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Review: Multi-Class Perceptron
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Training Algorithm for the Multi-Class 
Perceptron

For each training instance �⃗� with ground truth label 𝑦 ∈ {−1,1}:
• Classify with current weights: 𝑓(�⃗�) = argmax

!
(𝑤$%�⃗�)

• Update weights:   
• If 𝑓 �⃗� = 𝑦 then do nothing
• If 𝑓 �⃗� ≠ 𝑦 then 

𝑤9 = 𝑤9 + 𝜂�⃗�
𝑤:(;⃗) = 𝑤:(;⃗) − 𝜂�⃗�
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Biological Inspiration: McCulloch-Pitts 
Artificial Neuron, 1943
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• In 1943, McCulloch & Pitts 
proposed that biological neurons 
have a nonlinear activation 
function (a step function) whose 
input is a weighted linear 
combination of the currents 
generated by other neurons.
• They showed lots of examples of 

mathematical and logical 
functions that could be computed 
using networks of simple neurons 
like this.



Biological Inspiration: Neuronal Circuits

• Even the simplest actions 
involve more than one neuron, 
acting in sequence in a neuronal 
circuit. 
• One of the simplest neuronal 

circuits is a reflex arc, which may 
contain just two neurons:
• The sensor neuron detects a 

stimulus, and communicates an 
electrical signal to …

• The motor neuron, which 
activates the muscle.

Illustration of a reflex arc: sensor neuron sends a voltage spike to the 
spinal column, where the resulting current causes a spike in a motor 

neuron, whose spike activates the muscle.
By MartaAguayo - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=39181552



A McCulloch-Pitts Neuron can compute some logical functions…
When the features are binary (𝑥# ∈
{0,1}), many (but not all!) binary 
functions can be re-written as linear 
functions.  For example, the function

𝑓 �⃗� = (𝑥$ ∨ 𝑥%)
can be re-written as 

𝑓 �⃗� = 𝑢 𝑥$ + 𝑥% − 0.5

𝑥!

𝑥&

Similarly, the function
𝑓 �⃗� = (𝑥$ ∧ 𝑥%)

can be re-written as 
𝑓 �⃗� = 𝑢 𝑥$ + 𝑥% − 1.5

𝑥!

𝑥&



… but not all.
“A linear classifier cannot learn an 

XOR function.”
- Minsky & Papert, 1969

• …but a two-layer neural net can 
compute an XOR function!

𝑥!

𝑥&



Outline
• Review: multi-class perceptron
• Breaking the constraints of linearity: multi-layer neural nets
• Flow diagram for the XOR problem
• Flow diagram for a multi-layer neural net
• One-hot vectors
• Softmax
• Cross-entropy = negative log probability of the training data
• Stochastic gradient descent
• Training a neural net using numpy
• The same example using pytorch
• torch.nn: standard layers and units



Example: one way (of many possible ways) to represent 
the XOR function using a two-layer neural network

For example, consider the XOR problem.   

Suppose we create two hidden nodes:

ℎ$ �⃗� = 𝑢 0.5 − 𝑥$ − 𝑥%
ℎ% �⃗� = 𝑢 𝑥$ + 𝑥% − 1.5

Then the XOR function 𝑓 �⃗� = (𝑥$⊕

𝑥%) is given by 𝑓 �⃗� = ¬(ℎ$ ∨ ℎ%).  For 

example, we could write this as:

𝑓 �⃗� = 𝑢 0.5 − ℎ$ 𝑥 − ℎ% 𝑥

𝑥!

𝑥& ℎ! �⃗� = 1 up 
in this region

ℎ" �⃗� = 1 down 
in this region

Here in the middle, 
both ℎ" �⃗� and  ℎ! �⃗�
are zero.

𝑥!

𝑥&



Flow diagrams

Suppose we create two hidden nodes:

ℎ4 �⃗� = 𝑢 0.5 − 𝑥4 − 𝑥5
ℎ5 �⃗� = 𝑢 𝑥4 + 𝑥5 − 1.5

Here is a flow diagram for this computation:
𝑥!

𝑥& ℎ! �⃗� = 1 up 
in this region

ℎ" �⃗� = 1 down 
in this region

Here in the middle, 
both ℎ" �⃗� and  ℎ! �⃗�
are zero.

𝑥! 𝑥& 1

−1
−1

1
1 0.5

−1.5

ℎ!(�⃗�) ℎ&(�⃗�)



Flow diagrams

A flow diagram is a way to represent the 
computations performed by a neural 
network.
• Circles, a.k.a. “nodes,” a.k.a. “neurons,” 

represent scalar operations.
• The circles above 𝑥! and 𝑥" represent the 

scalar operation of “read this datum in from 
the dataset.”

• The circles labeled ℎ! and ℎ! represent the 
scalar operation of “unit step function.”

