
Deep Learning
Mark Hasegawa-Johnson, May 2022

Some slides by Svetlana Lazebnik
CC-BY 4.0: Copy or modify at will,

but please cite the source

ℎ!
(#)

ℎ!
(%) ℎ&

(!) ℎ'
(%) 1…

ℎ&
(#) ℎ(

(#)

1

1

Outline
• Review: multi-class perceptron
• Breaking the constraints of linearity: multi-layer neural nets
• Flow diagram for the XOR problem
• Flow diagram for a multi-layer neural net
• One-hot vectors
• Softmax
• Cross-entropy = negative log probability of the training data
• Stochastic gradient descent
• Training a neural net using numpy
• The same example using pytorch
• torch.nn: standard layers and units

Review: Multi-Class Perceptron

𝑓 �⃗� = argmax
!

(𝑤!"�⃗�)

�⃗� =

𝑥"
⋮
𝑥#
1

, 𝑤! =

𝑤!,"
⋮

𝑤!,#
𝑏!

𝑤!%𝑥 = 𝑏! +8
&'"

#

𝑤!,&𝑥&

𝑥!

𝑥&

𝒇(𝒙) = 0

𝒇(𝒙) = 1 𝒇(𝒙) = 2 𝒇(𝒙) = 3

𝒇(𝒙) = 4

𝒇(𝒙) = 5
𝒇(𝒙) = 6

𝒇(𝒙) = 8

𝒇(𝒙) = 9

𝑓(𝑥) = 7

𝒇(𝒙) = 10

𝒇(𝒙) = 11 𝒇(𝒙) = 12
𝒇(𝒙) = 13

𝒇(𝒙) = 14

𝒇(𝒙) = 15 𝒇(𝒙) = 16 𝒇(𝒙) = 17

𝒇(𝒙) = 18
𝒇(𝒙) = 19

Training Algorithm for the Multi-Class
Perceptron

For each training instance �⃗� with ground truth label 𝑦 ∈ {−1,1}:
• Classify with current weights: 𝑓(�⃗�) = argmax

!
(𝑤$%�⃗�)

• Update weights:
• If 𝑓 �⃗� = 𝑦 then do nothing
• If 𝑓 �⃗� ≠ 𝑦 then

𝑤9 = 𝑤9 + 𝜂�⃗�
𝑤:(;⃗) = 𝑤:(;⃗) − 𝜂�⃗�

Outline
• Review: multi-class perceptron
• Breaking the constraints of linearity: multi-layer neural nets
• Flow diagram for the XOR problem
• Flow diagram for a multi-layer neural net
• One-hot vectors
• Softmax
• Cross-entropy = negative log probability of the training data
• Stochastic gradient descent
• Training a neural net using numpy
• The same example using pytorch
• torch.nn: standard layers and units

Biological Inspiration: McCulloch-Pitts
Artificial Neuron, 1943

x1

x2

xD

w1

w2

w3

x3

wD

Input

Weights

.

.

.

Output: u(w×x)

• In 1943, McCulloch & Pitts
proposed that biological neurons
have a nonlinear activation
function (a step function) whose
input is a weighted linear
combination of the currents
generated by other neurons.
• They showed lots of examples of

mathematical and logical
functions that could be computed
using networks of simple neurons
like this.

Biological Inspiration: Neuronal Circuits

• Even the simplest actions
involve more than one neuron,
acting in sequence in a neuronal
circuit.
• One of the simplest neuronal

circuits is a reflex arc, which may
contain just two neurons:
• The sensor neuron detects a

stimulus, and communicates an
electrical signal to …

• The motor neuron, which
activates the muscle.

Illustration of a reflex arc: sensor neuron sends a voltage spike to the
spinal column, where the resulting current causes a spike in a motor

neuron, whose spike activates the muscle.
By MartaAguayo - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=39181552

A McCulloch-Pitts Neuron can compute some logical functions…
When the features are binary (𝑥# ∈
{0,1}), many (but not all!) binary
functions can be re-written as linear
functions. For example, the function

𝑓 �⃗� = (𝑥$ ∨ 𝑥%)
can be re-written as

𝑓 �⃗� = 𝑢 𝑥$ + 𝑥% − 0.5

𝑥!

𝑥&

Similarly, the function
𝑓 �⃗� = (𝑥$ ∧ 𝑥%)

can be re-written as
𝑓 �⃗� = 𝑢 𝑥$ + 𝑥% − 1.5

𝑥!

𝑥&

… but not all.
“A linear classifier cannot learn an

XOR function.”
- Minsky & Papert, 1969

• …but a two-layer neural net can
compute an XOR function!

𝑥!

𝑥&

Outline
• Review: multi-class perceptron
• Breaking the constraints of linearity: multi-layer neural nets
• Flow diagram for the XOR problem
• Flow diagram for a multi-layer neural net
• One-hot vectors
• Softmax
• Cross-entropy = negative log probability of the training data
• Stochastic gradient descent
• Training a neural net using numpy
• The same example using pytorch
• torch.nn: standard layers and units

Example: one way (of many possible ways) to represent
the XOR function using a two-layer neural network

For example, consider the XOR problem.

Suppose we create two hidden nodes:

ℎ$ �⃗� = 𝑢 0.5 − 𝑥$ − 𝑥%
ℎ% �⃗� = 𝑢 𝑥$ + 𝑥% − 1.5

Then the XOR function 𝑓 �⃗� = (𝑥$⊕

𝑥%) is given by 𝑓 �⃗� = ¬(ℎ$ ∨ ℎ%). For

example, we could write this as:

𝑓 �⃗� = 𝑢 0.5 − ℎ$ 𝑥 − ℎ% 𝑥

𝑥!

