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Review: Markov Decision Process
A Markov decision process (MDP) is 
defined by the rewards earned in each 
state:

𝑅(𝑠) = &
+1 𝑠 = (4,3)
−1 𝑠 = (4,2)
−0.04 otherwise

…and the transition probability function, 
which tells the probability of reaching 
state 𝑠’ if you take action 𝑎 in state 𝑠:

𝑃 𝑠! 𝑠, 𝑎 = &
0.8 intended
0.1 fall left
0.1 fall right

…and the discount factor, 0 ≤ 𝛾 ≤ 1, 
which tells you what fraction of a reward 
today is worth one reward tomorrow.



0.81 0.87 0.92

0.76 0.66

0.71 0.66 0.61 0.39

An MDP is “solved” by finding:
• 𝑈(𝑠), the “utility,” which is defined to be 

the expected sum of all future rewards 
obtained by starting in state 𝑠 and 
proceeding according to the best 
possible policy, and

• 𝜋(𝑠), the “policy”, defined as the best 
action to take in each state.

Review: Markov Decision Process



The solution to an MDP is found by
solving Bellman’s equation:
𝑈 𝑠 = 𝑅 𝑠 + 𝛾 max

!∈#(%)
-
%'

𝑃 𝑠' 𝑠, 𝑎 𝑈(𝑠')

Bellman’s equation gives the exact 
solution.  The only reasons we might 
choose not to use it are:
• It is N nonlinear equations in N

unknowns, so exact solution may be 
NP-complete (exhaustive search).

• In many real-world scenarios, we don’t 
know 𝑃(𝑠’|𝑠, 𝑎), so we can’t use 
Bellman’s equation anyway.
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Review: Q-Learning
Suppose we don’t know 𝑃(𝑠’|𝑠, 𝑎), and we don’t care to learn it.  We 
can avoid learning it by instead learning 𝑄(𝑠, 𝑎), defined as the 
maximum expected sum of all future rewards if we start with action 
𝑎 in state 𝑠.  In other words, divide Bellman’s equation:

𝑈 𝑠 = 𝑅 𝑠 + 𝛾 max
!∈#(%)

-
%'

𝑃 𝑠' 𝑠, 𝑎 𝑈(𝑠')

…into two parts:

𝑄 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾-
%'

𝑃 𝑠' 𝑠, 𝑎 𝑈(𝑠')

𝑈(𝑠) = max
!∈#(%)

𝑄(𝑠, 𝑎)



Review: Q-Learning
Rewrite Bellman’s equation in terms of only Q:

𝑄 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾 max
!'∈#(%)

-
%'

𝑃 𝑠' 𝑠, 𝑎 𝑄(𝑠′, 𝑎′)

Here are the problems we need to solve.
• 𝑅 𝑠 is unknown ⟹ use 𝑅( 𝑠 , the reward at the 𝑡() time step.
• 𝑃(𝑠’|𝑠, 𝑎) is unknown ⟹ perform action 𝑎( in state 𝑠(, observe the 

resulting state 𝑠(*+, and pretend that 𝑃 𝑠(*+ 𝑠(, 𝑎( = 1.
• 𝑄(𝑠′, 𝑎′) is unknown ⟹ use 𝑄((𝑠′, 𝑎′), our current estimate.
Result: 

𝑄,-.!, 𝑠(, 𝑎( = 𝑅( 𝑠( + 𝛾 max
!'∈#(%!"#)

𝑄((𝑠(*+, 𝑎′)



Review: Q-Learning

𝑄,-.!, 𝑠(, 𝑎( = 𝑅( 𝑠( + 𝛾 max
!'∈#(%!"#)

𝑄((𝑠(*+, 𝑎′)

𝑄,-.!, has a high variance because of all the approximations involved.  
The variance can be reduced by averaging it over time using some 
averaging constant 0 < 𝛼 < 1:

𝑄(*+ 𝑠(, 𝑎( = 1− 𝛼 𝑄( 𝑠(, 𝑎( + 𝛼𝑄,-.!, 𝑠(, 𝑎(

= 𝑄( 𝑠(, 𝑎( + 𝛼 𝑄,-.!, 𝑠(, 𝑎( −𝑄( 𝑠(, 𝑎(



Summary: Q-Learning
• Q(s,a) – the “quality” of an action

𝑄 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾)
$%

𝑃 𝑠% 𝑠, 𝑎 𝑈(𝑠%)

𝑈(𝑠) = max
&∈(($)

𝑄(𝑠, 𝑎)

• Q-learning
• Off-policy learning: TD

𝑄+,-&+ 𝑠. , 𝑎. = 𝑅.(𝑠.) + 𝛾 max
&%∈(($!"#)