• Lines represent multiplication by a scalar.
• Where arrowheads come together, the 

corresponding variables are added.

𝑥!

𝑥& ℎ% = 1

ℎ$ = 1
Here in the middle, 
both ℎ" �⃗� and  ℎ! �⃗�
are zero.

𝑥! 𝑥& 1

−1
−1

1 1
0.5

−1.5

ℎ! ℎ&



Flow diagrams

It’s often useful to distinguish two types 
of hidden variables at each neuron:
• The neural excitation, 𝜉#, is the result of 

adding together all of the inputs to the 
neuron.
• The neural activation, ℎ#, is the result of 

passing 𝜉# through a scalar nonlinearity.

𝑥!

𝑥& ℎ% = 1

ℎ$ = 1
Here in the middle, 
both ℎ" �⃗� and  ℎ! �⃗�
are zero.

𝑥! 𝑥& 1

−1
−1

1 1
0.5

−1.5

ℎ! ℎ&



Flow diagrams

So in this flow diagram, for example, we 
can see that:

𝜉$ = 0.5 − 1 ; 𝑥$ − 1 ; 𝑥%
𝜉% = −1.5 + 1 ; 𝑥$ + 1 ; 𝑥%

… and then …
ℎ$ = 𝑢 𝜉$
ℎ% = 𝑢 𝜉%

… where 𝑢 ; is the unit step function.

𝑥!

𝑥& ℎ% = 1

ℎ$ = 1
Here in the middle, 
both ℎ" �⃗� and  ℎ! �⃗�
are zero.

𝑥! 𝑥& 1

−1
−1

1 1
0.5

−1.5
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Flow diagrams

Now suppose that we want to compute

𝑓 �⃗� = (𝑥$⊕𝑥%). We could write this 

as:

𝑓 �⃗� = 𝑢 0.5 − ℎ$ − ℎ%
𝑥!

𝑥&

Here in the middle, 
both ℎ" �⃗� and  ℎ! �⃗�
are zero.

𝑥!

𝑥&

ℎ$ = 1

ℎ% = 1



Flow diagrams

We can write the XOR function as:
𝜉& = 0.5 − 1 ; ℎ$ − 1 ; ℎ%

𝑓 �⃗� = 𝑢 𝜉&

𝑥! 𝑥& 1

−1
−1

1
1

0.5

−1.5

ℎ! ℎ&
1−1 −1 0.5

𝑓



Flow diagrams

Putting it all together:
𝜉$ = 0.5 − 1 ; 𝑥$ − 1 ; 𝑥%
𝜉% = −1.5 + 1 ; 𝑥$ + 1 ; 𝑥%

ℎ$ = 𝑢 𝜉$
ℎ% = 𝑢 𝜉%

𝜉& = 0.5 − 1 ; ℎ$ − 1 ; ℎ%

𝑓 �⃗� = 𝑢 𝜉&

𝑥! 𝑥& 1

−1
−1

1
1
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−1.5

ℎ! ℎ&
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Multi-layer neural net

• 𝜉#
(() = excitation of the jth neuron (a.k.a. “node”) in the lth layer
• Computed by adding together inputs from many other neurons, each 

weighted by a corresponding connection strength or connection weight, 𝑤&,(
(*)

• ℎ#
(() = activation of the jth node in the lth layer
• This is computed by just passing the excitation through a scalar nonlinear 

activation function, thus ℎ&
(*) = 𝑔(𝜉&

* ).  The activation functions in different 
layers differ, so to be pedantic, sometimes we’ll write ℎ&

(*) = 𝑔(*) 𝜉&
(*) .



Multi-layer neural net

Given: some training token �⃗� = [𝑥$, … , 𝑥*, 1]" and its target label 𝑦
1. Initialize: ℎ+

(,) = 𝑥+
2. Forward propagate: for 𝑙 ∈ 1,… , 𝐿 :

a. Compute the excitations as weighted sums of the previous-layer activations:

𝜉&
(*) = 𝑏&

(*) +8
(

𝑤&,(
(*)ℎ(

(*,")

b. Compute the activations by applying scalar nonlinearities:
ℎ&
(*) = 𝑔(*) 𝜉&

(*)

3. Output: 𝑃(𝑌 = 𝑘|𝑥) = ℎ+
(-)



Forward propagation

• From activation to excitation is a 
matrix multiply:

𝜉#
(() = 𝑏#

(() +G
+

𝑤#,+
(()ℎ+

((/$)

• From excitation to activation is a scalar 
nonlinearity:

ℎ#
(() = 𝑔(() 𝜉#

(()

1
ℎ$
((/$) ℎ%

((/$) ℎ0
((/$)…

𝜉$
(() 𝜉%

(() 𝜉1
(()…

ℎ$
(() ℎ%

(() ℎ1
(()…

𝑔(() 𝑔(() 𝑔(()



