forward-Prop

Actor 𝜋! 𝑠 = 𝑃(𝑎|𝑠)𝑠

Critic 𝑄"(𝑠, 𝑎)𝑠

The Actor-Critic Algorithm: Back-Prop

Actor 𝜋! 𝑠𝑠

Critic 𝑄((𝑠, 𝑎)
𝑠

ℒ!.(-0 = −-
!

𝜋!(𝑠)𝑄((𝑠, 𝑎)

ℒ.0/(/. =
1
2 𝑄(𝑠, 𝑎⃗ − 𝑄,-.!, (𝑠, 𝑎⃗) 1

Asynchronous advantage
actor-critic (A3C)

Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. ICML 2016

TORCS car racing simulation video

https://arxiv.org/pdf/1602.01783.pdf
https://www.youtube.com/watch?v=0xo1Ldx3L5Q

Summary: Deep Reinforcement Learning

• Deep Q-learning:

ℒ =
1
2𝐸 𝑄E 𝑠E, 𝑎⃗E − 𝑄GHI<G(𝑠E, 𝑎⃗E) J

• Imitation Learning:
ℒ = − log𝜋<+ 𝑠E

• Actor-Critic:

ℒ<IEHK = −B
<

𝜋<(𝑠)𝑄E(𝑠, 𝑎)