𝑄.(𝑠./0, 𝑎′)

𝑄./0 𝑠. , 𝑎. = 𝑄. 𝑠. , 𝑎. + 𝛼 𝑄+,-&+ 𝑠. , 𝑎. − 𝑄. 𝑠. , 𝑎.
• On-policy learning: SARSA

𝑎./0 = 𝜋.(𝑠./0)
𝑄+,-&+ 𝑠. , 𝑎. = 𝑅.(𝑠.) + 𝛾𝑄.(𝑠./0, 𝑎./0)
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Deep Q learning
Instead of discrete 𝑠, suppose 𝑠
is a vector of real numbers, e.g., 
the image from the robot’s eye 
camera:

𝑠 = 𝑠!, … , 𝑠" =
Instead of discrete 𝑎, suppose �⃗�
is a vector, e.g., cannon angle 
and velocity,

�⃗� = 𝑎!, … , 𝑎#
Deep Q-learning uses a neural 
network to compute an estimate
𝑄((𝑠, �⃗�) which is as close as 
possible to 𝑄(𝑠, �⃗�). 𝑎! … 𝑎# 1

𝑄((𝑠, �⃗�)

1

1

𝑠! … 𝑠"

1

1
Copyright Taito. 



MMSE Deep Q learning
Suppose we train the neural network 
weights in order to minimize the mean-
squared error (MMSE):

ℒ =
1
2𝐸 𝑄( 𝑠, �⃗� − 𝑄(𝑠, �⃗�) $

(where I’m using 𝐸 / as a lazy way to 
write “average over all training runs of the 
game”).  
Then, for each weight 𝑤, we update as 

𝑤 ← 𝑤 − 𝜂
𝑑ℒ
𝑑𝑤

𝑎! … 𝑎# 1

𝑓 𝑠, �⃗�

1

1

𝑠! … 𝑠"

1

1



What makes deep Q learning harder than 
normal neural network training

• We don’t know the true value of 
𝑄(𝑠, �⃗�) for any of the training runs!

• 𝑄 𝑠, �⃗� is defined to be the expected 
value of performing action �⃗�.  We 
never know its true expected value: all 
we know is whether we won or lost 
that particular game.

• So we can’t compute ℒ, and we can’t 
compute %ℒ

%'
, and we can’t update 𝑤! 𝑎! … 𝑎# 1

𝑓 𝑠, �⃗�

1

1

𝑠! … 𝑠"

1

1



The solution: 𝑄!"#$!
Remember that Q learning was defined as

𝑄./0 𝑠. , 𝑎.
= 𝑄. 𝑠. , 𝑎. + 𝛼 𝑄+,-&+ 𝑠. , 𝑎. − 𝑄. 𝑠. , 𝑎.

where 𝑄+,-&+ 𝑠. , 𝑎. is defined, e.g., in TD as

𝑄+,-&+ 𝑠. , 𝑎. = 𝑅.(𝑠.) + 𝛾 max
&%

𝑄.(𝑠./0, 𝑎′)

…for 𝑠./0 equal to the next state we reach after 
action 𝑎. on this particular game. 



The solution: 𝑄!"#$!
Let’s define deep Q learning using the same 
𝑄+,-&+: 

ℒ =
1
2
𝐸 𝑄. 𝑠. , �⃗�. − 𝑄+,-&+(𝑠. , �⃗�.) 1

where 𝑄+,-&+(𝑠. , �⃗�.) is:
𝑄+,-&+(𝑠. , �⃗�.) = 𝑅.(𝑠.) + 𝛾 max

&%
𝑄. 𝑠./0, �⃗�′

Now we have an L that depends only on things 
we know (𝑄. 𝑠. , �⃗�. , 𝑅.(𝑠.), and 𝑄. 𝑠./0, �⃗�′ ), so 
it can be calculated, differentiated, and used to 
update the neural network.



Dealing with training instability
• Challenges

– Target values are not fixed
– Successive experiences are correlated and dependent on the policy
– Policy may change rapidly with slight changes to parameters, leading to 

drastic change in data distribution
• Solutions

– Freeze target Q network
– Use experience replay



Experience replay
• At each time step:

– Take action �⃗�. according to epsilon-greedy policy
– Store experience (𝑠. , �⃗�. , 𝑅. , 𝑠./0) in replay memory buffer

(𝑠!, �⃗�!, 𝑅!, 𝑠$)
(𝑠$, �⃗�$, 𝑅$, 𝑠()

…
(𝑠), �⃗�), 𝑅), 𝑠)*!)