𝑥& ℎ! �⃗� = 1 up
in this region

ℎ" �⃗� = 1 down
in this region

Here in the middle,
both ℎ" �⃗� and ℎ! �⃗�
are zero.

𝑥!

𝑥&

Flow diagrams

Suppose we create two hidden nodes:

ℎ4 �⃗� = 𝑢 0.5 − 𝑥4 − 𝑥5
ℎ5 �⃗� = 𝑢 𝑥4 + 𝑥5 − 1.5

Here is a flow diagram for this computation:
𝑥!

𝑥& ℎ! �⃗� = 1 up
in this region

ℎ" �⃗� = 1 down
in this region

Here in the middle,
both ℎ" �⃗� and ℎ! �⃗�
are zero.

𝑥! 𝑥& 1

−1
−1

1
1 0.5

−1.5

ℎ!(�⃗�) ℎ&(�⃗�)

Flow diagrams

A flow diagram is a way to represent the
computations performed by a neural
network.
• Circles, a.k.a. “nodes,” a.k.a. “neurons,”

represent scalar operations.
• The circles above 𝑥! and 𝑥" represent the

scalar operation of “read this datum in from
the dataset.”

• The circles labeled ℎ! and ℎ! represent the
scalar operation of “unit step function.”

• Lines represent multiplication by a scalar.
• Where arrowheads come together, the

corresponding variables are added.

𝑥!

𝑥& ℎ% = 1

ℎ$ = 1
Here in the middle,
both ℎ" �⃗� and ℎ! �⃗�
are zero.

𝑥! 𝑥& 1

−1
−1

1 1
0.5

−1.5

ℎ! ℎ&

Flow diagrams

It’s often useful to distinguish two types
of hidden variables at each neuron:
• The neural excitation, 𝜉#, is the result of

adding together all of the inputs to the
neuron.
• The neural activation, ℎ#, is the result of

passing 𝜉# through a scalar nonlinearity.

𝑥!

𝑥& ℎ% = 1

ℎ$ = 1
Here in the middle,
both ℎ" �⃗� and ℎ! �⃗�
are zero.

𝑥! 𝑥& 1

−1
−1

1 1
0.5

−1.5

ℎ! ℎ&

Flow diagrams

So in this flow diagram, for example, we
can see that:

𝜉$ = 0.5 − 1 ; 𝑥$ − 1 ; 𝑥%
𝜉% = −1.5 + 1 ; 𝑥$ + 1 ; 𝑥%

… and then …
ℎ$ = 𝑢 𝜉$
ℎ% = 𝑢 𝜉%

… where 𝑢 ; is the unit step function.

𝑥!

𝑥& ℎ% = 1

ℎ$ = 1
Here in the middle,
both ℎ" �⃗� and ℎ! �⃗�
are zero.

𝑥! 𝑥& 1

−1
−1

1 1
0.5

−1.5

ℎ! ℎ&

Flow diagrams

Now suppose that we want to compute

𝑓 �⃗� = (𝑥$⊕𝑥%). We could write this

as:

𝑓 �⃗� = 𝑢 0.5 − ℎ$ − ℎ%
𝑥!

𝑥&

Here in the middle,
both ℎ" �⃗� and ℎ! �⃗�
are zero.

𝑥!

𝑥&

ℎ$ = 1

ℎ% = 1

Flow diagrams

We can write the XOR function as:
𝜉& = 0.5 − 1 ; ℎ$ − 1 ; ℎ%

𝑓 �⃗� = 𝑢 𝜉&

𝑥! 𝑥& 1

−1
−1

1
1

0.5

−1.5

ℎ! ℎ&
1−1 −1 0.5

𝑓

Flow diagrams

Putting it all together:
𝜉$ = 0.5 − 1 ; 𝑥$ − 1 ; 𝑥%
𝜉% = −1.5 + 1 ; 𝑥$ + 1 ; 𝑥%

ℎ$ = 𝑢 𝜉$
ℎ% = 𝑢 𝜉%

𝜉& = 0.5 − 1 ; ℎ$ − 1 ; ℎ%

𝑓 �⃗� = 𝑢 𝜉&

𝑥! 𝑥& 1

−1
−1

1
1

0.5

−1.5

ℎ! ℎ&
1−1 −1 0.5

𝑓

Outline
• Review: multi-class perceptron
• Breaking the constraints of linearity: multi-layer neural nets
• Flow diagram for the XOR problem
• Flow diagram for a multi-layer neural net
• One-hot vectors
• Softmax
• Cross-entropy = negative log probability of the training data
• Stochastic gradient descent
• Training a neural net using numpy
• The same example using pytorch
• torch.nn: standard layers and units

Multi-layer neural net

• 𝜉#
(() = excitation of the jth neuron (a.k.a. “node”) in the lth layer
• Computed by adding together inputs from many other neurons, each

weighted by a corresponding connection strength or connection weight, 𝑤&,(
(*)

• ℎ#
(() = activation of the jth node in the lth layer
• This is computed by just passing the excitation through a scalar nonlinear

activation function, thus ℎ&
(*) = 𝑔(𝜉&

*). The activation functions in different
layers differ, so to be pedantic, sometimes we’ll write ℎ&

(*) = 𝑔(*) 𝜉&
(*) .