Forward propagation: Matrix multiply
From activation to excitation is a matrix 
multiply:

𝜉(6) = 𝑊(6)ℎ(674)

…where…

𝜉(6) =
𝜉4
(6)

⋮
𝜉8
(6)

, ℎ(674) =

ℎ4
(674)

⋮
ℎ9
(674)

1

,

𝑊(6) =
𝑤4,4
(6) ⋯ 𝑤4,9

(6)

⋮ ⋱ ⋮
𝑤8,4
(6) ⋯ 𝑤8,9

(6)

𝑏4
(6)

⋮
𝑏8
(6)

1
ℎ$
((/$) ℎ%

((/$) ℎ0
((/$)…

𝜉$
(() 𝜉%

(() 𝜉1
(()…

ℎ$
(() ℎ%

(() ℎ1
(()…

𝑔(() 𝑔(() 𝑔(()



Forward propagation

From excitation to activation is a scalar 
nonlinearity:

ℎ#
(() = 𝑔(() 𝜉#

(()

What type of nonlinearity?
Answer: it depends on what task you 
want your neural net to learn.

1
ℎ$
((/$) ℎ%

((/$) ℎ0
((/$)…

𝜉$
(() 𝜉%

(() 𝜉1
(()…

ℎ$
(() ℎ%

(() ℎ1
(()…

𝑔(() 𝑔(() 𝑔(()



Activation functions
The “activation function,” 𝑔(() ; , can be any scalar 
nonlinearity.  Common ones that you should know 
include the unit step and signum functions, and:
Logistic Sigmoid:

𝜎 𝛽 =
1

1 + 𝑒/2
Hyperbolic Tangent (tanh):

tanh 𝛽 =
𝑒2 − 𝑒/2

𝑒2 + 𝑒/2

Rectified Linear Unit (ReLU):
ReLU 𝛽 = max 0, 𝛽
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Comparison of Multi-Class Perceptron to Multiple Linear Regression
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Here’s a weird question:

Can we come up with some new notation that can be used to write 
both the multi-class perceptron AND the linear regression algorithm?



New notation: Don’t change the multi-class 
perceptron algorithm, but make it easier to write
• Instead of defining 𝑦3 as an integer, let’s define �⃗�3 to be a vector:

�⃗�3 =
𝑦3,$
⋮
𝑦3,4

• For a multi-class perceptron, this only makes sense if �⃗�3 is what’s 
called a one-hot vector:

𝑦3,! = W1 𝑐 = true class label of the 𝑖56 token
0 otherwise



New notation: Don’t change the multi-class 
perceptron algorithm, but make it easier to write
• Let’s also define the output to be a one-hot vector:

𝑓 �⃗�3 =
𝑓$ �⃗�3
⋮

𝑓4 �⃗�3
… where …

𝑓! �⃗�3 = W1 𝑐 = argmax𝑤!"�⃗�
0 otherwise



Example: Binary classifier
Consider the classifier  

𝑓 �⃗�C = 𝑓! �⃗�C
𝑓& �⃗�C

, 𝑓D �⃗�C = 41 𝑐 = argmax𝑤DE�⃗�
0 otherwise

… with only two classes.  Then the classification regions might 
look like this:

𝑥!

𝑥&
𝑓 �⃗� = 1

0
𝑓 �⃗� = 0

1



Multi-Class Linear Classifiers
Consider the classifier

𝑓 �⃗�3 =
𝑓$ �⃗�3
⋮

𝑓4 �⃗�3
,

𝑓! �⃗�3 = W1 𝑐 = argmax𝑤!"�⃗�
0 otherwise

… with 20 classes.  Then some of the 
classifications might look like this.

𝑥!

𝑥&

By Balu Ertl - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=38534275

𝑓(�⃗�) =

0
0
⋮
0
1

𝑓(�⃗�) =

0
0
⋮
1
0

𝑓(�⃗�) =

1
0
⋮
0
0

𝑓(�⃗�) =

0
1
⋮
0
0



Now the perceptron has a vector error, just 
like linear regression
Now we can define an error term for every output:

𝜖C =
𝜖C,4
⋮
𝜖C,D

, 𝜖C,E = 𝑓E �⃗�C − 𝑦C,E

• If c was the correct class label (𝑦C,E = 1), but the network didn’t get it right 
(𝑓E �⃗�C = 0), then it undershot: 

𝜖C,E = −1
• If the network thought the correct answer was c (𝑓E �⃗�C = 1), but it wasn’t 

(𝑦C,E = 0), then it overershot
𝜖C,E = +1

• Otherwise, 
𝜖C,E = 0



Multi-class perceptron, written in terms of 
one-hot vectors
But with this definition, we can write the perceptron update the same 
as the linear regression update:

𝑤! ← 𝑤! − 𝜂𝜖3,!�⃗�3 = i
𝑤! + 𝜂�⃗�3 𝜖3,! = −1
𝑤! − 𝜂�⃗�3 𝜖3,! = +1

𝑤! 𝜖3,! = 0



Comparison of Multi-Class Perceptron to Multiple Regression
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Multi-Class Perceptron: 
One-hot output
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Multiple Regression:
Real-valued Output

𝑓! �⃗� = 𝑤!"𝑥

𝑓# �⃗� = 𝑤#"𝑥

𝑓$ �⃗� = 𝑤$"𝑥

𝑓! �⃗� = &1 1 = argmax𝑤%"�⃗�
0 otherwise

𝑓# �⃗� = &1 2 = argmax𝑤%"�⃗�
0 otherwise

𝑓$ �⃗� = &1 𝑉 = argmax𝑤%"�⃗�
0 otherwise

.

.

.

.

.

.
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Softmax: Probabilistic boundaries
Instead of trying to find the exact boundaries, let’s model the 
probability that token �⃗� belongs to class �⃗�.

𝑥!

𝑥&
In this region, 
𝑃 𝑌 = 0

1 𝑋 = �⃗� ≈ 1

In this region, 
𝑃 𝑌 = 𝑌 = 0

1 𝑋 = �⃗� ≈ 0 In this region, 
0 < 𝑃 𝑌 = 0

1 𝑋 = �⃗� < 1



Remember that for the perceptron, we have

𝑓 �⃗�C =
𝑓! �⃗�C
⋮

𝑓( �⃗�C
, 𝑓D �⃗�C = 41 𝑐 = argmax𝑤DE�⃗�

0 otherwise

For softmax, we have

𝑓 �⃗�C =
𝑓! �⃗�C
⋮

𝑓( �⃗�C
, 𝑓D �⃗�C =

𝑒F78;⃗

∑GH!( 𝑒F98;⃗

Argmax versus Softmax



• This is called the softmax function:

softmax �⃗�C =
softmax

!
𝑊E�⃗�

⋮
softmax

(
𝑊E�⃗�

, softmax
D

𝑊E�⃗� =
𝑒F78;⃗

∑GH!( 𝑒F98;⃗

• …where the matrix W is defined to be
𝑊 = 𝑤!, … , 𝑤(

The softmax function



𝑓D �⃗�C = 41 𝑐 = argmax𝑤DE�⃗�
0 otherwise

, 𝑓D �⃗�C =
𝑒F78;⃗

∑GH!( 𝑒F98;⃗

In both cases, we have:
• 𝑓D �⃗�C ≥ 0
• 𝑓D �⃗�C ≤ 1
•∑DH!( 𝑓D �⃗�C = 1

Argmax and Softmax



𝑓D �⃗�C = 41 𝑐 = argmax𝑤DE�⃗�
0 otherwise

, 𝑓D �⃗�C =
𝑒F78;⃗

∑GH!( 𝑒F98;⃗

In both cases, we can interpret these as probabilities:

𝑓D �⃗� = P Class = 𝑐 𝑋 = �⃗�

Argmax and Softmax
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Classifier Learning using a Softmax Layer
• Suppose we have some data.  

• We want to learn vectors 𝑤! = 𝑤!,$, … ,𝑤!,*, 𝑏!
"

so that 
P Class = 𝑐 𝑋 = �⃗� = softmax

!
𝑊"�⃗� .

𝑥C,!

𝑥C,&



Learning a Softmax: Training data
Data: 

𝔇 = �⃗�$, 𝑐$ , �⃗�%, 𝑐% , … , �⃗�7, 𝑐7

where each �⃗�3 = 𝑥3,$, … , 𝑥3,*, 1
"

is a vector, and each 𝑐3 ∈ {1,… , 𝑉} is a
integer encoding the true class label.

𝑥C,!

𝑥C,&
(�⃗�!, �⃗�! =

1
0 )

(�⃗�), �⃗�) =
1
0 )

(�⃗�*, �⃗�* =
0
1 )

(�⃗�", �⃗�" =
0
1 )



Learning a Softmax: Model parameters
We want to learn the model parameters 

𝑊 = 𝑤$, … ,𝑤4
so that 

P C = 𝑐3 𝑋 = �⃗�3 = softmax
!-

𝑊"�⃗�3

𝑥C,!

𝑥C,&
(�⃗�!, 𝑐! = 1)

(�⃗�), 𝑐) = 1)

(�⃗�*, 𝑐* = 2)

(�⃗�", 𝑐" = 2)



Learning a Softmax: Training criterion
We want to learn the model parameters, 𝑊 = 𝑤$, … ,𝑤4 , in order to maximize 
the probability of the observed data:

𝑃 𝔇 𝑊 =q
38$

7

P C = 𝑐3 𝑋 = �⃗�3

𝑥C,!