• Learning:
– Randomly sample a 

minibatch, 𝒟, from the replay 
buffer.

𝒟 =randomly 
sampled set of 

tuples



Deep Q learning in Atari

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf


Deep Q learning in Atari
• End-to-end learning of 𝑄. 𝑠, 𝑎 from pixels 𝑠
• Output is 𝑄. 𝑠, 𝑎 for 𝑎 ∈18 joystick/button configurations
• Reward is change in score for that step

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

Q(s,a1)
Q(s,a2)
Q(s,a3)
.
.
.
.
.
.
.
.
.
.
.
Q(s,a18)

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf


Deep Q learning in Atari
• Input state 𝑠 is stack of raw pixels from last 4 frames
• Network architecture and hyperparameters fixed for all games

Mnih et al. Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf


Deep Q learning in Atari

Deep Q-Learning Playing Atari Breakout

https://www.youtube.com/watch?v=V1eYniJ0Rnk
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Policy Learning

Why can’t we just learn a model (neural net, or even a table 
lookup) that does this:

Model 𝑎 = 𝜋(𝑠)𝑠



Policy Learning
Actually, let’s redefine 𝜋(𝑠) to be a probability vector:

𝜋< 𝑠 =
exp 𝑤<=ℎ(𝑠)

∑>?@
|B| exp 𝑤>=ℎ(𝑠)

= 𝑃 𝐴 = 𝑎|𝑆 = 𝑠

Model

Choose 
𝐴 = 𝑎 with 
probability
𝜋! 𝑠

𝑠



Probabilistic Policy

If we have |𝐴| possible, actions, 1 ≤ 𝑎 ≤ |𝐴|, we could train 
the network to learn a hidden layer ℎ(𝑠) so that:

𝜋< 𝑠 =
exp 𝑤<=ℎ(𝑠)

∑>?@
|B| exp 𝑤>=ℎ(𝑠)

= 𝑃 𝐴 = 𝑎|𝑆 = 𝑠

Meaning “the probability that the best action is a.”



How do we train it?
• Training data only give us 
𝑠C , 𝑎C , 𝑅C , 𝑠CD@ .

• BAD IDEA: train the network to choose 
A = 𝑎/ that maximizes the immediate 
reward, 𝑅/, and just ignore future 
rewards.

• GOOD IDEA: Train the network to 
maximize 𝑅/ + 𝛾𝑈 𝑠/*+ = sum of all 
future rewards.

• PROBLEM: we don’t know 𝑈 𝑠CD@ .

𝑠8, 𝑎8, 𝑅8, 𝑠9
𝑠9, 𝑎9, 𝑅9, 𝑠:
𝑠:, 𝑎:, 𝑅:, 𝑠;
𝑠;, 𝑎;, 𝑅;, 𝑠<
𝑠<, 𝑎<, 𝑅<, 𝑠=

⋮



How to make Policy Learning trainable

1. Watch a human perform the task,
2. assume that each of the human’s actions is the best 

action that could possibly have been taken at that time,
3. train the neural net to imitate the human’s actions with

high probability.

This is called “apprenticeship learning,” which is a type of 
“imitation learning.”



Imitation learning

• In some applications, you cannot bootstrap 
yourself from random policies
– High-dimensional state and action spaces where 

most random trajectories fail miserably
– Expensive to evaluate policies in the physical world, 

especially in cases of failure
• Solution: learn to imitate sample trajectories or 

demonstrations
– This is also helpful when there is no natural reward 

formulation



Imitation learning

• 𝑠E = a representation of the state of the environment at 
time t (can be a real-valued vector)

• 𝑎E= the action that a human actor performed in response 
to this state (must be discrete)

• 𝜋> 𝑠E = 𝑘EF element in the softmax output of a neural 
network, given 𝑠E as the input

• Training criterion: train the neural network in order to 
minimize the cross-entropy:

ℒ = − log𝜋<+ 𝑠E



How do we train it?
• Now our training data don’t even require 
𝑅/ or 𝑠/*+!

• All we need is a set of state vectors, 𝑠/, 
and the action that the human performed 
in the same situation, 𝑎/.

𝑠8, 𝑎8
𝑠9, 𝑎9
𝑠:, 𝑎:
𝑠;, 𝑎;
𝑠<, 𝑎<
⋮



Overview of imitation learning methods

Hussein et al. Imitation Learning: A Survey of Learning Methods, 2018.