Multi-layer neural net

Given: some training token �⃗� = [𝑥$, … , 𝑥*, 1]" and its target label 𝑦
1. Initialize: ℎ+

(,) = 𝑥+
2. Forward propagate: for 𝑙 ∈ 1,… , 𝐿 :

a. Compute the excitations as weighted sums of the previous-layer activations:

𝜉&
(*) = 𝑏&

(*) +8
(

𝑤&,(
(*)ℎ(

(*,")

b. Compute the activations by applying scalar nonlinearities:
ℎ&
(*) = 𝑔(*) 𝜉&

(*)

3. Output: 𝑃(𝑌 = 𝑘|𝑥) = ℎ+
(-)

Forward propagation

• From activation to excitation is a
matrix multiply:

𝜉#
(() = 𝑏#

(() +G
+

𝑤#,+
(()ℎ+

((/$)

• From excitation to activation is a scalar
nonlinearity:

ℎ#
(() = 𝑔(() 𝜉#

(()

1
ℎ$
((/$) ℎ%

((/$) ℎ0
((/$)…

𝜉$
(() 𝜉%

(() 𝜉1
(()…

ℎ$
(() ℎ%

(() ℎ1
(()…

𝑔(() 𝑔(() 𝑔(()

Forward propagation: Matrix multiply
From activation to excitation is a matrix
multiply:

𝜉(6) = 𝑊(6)ℎ(674)

…where…

𝜉(6) =
𝜉4
(6)

⋮
𝜉8
(6)

, ℎ(674) =

ℎ4
(674)

⋮
ℎ9
(674)

1

,

𝑊(6) =
𝑤4,4
(6) ⋯ 𝑤4,9

(6)

⋮ ⋱ ⋮
𝑤8,4
(6) ⋯ 𝑤8,9

(6)

𝑏4
(6)

⋮
𝑏8
(6)

1
ℎ$
((/$) ℎ%

((/$) ℎ0
((/$)…

𝜉$
(() 𝜉%

(() 𝜉1
(()…

ℎ$
(() ℎ%

(() ℎ1
(()…

𝑔(() 𝑔(() 𝑔(()

Forward propagation

From excitation to activation is a scalar
nonlinearity:

ℎ#
(() = 𝑔(() 𝜉#

(()

What type of nonlinearity?
Answer: it depends on what task you
want your neural net to learn.

1
ℎ$
((/$) ℎ%

((/$) ℎ0
((/$)…

𝜉$
(() 𝜉%

(() 𝜉1
(()…

ℎ$
(() ℎ%

(() ℎ1
(()…

𝑔(() 𝑔(() 𝑔(()

Activation functions
The “activation function,” 𝑔(() ; , can be any scalar
nonlinearity. Common ones that you should know
include the unit step and signum functions, and:
Logistic Sigmoid:

𝜎 𝛽 =
1

1 + 𝑒/2
Hyperbolic Tangent (tanh):

tanh 𝛽 =
𝑒2 − 𝑒/2

𝑒2 + 𝑒/2

Rectified Linear Unit (ReLU):
ReLU 𝛽 = max 0, 𝛽

Outline
• Review: multi-class perceptron
• Breaking the constraints of linearity: multi-layer neural nets
• Flow diagram for the XOR problem
• Flow diagram for a multi-layer neural net
• One-hot vectors
• Softmax
• Cross-entropy = negative log probability of the training data
• Stochastic gradient descent
• Training a neural net using numpy
• The same example using pytorch
• torch.nn: standard layers and units

Comparison of Multi-Class Perceptron to Multiple Linear Regression

1

x1

xD

x2

Input Weights

.

.

.

Output:
argmax#$"% 𝑤#&�⃗�

.

.

.

𝑏"𝑏!

𝑤",(

𝑏%

𝑤!,(
𝑤%,(

argm
ax

.

.

.

Multi-Class Perceptron

1

x1

xD

x2

Input Weights

.

.

.

.

.

.

𝑏"𝑏!

𝑤",(

𝑏%

𝑤!,(
𝑤%,(

Multiple Linear Regression

𝑓! �⃗� = 𝑤!"𝑥

𝑓# �⃗� = 𝑤#"𝑥

𝑓$ �⃗� = 𝑤$"𝑥

Here’s a weird question:

Can we come up with some new notation that can be used to write
both the multi-class perceptron AND the linear regression algorithm?

New notation: Don’t change the multi-class
perceptron algorithm, but make it easier to write
• Instead of defining 𝑦3 as an integer, let’s define �⃗�3 to be a vector:

�⃗�3 =
𝑦3,$
⋮
𝑦3,4

• For a multi-class perceptron, this only makes sense if �⃗�3 is what’s
called a one-hot vector:

𝑦3,! = W1 𝑐 = true class label of the 𝑖56 token
0 otherwise

New notation: Don’t change the multi-class
perceptron algorithm, but make it easier to write
• Let’s also define the output to be a one-hot vector:

𝑓 �⃗�3 =
𝑓$ �⃗�3
⋮

𝑓4 �⃗�3
… where …

𝑓! �⃗�3 = W1 𝑐 = argmax𝑤!"�⃗�
0 otherwise

Example: Binary classifier
Consider the classifier

𝑓 �⃗�C = 𝑓! �⃗�C
𝑓& �⃗�C

, 𝑓D �⃗�C = 41 𝑐 = argmax𝑤DE�⃗�
0 otherwise

… with only two classes. Then the classification regions might
look like this:

𝑥!

𝑥&
𝑓 �⃗� = 1

0
𝑓 �⃗� = 0

1

Multi-Class Linear Classifiers
Consider the classifier

𝑓 �⃗�3 =
𝑓$ �⃗�3
⋮

𝑓4 �⃗�3
,

𝑓! �⃗�3 = W1 𝑐 = argmax𝑤!"�⃗�
0 otherwise

… with 20 classes. Then some of the
classifications might look like this.