𝑥C,&
(�⃗�!, 𝑐! = 1)

(�⃗�), 𝑐) = 1)

(�⃗�*, 𝑐* = 2)

(�⃗�", 𝑐" = 2)



Learning a Softmax: Training Criterion
We want to learn the model parameters, 𝑊 = 𝑤$, … ,𝑤4 , in order to maximize 
the probability of the observed data:

𝑃 𝔇 𝑊 =q
38$

7

softmax
!-

𝑊"�⃗�3

𝑥C,!

𝑥C,&
(�⃗�!, 𝑐! = 1)

(�⃗�), 𝑐) = 1)

(�⃗�*, 𝑐* = 2)

(�⃗�", 𝑐" = 2)



Learning a Softmax: Training Criterion
We want to learn the model parameters, 𝑊 = 𝑤$, … ,𝑤4 , in order to maximize 
the probability of the observed data:

𝑃 𝔇 𝑊 =q
38$

7
𝑒9.-

/ ;⃗-

∑+8$4 𝑒90/;⃗-

𝑥C,!

𝑥C,&
(�⃗�!, 𝑐! = 1)

(�⃗�), 𝑐) = 1)

(�⃗�*, 𝑐* = 2)

(�⃗�", 𝑐" = 2)



How do you maximize a function?

Our goal is to find 𝑊 = 𝑤$, … ,𝑤4 in order to maximize

𝑃 𝔇 𝑊 =q
38$

7
𝑒9.-

/ ;⃗-

∑+8$4 𝑒90/;⃗-
Here are some useful things to know:
1. Logarithm turns products into sums
2. Maximizing 𝑓(𝑊) is the same thing as minimizing −𝑓(𝑊)



1. Logarithms turn products into sums
ln 𝑥 (the natural logarithm of x, shown 
as logH 𝑥 in the plot at right) is a 
monotonically increasing function of x.
Since it’s monotonically increasing,

argmax
I

𝑃 𝔇 𝑊 = argmax
I

ln 𝑃 𝔇 𝑊

Almost always, maximizing the log 
probability is easier than maximizing 
the probability, because logarithms turn 
products into sums. Logarithm_plots.png, CC-SA 3.0, Richard F. Lyon, 2011



1. Logarithms turn products into sums

Our goal is to find 𝑊 = 𝑤!, … ,𝑤# in order to maximize

ln 𝑃 𝔇 𝑊 = ln,
$%!

&
𝑒'+,

- )⃗,

∑*%!# 𝑒'.-)⃗,

=/
$%!

&

ln
𝑒'+,

- )⃗,

∑*%!# 𝑒'.-)⃗,

=/
$%!

&

𝑤+,
, �⃗�$ − ln/

*%!

#

𝑒'.
-)⃗,



2. Maximizing 𝑓(𝑊) is the same thing as minimizing −𝑓(𝑊).

Our goal is to find 𝑊 = 𝑤$, … ,𝑤4 in order to maximize

ln𝑃 𝔇 𝑊 =G
38$

7

𝑤!-
"�⃗�3 − lnG

+8$

4

𝑒90
/;⃗-

Choosing W to maximizing 𝑤!-
"�⃗�3is kind of obvious: just set 𝑤!- = 𝐴�⃗�3, 

where A is a scalar that’s as big as possible.  Maximizing 
− ln∑+8$4 𝑒90

/;⃗-, is not obvious.



2. Maximizing 𝑓(𝑊) is the same thing as minimizing −𝑓(𝑊).

To emphasize the hard part of the problem, there is a convention that, 
instead of maximizing ln𝑃 𝔇 𝑊 , we minimize −ln𝑃 𝔇 𝑊 : 
Our goal is to find 𝑊 = 𝑤$, … ,𝑤4 in order to minimize

𝔏 = − ln𝑃 𝔇 𝑊 =G
38$

7

lnG
+8$

4

𝑒90
/;⃗- −𝑤!-

"�⃗�3

The curly 𝔏 is a symbol we use to denote a “loss function”.  A loss 
function is something you want to minimize.