Apprenticeship learning (copy the 
human’s action) needs a lot of 
human supervision.  Sometimes we 
can benefit by combining 
apprenticeship learning with other 
methods (active learning, transfer 
learning, structured prediction, 
reinforcement learning, 
optimization).

https://dl.acm.org/doi/abs/10.1145/3054912?casa_token=ncsnlHnKn7kAAAAA:mSlkKdc2HTg8BMnGGo3g9yncEeGTRc3q6eRC4fEopc1M6QAwdiuS2vAowztAhHh7dHMxEwlO77U


Overview of imitation learning methods

Hussein et al. Imitation Learning: A Survey of Learning Methods, 2018.

Other ways to make imitation 
learning efficient:
• Use many sensors
• Use designed features, or 

features extracted w/a pre-trained 
neural net

• Balance between classification 
(discrete actions) vs regression 
(continuous actions)

https://dl.acm.org/doi/abs/10.1145/3054912?casa_token=ncsnlHnKn7kAAAAA:mSlkKdc2HTg8BMnGGo3g9yncEeGTRc3q6eRC4fEopc1M6QAwdiuS2vAowztAhHh7dHMxEwlO77U


Example: Coarse-to-Fine Imitation Learning

Edward Johns, Coarse-to-Fine Imitation Learning: Robot Manipulation from a Single Demonstration, 2021.

https://www.youtube.com/watch?v=4JxQ81NqOIM
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The Deep RL Methods We’ve Learned So 
Far

• Deep Q-learning gives us a network Q(s,a) which is very 
noisy, so we don’t really want to trust it

• A policy network can directly estimate 𝜋(𝑠).  The only 
problem is that we have no way to train it, unless we 
imitate human behavior.



Actor-critic 
algorithm

So let’s train two neural nets!
• 𝑄) 𝑠, 𝑎 is the critic, and is 

trained according to the 
deep Q-learning algorithm 
(MMSE). 

• 𝜋! 𝑠 is the actor, and is 
trained to satisfy the critic

The Critic, by Lajos Tihanyi.  
Oil on canvas, 1916.

Public Domain, 
https://commons.wikimedia.or
g/w/index.php?curid=178374

38

Actors from the Comédie Française, by Antoine 
Watteau, 1720. Public Domain, 

https://commons.wikimedia.org/w/index.php?curi
d=15418670



The Actor-Critic Algorithm

Main idea:
• The actor is a policy network that decides what action to 

perform:
𝜋< 𝑠 = Probability that 𝑎 is the best action in state 𝑠

• The critic is a deep Q-learning network that estimates the 
quality of that action (𝑄(𝑠, 𝑎)).

𝑄 𝑠, 𝑎 = Expected sum of future rewards if (𝑠, 𝑎)
• The critic is noisy, so they don’t get to decide the action.  

Instead, we only use the critic to help us to train the actor.



The Actor-Critic Algorithm

𝜋< 𝑠 = Probability that 𝑎 is the best action in state 𝑠
𝑄 𝑠, 𝑎 = Expected sum of future rewards if (𝑠, 𝑎)

• The critic is noisy, so they don’t get to decide the action.  
Instead, we only use the critic to help us to train the actor.

ℒ = −B
<

𝜋<(𝑠)𝑄(𝑠, 𝑎)

• The training loss = negative expected sum of future 
rewards given action 𝑎, averaged over the probability with 
which the actor chooses action 𝑎.



The Actor-Critic Algorithm: Forward-Prop

Actor 𝜋! 𝑠 = 𝑃(𝑎|𝑠)𝑠

Critic 𝑄"(𝑠, 𝑎)𝑠



The Actor-Critic Algorithm: Back-Prop

Actor 𝜋! 𝑠𝑠

Critic 𝑄((𝑠, 𝑎)
𝑠

ℒ!.(-0 = −-
!

𝜋!(𝑠)𝑄((𝑠, 𝑎)

ℒ.0/(/. =
1
2 𝑄( 𝑠, �⃗� − 𝑄,-.!, (𝑠, �⃗�) 1



Asynchronous advantage 
actor-critic (A3C)

Mnih et al. Asynchronous Methods for Deep Reinforcement Learning. ICML 2016

TORCS car racing simulation video

https://arxiv.org/pdf/1602.01783.pdf
https://www.youtube.com/watch?v=0xo1Ldx3L5Q


Summary: Deep Reinforcement Learning

• Deep Q-learning: 

ℒ =
1
2𝐸 𝑄E 𝑠E, �⃗�E − 𝑄GHI<G(𝑠E, �⃗�E) J

• Imitation Learning: 
ℒ = − log𝜋<+ 𝑠E

• Actor-Critic: 

ℒ<IEHK = −B
<

𝜋<(𝑠)𝑄E(𝑠, 𝑎)