𝑥!

𝑥&

By Balu Ertl - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=38534275

𝑓(�⃗�) =

0
0
⋮
0
1

𝑓(�⃗�) =

0
0
⋮
1
0

𝑓(�⃗�) =

1
0
⋮
0
0

𝑓(�⃗�) =

0
1
⋮
0
0

Now the perceptron has a vector error, just
like linear regression
Now we can define an error term for every output:

𝜖C =
𝜖C,4
⋮
𝜖C,D

, 𝜖C,E = 𝑓E �⃗�C − 𝑦C,E

• If c was the correct class label (𝑦C,E = 1), but the network didn’t get it right
(𝑓E �⃗�C = 0), then it undershot:

𝜖C,E = −1
• If the network thought the correct answer was c (𝑓E �⃗�C = 1), but it wasn’t

(𝑦C,E = 0), then it overershot
𝜖C,E = +1

• Otherwise,
𝜖C,E = 0

Multi-class perceptron, written in terms of
one-hot vectors
But with this definition, we can write the perceptron update the same
as the linear regression update:

𝑤! ← 𝑤! − 𝜂𝜖3,!�⃗�3 = i
𝑤! + 𝜂�⃗�3 𝜖3,! = −1
𝑤! − 𝜂�⃗�3 𝜖3,! = +1

𝑤! 𝜖3,! = 0

Comparison of Multi-Class Perceptron to Multiple Regression

1

x1

xD

x2

Input Weights

.

.

.

.

.

.

𝑏"𝑏!

𝑤",(

𝑏%

𝑤!,(
𝑤%,(

Multi-Class Perceptron:
One-hot output

1

x1

xD

x2

Input Weights

.

.

.

.

.

.

𝑏"𝑏!

𝑤",(

𝑏%

𝑤!,(
𝑤%,(

Multiple Regression:
Real-valued Output

𝑓! �⃗� = 𝑤!"𝑥

𝑓# �⃗� = 𝑤#"𝑥

𝑓$ �⃗� = 𝑤$"𝑥

𝑓! �⃗� = &1 1 = argmax𝑤%"�⃗�
0 otherwise

𝑓# �⃗� = &1 2 = argmax𝑤%"�⃗�
0 otherwise

𝑓$ �⃗� = &1 𝑉 = argmax𝑤%"�⃗�
0 otherwise

.

.

.

.

.

.

Outline
• Review: multi-class perceptron
• Breaking the constraints of linearity: multi-layer neural nets
• Flow diagram for the XOR problem
• Flow diagram for a multi-layer neural net
• One-hot vectors
• Softmax
• Cross-entropy = negative log probability of the training data
• Stochastic gradient descent
• Training a neural net using numpy
• The same example using pytorch
• torch.nn: standard layers and units

Softmax: Probabilistic boundaries
Instead of trying to find the exact boundaries, let’s model the
probability that token �⃗� belongs to class �⃗�.

𝑥!

𝑥&
In this region,
𝑃 𝑌 = 0

1 𝑋 = �⃗� ≈ 1

In this region,
𝑃 𝑌 = 𝑌 = 0

1 𝑋 = �⃗� ≈ 0 In this region,
0 < 𝑃 𝑌 = 0

1 𝑋 = �⃗� < 1

Remember that for the perceptron, we have

𝑓 �⃗�C =
𝑓! �⃗�C
⋮

𝑓(�⃗�C
, 𝑓D �⃗�C = 41 𝑐 = argmax𝑤DE�⃗�

0 otherwise

For softmax, we have

𝑓 �⃗�C =
𝑓! �⃗�C
⋮

𝑓(�⃗�C
, 𝑓D �⃗�C =

𝑒F78;⃗

∑GH!(𝑒F98;⃗

Argmax versus Softmax

• This is called the softmax function:

softmax �⃗�C =
softmax

!
𝑊E�⃗�

⋮
softmax

(
𝑊E�⃗�

, softmax
D

𝑊E�⃗� =
𝑒F78;⃗

∑GH!(𝑒F98;⃗

• …where the matrix W is defined to be
𝑊 = 𝑤!, … , 𝑤(

The softmax function

𝑓D �⃗�C = 41 𝑐 = argmax𝑤DE�⃗�
0 otherwise

, 𝑓D �⃗�C =
𝑒F78;⃗

∑GH!(𝑒F98;⃗

In both cases, we have:
• 𝑓D �⃗�C ≥ 0
• 𝑓D �⃗�C ≤ 1
•∑DH!(𝑓D �⃗�C = 1

Argmax and Softmax

𝑓D �⃗�C = 41 𝑐 = argmax𝑤DE�⃗�
0 otherwise

, 𝑓D �⃗�C =
𝑒F78;⃗

∑GH!(𝑒F98;⃗

In both cases, we can interpret these as probabilities:

𝑓D �⃗� = P Class = 𝑐 𝑋 = �⃗�

Argmax and Softmax

Outline
• Review: multi-class perceptron
• Breaking the constraints of linearity: multi-layer neural nets
• Flow diagram for the XOR problem
• Flow diagram for a multi-layer neural net
• One-hot vectors
• Softmax
• Cross-entropy = negative log probability of the training data
• Stochastic gradient descent
• Training a neural net using numpy
• The same example using pytorch
• torch.nn: standard layers and units

Classifier Learning using a Softmax Layer
• Suppose we have some data.