Some details: Cross entropy

• The loss function is called “cross entropy,” because it is similar in 
some ways to the entropy of a thermodynamic system in physics.
• When you implement this in software, it’s a good idea to normalize by 

the number of training tokens, so that the scale is easier to 
understand:

𝔏 = −
1
𝑛 log𝑃 𝔇 𝑊 = −

1
𝑛G
38$

7

log P C = 𝑐3 𝑋 = �⃗�3
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The iterative solution to training a neural net
Instead of minimizing the loss in 
closed form, we’re going to use an 
iterative algorithm called gradient 
descent.  It works like this:
• Start from a random initial value of 
𝑤 (at 𝑡 = 0).
• Adjust 𝑤 in order to reduce the loss 

(𝑡 = 1).
• Repeat until you reach the 

optimum (𝑡 = ∞).
𝑤

𝔏 = −
1
𝑛
log 𝑃 𝔇 𝑊𝑡 = 0

𝑡 = 1
𝑡 = ∞

…



The gradient descent algorithm
• Start from a random initial value of 𝑤.
• Calculate the derivative of the loss with respect to 𝑤:

∇'𝔏 =

𝜕𝔏
𝜕𝑤!
⋮
𝜕𝔏
𝜕𝑤-
𝜕𝔏
𝜕𝑏

• Take a step “downhill” (in the direction of the negative 
gradient

𝑤 ← 𝑤 −
𝜂
2∇'𝔏

…where 𝜂 is a constant called the “learning rate,” that 
determines how big of a step you take.  Usually, you 
need to adjust 𝜂 in order to get optimum performance 
on a dev set, but often 𝜂 ≈ 0.001.

𝑤

𝑀𝑆𝐸 = 𝑎𝑤1 + 𝑏𝑤 + 𝑐
𝔏 = −

1
𝑛
log 𝑃 𝔇 𝑊



Stochastic gradient descent
• If n is large, computing or differentiating the loss for the entire 

training dataset, all at once, can be expensive.  
• The stochastic gradient descent algorithm picks one training token 
�⃗�3, 𝑦3 at random (”stochastically”), and adjusts 𝑤 in order to reduce 

the error a little bit for that one token:
𝑤 ← 𝑤 −

𝜂
2∇9𝔏3

…where
𝔏3 = −lnP C = 𝑐3 𝑋 = �⃗�3,𝑊

… in other words, the part of the loss function that only depends on 
the 𝑖56 token.



Stochastic gradient descent

𝔏C = lnP
GH!

(

𝑒F9
8;⃗: −𝑤D:

E �⃗�C

If we differentiate that, we discover 
that:

∇F7𝔏C = 𝑓D �⃗� − 𝑦C,D �⃗�C

So the stochastic gradient descent 
algorithm is:

𝑤D ← 𝑤D − 𝜂 𝑓D �⃗� − 𝑦C,D �⃗�C
𝑤

𝔏2 = − ln P C = 𝑐2 𝑋 = �⃗�2 ,𝑊
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Training a neural net using numpy or pytorch
Running example: linear regression
• For example, suppose 𝑦 = sin(𝑥)
• Suppose that the network can only model functions of the form

𝑓 𝑥 = 𝑎 + 𝑏𝑥 + 𝑐𝑥% + 𝑑𝑥& = �⃗�"𝑤
…where we’re defining…

𝑤 =
𝑎
𝑏
𝑐
𝑑
, �⃗� =

1
𝑥
𝑥%
𝑥&

• We want to learn a, b, c, d so that 𝑓(𝑥) ≈ 𝑦



Running example: neural net regression



Mean-squared error

First, let’s define the loss function.

𝑓 𝑥3 = 𝑎 + 𝑏𝑥3 + 𝑐𝑥3% + 𝑑𝑥3&,

𝜖3 = 𝑓 𝑥3 − 𝑦3,

ℒ =
1
𝑛G
38$

7

𝜖3%



Loss gradient
Next, find the derivative of the loss.

𝑓 𝑥$ = 𝑎 + 𝑏𝑥$ + 𝑐𝑥$" + 𝑑𝑥$., 𝜖$ = 𝑓 𝑥$ − 𝑦$ , ℒ =
1
𝑛/
$%!

&

𝜖$"

∇'ℒ =

𝑑ℒ
𝑑𝑎
𝑑ℒ
𝑑𝑏
𝑑ℒ
𝑑𝑐
𝑑ℒ
𝑑𝑑

=
2
𝑛/
$%!

&

𝜖$∇'𝜖$ =
2
𝑛/
$%!

&

𝜖$

𝑑𝑓 𝑥$
𝑑𝑎

𝑑𝑓 𝑥$
𝑑𝑏

𝑑𝑓 𝑥$
𝑑𝑐

𝑑𝑓 𝑥$
𝑑𝑑

=
2
𝑛/
$%!

&

𝜖$

1
𝑥$
𝑥$"

𝑥$.



Gradient update
Now, update the weights by subtracting the gradient.

𝑎 = 𝑎 −
𝜂
2
𝑑ℒ
𝑑𝑎

= 𝑎 −
𝜂
𝑛
A
&'!

(

𝑓 𝑥& − 𝑦& ,

𝑏 = 𝑏 − 𝜂
𝑑ℒ
𝑑𝑏

= 𝑏 −
𝜂
𝑛
A
&'!

(

𝑓 𝑥& − 𝑦& 𝑥& ,

𝑐 = 𝑐 − 𝜂
𝑑ℒ
𝑑𝑐

= 𝑐 −
𝜂
𝑛
A
&'!

(

𝑓 𝑥& − 𝑦& 𝑥&# ,

𝑑 = 𝑑 − 𝜂
𝑑ℒ
𝑑𝑑

= 𝑑 −
𝜂
𝑛
A
&'!

(

𝑓 𝑥& − 𝑦& 𝑥&)



How a neural 
network is 
trained

Here’s Justin Johnson’s 
code for doing those 
things:
(https://pytorch.org/tuto
rials/beginner/pytorch_w
ith_examples.html)

© 2021 Pytorch, 
https://pytorch.org/tutorials/beginner/pytorch_with_examples.html

https://pytorch.org/tutorials/beginner/pytorch_with_examples.html
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Autograd: Main idea

• A neural network is a complicated function 𝑓(𝑥), made up of many 
simple components

• If we try to take all the derivatives, 𝑑ℒ/𝑑𝑤#,+
((), all at once, in a big 

mass of spaghetti code, then the code will be really ugly.
• HOWEVER: Each of the components is simple to compute.  

Furthermore, the derivative of its output w.r.t. its input is simple.



Autograd: Tensor objects
The basic idea of autograd is to create a new kind of object that takes 
responsibility for its own gradient.

• For example, the object might be a network weight, 𝑤#,+
(()



Autograd: Tensor objects
• In pytorch, variables that take responsibility for their own gradients 

are called “tensors” (https://pytorch.org/docs/stable/tensors.html)
• Here’s how Justin Johnson defines tensors for the polynomial 

regression problem:

© 2017 Pytorch, https://pytorch.org/tutorials/beginner/pytorch_with_examples.html



Autograd: Overloaded operators
The basic idea of autograd is to create a new kind of object that takes 
responsibility for its own gradient.

• For example, the object might be a network weight, 𝑤#,+
(()

• These new objects have overloaded operators, so that any time we 
use them to compute some output, the input is cached.  For example, 
it might be used to compute

𝜉#
(() = 𝑏#

(() +G
+

𝑤#,+
(()ℎ+

((/$)



Autograd: Overloaded operators
Here’s how it gets used:

Python overloaded operators: if “b” is an object that has a method named 
__mul__, then the expression “f=b*x” actually calls “f=b.__mul__(x)”.



Autograd: Overloaded operators
The operator overload code looks something like this:

class Tensor(torch.autograd.Function):
def __init__(self, weight):

self.weight = weight
self.saved_tensors = ()

def __mul__(self, other):
self.saved_tensors = (self.saved_tensors[:], other)
returnvalue = self.weight * other
return Tensor(returnvalue)

Cache x in self.saved_tensors, so 
we can use it later…

Then calculate the 
output of the multiply 
operation,

… and cast the return 
value as a Tensor.



Autograd: Overloaded operators
Here’s how it gets used:

Stores x**2 in c.saved_tensorsStores x in b.saved_tensors

Python overloaded operators: the expression “b*x” actually calls
b.__mul__(x).



Autograd: the Loss tensor
The basic idea of autograd is to create a new kind of object, a tensor, 
that takes responsibility for its own gradient. Any time we use tensors 
to compute some output, the input is cached. For example, these 
operations:

𝑓 𝑥3 = 𝑎 + 𝑏𝑥3 + 𝑐𝑥3% + 𝑑𝑥3&

ℒ =
1
𝑛G
38$
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𝑓 𝑥3 − 𝑦3 %

f = a + b*x + c*x**2 + d*x**3
loss = (f-y).pow(2)

...will calculate the loss, but will also store some extra information in 
loss.saved_tensors, f.saved_tensors, a.saved_tensors, b.saved_tensors, 
c.saved_tensors, d.saved_tensors, and x.saved_tensors.  



Autograd: the Loss tensor

Notice the flow diagram that was 
implied by those lines of code.
Each tensor’s overloaded __mul__ 
operator keeps track of the 
variables used to compute it:
• loss.saved_tensors has pointers 

to f and y
• f.saved_tensors has pointers to 

x, a, b, c, and d
x

yf

a b c d

loss



Autograd
loss depends on 
y_pred, which 
depends on a, b, 
c, d.