• We want to learn vectors 𝑤! = 𝑤!,$, … ,𝑤!,*, 𝑏!
"

so that
P Class = 𝑐 𝑋 = �⃗� = softmax

!
𝑊"�⃗� .

𝑥C,!

𝑥C,&

Learning a Softmax: Training data
Data:

𝔇 = �⃗�$, 𝑐$, �⃗�%, 𝑐% , … , �⃗�7, 𝑐7

where each �⃗�3 = 𝑥3,$, … , 𝑥3,*, 1
"

is a vector, and each 𝑐3 ∈ {1,… , 𝑉} is a
integer encoding the true class label.

𝑥C,!

𝑥C,&
(�⃗�!, �⃗�! =

1
0)

(�⃗�), �⃗�) =
1
0)

(�⃗�*, �⃗�* =
0
1)

(�⃗�", �⃗�" =
0
1)

Learning a Softmax: Model parameters
We want to learn the model parameters

𝑊 = 𝑤$, … ,𝑤4
so that

P C = 𝑐3 𝑋 = �⃗�3 = softmax
!-

𝑊"�⃗�3

𝑥C,!

𝑥C,&
(�⃗�!, 𝑐! = 1)

(�⃗�), 𝑐) = 1)

(�⃗�*, 𝑐* = 2)

(�⃗�", 𝑐" = 2)

Learning a Softmax: Training criterion
We want to learn the model parameters, 𝑊 = 𝑤$, … ,𝑤4 , in order to maximize
the probability of the observed data:

𝑃 𝔇 𝑊 =q
38$

7

P C = 𝑐3 𝑋 = �⃗�3

𝑥C,!

𝑥C,&
(�⃗�!, 𝑐! = 1)

(�⃗�), 𝑐) = 1)

(�⃗�*, 𝑐* = 2)

(�⃗�", 𝑐" = 2)

Learning a Softmax: Training Criterion
We want to learn the model parameters, 𝑊 = 𝑤$, … ,𝑤4 , in order to maximize
the probability of the observed data:

𝑃 𝔇 𝑊 =q
38$

7

softmax
!-

𝑊"�⃗�3

𝑥C,!

𝑥C,&
(�⃗�!, 𝑐! = 1)

(�⃗�), 𝑐) = 1)

(�⃗�*, 𝑐* = 2)

(�⃗�", 𝑐" = 2)

Learning a Softmax: Training Criterion
We want to learn the model parameters, 𝑊 = 𝑤$, … ,𝑤4 , in order to maximize
the probability of the observed data:

𝑃 𝔇 𝑊 =q
38$

7
𝑒9.-

/ ;⃗-

∑+8$4 𝑒90/;⃗-

𝑥C,!

𝑥C,&
(�⃗�!, 𝑐! = 1)

(�⃗�), 𝑐) = 1)

(�⃗�*, 𝑐* = 2)

(�⃗�", 𝑐" = 2)

How do you maximize a function?

Our goal is to find 𝑊 = 𝑤$, … ,𝑤4 in order to maximize

𝑃 𝔇 𝑊 =q
38$

7
𝑒9.-

/ ;⃗-

∑+8$4 𝑒90/;⃗-
Here are some useful things to know:
1. Logarithm turns products into sums
2. Maximizing 𝑓(𝑊) is the same thing as minimizing −𝑓(𝑊)

1. Logarithms turn products into sums
ln 𝑥 (the natural logarithm of x, shown
as logH 𝑥 in the plot at right) is a
monotonically increasing function of x.
Since it’s monotonically increasing,

argmax
I

𝑃 𝔇 𝑊 = argmax
I

ln 𝑃 𝔇 𝑊

Almost always, maximizing the log
probability is easier than maximizing
the probability, because logarithms turn
products into sums. Logarithm_plots.png, CC-SA 3.0, Richard F. Lyon, 2011

1. Logarithms turn products into sums

Our goal is to find 𝑊 = 𝑤!, … ,𝑤# in order to maximize

ln 𝑃 𝔇 𝑊 = ln,
$%!

&
𝑒'+,

-)⃗,

∑*%!# 𝑒'.-)⃗,

=/
$%!

&

ln
𝑒'+,

-)⃗,

∑*%!# 𝑒'.-)⃗,

=/
$%!

&

𝑤+,
, �⃗�$ − ln/

*%!

#

𝑒'.
-)⃗,

2. Maximizing 𝑓(𝑊) is the same thing as minimizing −𝑓(𝑊).

Our goal is to find 𝑊 = 𝑤$, … ,𝑤4 in order to maximize

ln𝑃 𝔇 𝑊 =G
38$

7

𝑤!-
"�⃗�3 − lnG

+8$

4

𝑒90
/;⃗-

Choosing W to maximizing 𝑤!-
"�⃗�3is kind of obvious: just set 𝑤!- = 𝐴�⃗�3,

where A is a scalar that’s as big as possible. Maximizing
− ln∑+8$4 𝑒90

/;⃗-, is not obvious.

2. Maximizing 𝑓(𝑊) is the same thing as minimizing −𝑓(𝑊).

To emphasize the hard part of the problem, there is a convention that,
instead of maximizing ln𝑃 𝔇 𝑊 , we minimize −ln𝑃 𝔇 𝑊 :
Our goal is to find 𝑊 = 𝑤$, … ,𝑤4 in order to minimize

𝔏 = − ln𝑃 𝔇 𝑊 =G
38$

7

lnG
+8$

4

𝑒90
/;⃗- −𝑤!-

"�⃗�3

The curly 𝔏 is a symbol we use to denote a “loss function”. A loss
function is something you want to minimize.

Some details: Cross entropy

• The loss function is called “cross entropy,” because it is similar in
some ways to the entropy of a thermodynamic system in physics.
• When you implement this in software, it’s a good idea to normalize by

the number of training tokens, so that the scale is easier to
understand:

𝔏 = −
1
𝑛 log𝑃 𝔇 𝑊 = −

1
𝑛G
38$

7

log P C = 𝑐3 𝑋 = �⃗�3

Outline
• Review: multi-class perceptron
• Breaking the constraints of linearity: multi-layer neural nets
• Flow diagram for the XOR problem
• Flow diagram for a multi-layer neural net
• One-hot vectors
• Softmax
• Cross-entropy = negative log probability of the training data
• Stochastic gradient descent
• Training a neural net using numpy
• The same example using pytorch
• torch.nn: standard layers and units

The iterative solution to training a neural net
Instead of minimizing the loss in
closed form, we’re going to use an
iterative algorithm called gradient
descent. It works like this:
• Start from a random initial value of
𝑤 (at 𝑡 = 0).
• Adjust 𝑤 in order to reduce the loss

(𝑡 = 1).
• Repeat until you reach the

optimum (𝑡 = ∞).
𝑤

𝔏 = −
1
𝑛
log 𝑃 𝔇 𝑊𝑡 = 0

𝑡 = 1
𝑡 = ∞

…

The gradient descent algorithm
• Start from a random initial value of 𝑤.
• Calculate the derivative of the loss with respect to 𝑤:

∇'𝔏 =

𝜕𝔏
𝜕𝑤!
⋮
𝜕𝔏
𝜕𝑤-
𝜕𝔏
𝜕𝑏

• Take a step “downhill” (in the direction of the negative
gradient

𝑤 ← 𝑤 −
𝜂
2∇'𝔏

…where 𝜂 is a constant called the “learning rate,” that
determines how big of a step you take. Usually, you
need to adjust 𝜂 in order to get optimum performance
on a dev set, but often 𝜂 ≈ 0.001.

𝑤

𝑀𝑆𝐸 = 𝑎𝑤1 + 𝑏𝑤 + 𝑐
𝔏 = −

1
𝑛
log 𝑃 𝔇 𝑊

Stochastic gradient descent
• If n is large, computing or differentiating the loss for the entire

training dataset, all at once, can be expensive.
• The stochastic gradient descent algorithm picks one training token
�⃗�3, 𝑦3 at random (”stochastically”), and adjusts 𝑤 in order to reduce

the error a little bit for that one token:
𝑤 ← 𝑤 −

𝜂
2∇9𝔏3

…where
𝔏3 = −lnP C = 𝑐3 𝑋 = �⃗�3,𝑊

… in other words, the part of the loss function that only depends on
the 𝑖56 token.

Stochastic gradient descent

𝔏C = lnP
GH!

(

𝑒F9
8;⃗: −𝑤D:

E �⃗�C

If we differentiate that, we discover
that:

∇F7𝔏C = 𝑓D �⃗� − 𝑦C,D �⃗�C

So the stochastic gradient descent
algorithm is:

𝑤D ← 𝑤D − 𝜂 𝑓D �⃗� − 𝑦C,D �⃗�C
𝑤

𝔏2 = − ln P C = 𝑐2 𝑋 = �⃗�2 ,𝑊

Outline
• Review: multi-class perceptron
• Breaking the constraints of linearity: multi-layer neural nets
• Flow diagram for the XOR problem
• Flow diagram for a multi-layer neural net
• One-hot vectors
• Softmax
• Cross-entropy = negative log probability of the training data
• Stochastic gradient descent
• Training a neural net using numpy
• The same example using pytorch
• torch.nn: standard layers and units

Training a neural net using numpy or pytorch
Running example: linear regression
• For example, suppose 𝑦 = sin(𝑥)
• Suppose that the network can only model functions of the form

𝑓 𝑥 = 𝑎 + 𝑏𝑥 + 𝑐𝑥% + 𝑑𝑥& = �⃗�"𝑤
…where we’re defining…

𝑤 =
𝑎
𝑏
𝑐
𝑑
, �⃗� =

1
𝑥
𝑥%
𝑥&

• We want to learn a, b, c, d so that 𝑓(𝑥) ≈ 𝑦

Running example: neural net regression

Mean-squared error

First, let’s define the loss function.

𝑓 𝑥3 = 𝑎 + 𝑏𝑥3 + 𝑐𝑥3% + 𝑑𝑥3&,

𝜖3 = 𝑓 𝑥3 − 𝑦3,

ℒ =
1
𝑛G
38$

7

𝜖3%

Loss gradient
Next, find the derivative of the loss.

𝑓 𝑥$ = 𝑎 + 𝑏𝑥$ + 𝑐𝑥$" + 𝑑𝑥$., 𝜖$ = 𝑓 𝑥$ − 𝑦$, ℒ =
1
𝑛/
$%!

&

𝜖$"

∇'ℒ =

𝑑ℒ
𝑑𝑎
𝑑ℒ
𝑑𝑏
𝑑ℒ
𝑑𝑐
𝑑ℒ
𝑑𝑑

=
2
𝑛/
$%!

&

𝜖$∇'𝜖$ =
2
𝑛/
$%!

&

𝜖$

𝑑𝑓 𝑥$
𝑑𝑎

𝑑𝑓 𝑥$
𝑑𝑏

𝑑𝑓 𝑥$
𝑑𝑐

𝑑𝑓 𝑥$
𝑑𝑑

=
2
𝑛/
$%!

&

𝜖$

1
𝑥$
𝑥$"

𝑥$.

Gradient update
Now, update the weights by subtracting the gradient.

𝑎 = 𝑎 −
𝜂
2
𝑑ℒ
𝑑𝑎

= 𝑎 −
𝜂
𝑛
A
&'!

(

𝑓 𝑥& − 𝑦& ,

𝑏 = 𝑏 − 𝜂
𝑑ℒ
𝑑𝑏

= 𝑏 −
𝜂
𝑛
A
&'!

(

𝑓 𝑥& − 𝑦& 𝑥& ,

𝑐 = 𝑐 − 𝜂
𝑑ℒ
𝑑𝑐

= 𝑐 −
𝜂
𝑛
A
&'!

(

𝑓 𝑥& − 𝑦& 𝑥&# ,

𝑑 = 𝑑 − 𝜂
𝑑ℒ
𝑑𝑑

= 𝑑 −
𝜂
𝑛
A
&'!

(

𝑓 𝑥& − 𝑦& 𝑥&)

How a neural
network is
trained

Here’s Justin Johnson’s
code for doing those
things:
(https://pytorch.org/tuto
rials/beginner/pytorch_w
ith_examples.html)

© 2021 Pytorch,
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html

https://pytorch.org/tutorials/beginner/pytorch_with_examples.html

Outline
• Review: multi-class perceptron
• Breaking the constraints of linearity: multi-layer neural nets
• Flow diagram for the XOR problem
• Flow diagram for a multi-layer neural net
• One-hot vectors
• Softmax
• Cross-entropy = negative log probability of the training data
• Stochastic gradient descent
• Training a neural net using numpy
• The same example using pytorch
• torch.nn: standard layers and units

Autograd: Main idea

• A neural network is a complicated function 𝑓(𝑥), made up of many
simple components

• If we try to take all the derivatives, 𝑑ℒ/𝑑𝑤#,+
((), all at once, in a big

mass of spaghetti code, then the code will be really ugly.
• HOWEVER: Each of the components is simple to compute.

Furthermore, the derivative of its output w.r.t. its input is simple.

Autograd: Tensor objects
The basic idea of autograd is to create a new kind of object that takes
responsibility for its own gradient.

• For example, the object might be a network weight, 𝑤#,+
(()

Autograd: Tensor objects
• In pytorch, variables that take responsibility for their own gradients

are called “tensors” (https://pytorch.org/docs/stable/tensors.html)
• Here’s how Justin Johnson defines tensors for the polynomial

regression problem:

© 2017 Pytorch, https://pytorch.org/tutorials/beginner/pytorch_with_examples.html

Autograd: Overloaded operators
The basic idea of autograd is to create a new kind of object that takes
responsibility for its own gradient.

• For example, the object might be a network weight, 𝑤#,+
(()

• These new objects have overloaded operators, so that any time we
use them to compute some output, the input is cached. For example,
it might be used to compute

𝜉#
(() = 𝑏#

(() +G
+

𝑤#,+
(()ℎ+

((/$)

Autograd: Overloaded operators
Here’s how it gets used:

Python overloaded operators: if “b” is an object that has a method named
__mul__, then the expression “f=b*x” actually calls “f=b.__mul__(x)”.

Autograd: Overloaded operators
The operator overload code looks something like this:

class Tensor(torch.autograd.Function):
def __init__(self, weight):

self.weight = weight
self.saved_tensors = ()

def __mul__(self, other):
self.saved_tensors = (self.saved_tensors[:], other)
returnvalue = self.weight * other
return Tensor(returnvalue)

Cache x in self.saved_tensors, so
we can use it later…

Then calculate the
output of the multiply
operation,

… and cast the return
value as a Tensor.

Autograd: Overloaded operators
Here’s how it gets used:

Stores x**2 in c.saved_tensorsStores x in b.saved_tensors

Python overloaded operators: the expression “b*x” actually calls
b.__mul__(x).

Autograd: the Loss tensor
The basic idea of autograd is to create a new kind of object, a tensor,
that takes responsibility for its own gradient. Any time we use tensors
to compute some output, the input is cached. For example, these
operations:

𝑓 𝑥3 = 𝑎 + 𝑏𝑥3 + 𝑐𝑥3% + 𝑑𝑥3&

ℒ =
1
𝑛G
38$

7

𝑓 𝑥3 − 𝑦3 %

f = a + b*x + c*x**2 + d*x**3
loss = (f-y).pow(2)

...will calculate the loss, but will also store some extra information in
loss.saved_tensors, f.saved_tensors, a.saved_tensors, b.saved_tensors,
c.saved_tensors, d.saved_tensors, and x.saved_tensors.

Autograd: the Loss tensor

Notice the flow diagram that was
implied by those lines of code.
Each tensor’s overloaded __mul__
operator keeps track of the
variables used to compute it:
• loss.saved_tensors has pointers

to f and y
• f.saved_tensors has pointers to

x, a, b, c, and d
x

yf

a b c d

loss

Autograd
loss depends on
y_pred, which
depends on a, b,
c, d.

Autograd: the backward function

Every tensor object has a method
called backward().
If backward() is called with no
arguments, it calculates the
derivative with respect to the
inputs:
• loss.backward() calculates

tmp= <ℒ
<>, then calls the method

f.backward(tmp).

x

yf

a b c d

loss

Autograd: the backward function

If backward() is called with the
argument tmp= Jℒ

JL
, it does three

things:
• Store f.grad= Jℒ

JL
• Calculate derivative w.r.t. each

input, for example, tmp=
𝑑ℒ
𝑑𝑐

=
𝑑ℒ
𝑑𝑓

×
𝑑𝑓
𝑑𝑐

• Pass the input derivatives back to
the inputs, e.g., call
c.backward(tmp)

x

yf

a b c d

loss

Autograd

Calculates the
derivative of the
loss w.r.t. each of
its input tensors.

Uses the resulting
derivatives to
update the
weights.

loss depends on
y_pred, which
depends on a, b,
c, d.

Details: How to turn off autograd

• As you know, every time you add, subtract, multiply or divide a tensor
by anything, the tensor stores data in self.saved_tensors, so it can use
that information later to compute the gradient
• How do you turn this behavior off?

Dynamically
turning off
Autograd

These weight
updates are not
part of the neural
network forward
pass.

How to zero out the gradients

• When you call backward() over a tensor, it doesn’t zero out any
previous gradients
• Instead, it adds the current gradient to the previous gradients
• A very very very common mistake: running 2000 iterations, with the

gradient accumulating from each iteration to the next, instead of
zeroing it out in between iterations

Manually
zeroing out
the
gradients

Here’s the part I
didn’t show you
before.

Outline
• Review: multi-class perceptron
• Breaking the constraints of linearity: multi-layer neural nets
• Flow diagram for the XOR problem
• Flow diagram for a multi-layer neural net
• One-hot vectors
• Softmax
• Cross-entropy = negative log probability of the training data
• Stochastic gradient descent
• Training a neural net using numpy
• The same example using pytorch
• torch.nn: standard layers and units

Pytorch nn module

• The autograd feature of pytorch allows you to define only the forward
propagation of your neural net. As long as all of the component
operations are in pytorch’s library, the back-propagation will be
computed for you.
• Tensors just do multiplication and addition. What about other types

of operations?
• General operations are contained in the nn module, using the

formalism of a “layer.”

Some types of layers

• torch.nn.Linear: a layer that computes �⃗� = 𝑊𝚤 + 𝑏

• torch.nn.Softmax: a layer that computes 𝑜# =
?@A(33)

∑0 ?@A(30)

• torch.nn.Sigmoid: a layer that computes 𝑜# =
$

$/?@A(/33)

• torch.nn.ReLU: a layer that computes 𝑜# = max(0, 𝑖#)
• torch.nn.Sequential: a model that takes a sequence of layers as its

arguments, and applies them, one after the other, in order

m=torch.nn.Linear(n_1,n_2)

• This creates a callable object, m, such that o=m(i) treats each row of i
as a vector, and generates a corresponding row of o using the
operation:

�⃗� = 𝑊𝚤 + 𝑏
• i can be a tensor of any size, as long as its last dimension (the

dimension of each row) is n_1
• o is then a tensor of the same shape as i, except that its last

dimension (the row length) is now n_2
• m.weight (W) is a tensor of size (n_2,n_1)
• m.bias (b) is a row vector of length n_2

Example: Linear, Sigmoid, Softmax

𝑥$

𝜉$

• Here’s an example flowgraph. We could create the
layers as:

linear1 = torch.nn.Linear(2,3)
sigmoid1 = torch.nn.Sigmoid()
linear2 = torch.nn.Linear(3,2)
loss_function = torch.nn.MSEloss()

• Having created them, we could then run forward
pass as:

xi = linear1(x)
h = sigmoid1(xi)
f = linear2(h)
loss = loss_function(f,y)

• Then we could calculate all of the gradients by
running

loss.backward() 𝑥%

𝑓$ 𝑓%

𝜉% 𝜉&

ℎ$ ℎ% ℎ&

torch.nn.Sequential
• torch.nn.Sequential is a special module that

creates a sequence of layers, where each layer’s
output is the next layer’s input. For example:

model = torch.nn.Sequential(
torch.nn.Linear(2,3),
torch.nn.Sigmoid(),
torch.nn.Linear(3,2))

loss_function = torch.nn.MSEloss()
• Then you can run forward pass by just typing:

f = model(x)
loss = loss_function(f,y)

• You can still calculate all of the gradients by
running

loss.backward()
𝑥$

𝜉$

𝑥%

𝑓$ 𝑓%

𝜉% 𝜉&

ℎ$ ℎ% ℎ&

torch.nn.Sequential: where are the parameters?
• The layers each have their own parameters, for example, a model created

using the commands on the previous slide would have
model[0].weight
model[0].bias
model[2].weight
model[2].bias

• Accessing them that way requires you to know which layers have weights
and biases, and which don’t. An easier way is to use the function
model.parameters(), which iterates through all trainable parameters,
regardless of where they are actually stored:

for param in model.parameters():
param -= learning_rate * param.grad

Conclusions
• Neural network forward propagation:

𝜉M
(6) = 𝑏M

(6) +J
N

𝑤M,N
(6)ℎN

(674) , ℎM
(6) = 𝑔(6) 𝜉M

(6)

• One-hot vectors

𝑦C,E = L1 𝑐 = true class label of the 𝑖OP token
0 otherwise

• Softmax

𝑓E �⃗�C =
𝑒Q/0R⃗

∑NS4D 𝑒Q10R⃗
= P Class = 𝑐 𝑋 = �⃗�,𝑊

• Stochastic gradient descent w/cross-entropy
𝔏C = − ln P C = 𝑐C 𝑋 = �⃗�C ,𝑊 , 𝑤 ← 𝑤 −

𝜂
2
∇Q𝔏C

• Toolkits: https://pytorch.org/tutorials/beginner/pytorch_with_examples.html

https://pytorch.org/tutorials/beginner/pytorch_with_examples.html