Autograd: the backward function

Every tensor object has a method 
called backward(). 
If backward() is called with no 
arguments, it calculates the 
derivative with respect to the 
inputs:
• loss.backward() calculates

tmp= <ℒ
<>, then calls the method 

f.backward(tmp).

x

yf

a b c d

loss



Autograd: the backward function

If backward() is called with the 
argument tmp= Jℒ

JL
,  it does three 

things:
• Store f.grad= Jℒ

JL
• Calculate derivative w.r.t. each 

input, for example, tmp=
𝑑ℒ
𝑑𝑐

=
𝑑ℒ
𝑑𝑓

×
𝑑𝑓
𝑑𝑐

• Pass the input derivatives back to 
the inputs, e.g., call 
c.backward(tmp)

x

yf

a b c d

loss



Autograd

Calculates the 
derivative of the 
loss w.r.t. each of 
its input tensors.

Uses the resulting 
derivatives to 
update the 
weights.

loss depends on 
y_pred, which 
depends on a, b, 
c, d.



Details: How to turn off autograd

• As you know, every time you add, subtract, multiply or divide a tensor 
by anything, the tensor stores data in self.saved_tensors, so it can use 
that information later to compute the gradient
• How do you turn this behavior off?



Dynamically
turning off 
Autograd

These weight 
updates are not 
part of the neural 
network forward 
pass.



How to zero out the gradients

• When you call backward() over a tensor, it doesn’t zero out any 
previous gradients
• Instead, it adds the current gradient to the previous gradients
• A very very very common mistake: running 2000 iterations, with the 

gradient accumulating from each iteration to the next, instead of 
zeroing it out in between iterations



Manually 
zeroing out 
the 
gradients

Here’s the part I 
didn’t show you 
before.
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Pytorch nn module

• The autograd feature of pytorch allows you to define only the forward 
propagation of your neural net.  As long as all of the component 
operations are in pytorch’s library, the back-propagation will be 
computed for you.
• Tensors just do multiplication and addition.  What about other types 

of operations?
• General operations are contained in the nn module, using the 

formalism of a “layer.” 



Some types of layers

• torch.nn.Linear: a layer that computes �⃗� = 𝑊𝚤 + 𝑏

• torch.nn.Softmax: a layer that computes 𝑜# =
?@A(33)

∑0 ?@A(30)

• torch.nn.Sigmoid: a layer that computes 𝑜# =
$

$/?@A(/33)

• torch.nn.ReLU: a layer that computes 𝑜# = max(0, 𝑖#)
• torch.nn.Sequential: a model that takes a sequence of layers as its 

arguments, and applies them, one after the other, in order



m=torch.nn.Linear(n_1,n_2)

• This creates a callable object, m, such that o=m(i) treats each row of i
as a vector, and generates a corresponding row of o using the 
operation:

�⃗� = 𝑊𝚤 + 𝑏
• i can be a tensor of any size, as long as its last dimension (the 

dimension of each row) is n_1
• o is then a tensor of the same shape as i, except that its last 

dimension (the row length) is now n_2
• m.weight (W) is a tensor of size (n_2,n_1)
• m.bias (b) is a row vector of length n_2



Example: Linear, Sigmoid, Softmax

𝑥$

𝜉$

• Here’s an example flowgraph.  We could create the 
layers as:

linear1 = torch.nn.Linear(2,3)
sigmoid1 = torch.nn.Sigmoid()
linear2 = torch.nn.Linear(3,2)
loss_function = torch.nn.MSEloss()

• Having created them, we could then run forward 
pass as:

xi = linear1(x)
h = sigmoid1(xi)
f = linear2(h)
loss = loss_function(f,y)  

• Then we could calculate all of the gradients by 
running

loss.backward() 𝑥%

𝑓$ 𝑓%

𝜉% 𝜉&

ℎ$ ℎ% ℎ&



torch.nn.Sequential
• torch.nn.Sequential is a special module that 

creates a sequence of layers, where each layer’s 
output is the next layer’s input. For example:

model = torch.nn.Sequential(
torch.nn.Linear(2,3),
torch.nn.Sigmoid(),
torch.nn.Linear(3,2))

loss_function = torch.nn.MSEloss()  
• Then you can run forward pass by just typing:

f = model(x)
loss = loss_function(f,y) 

• You can still calculate all of the gradients by 
running

loss.backward()
𝑥$

𝜉$

𝑥%

𝑓$ 𝑓%

𝜉% 𝜉&

ℎ$ ℎ% ℎ&



torch.nn.Sequential: where are the parameters?
• The layers each have their own parameters, for example, a model created 

using the commands on the previous slide would have
model[0].weight
model[0].bias
model[2].weight
model[2].bias

• Accessing them that way requires you to know which layers have weights 
and biases, and which don’t.  An easier way is to use the function 
model.parameters(), which iterates through all trainable parameters, 
regardless of where they are actually stored:

for param in model.parameters():
param -= learning_rate * param.grad



Conclusions
• Neural network forward propagation:

𝜉M
(6) = 𝑏M

(6) +J
N

𝑤M,N
(6)ℎN

(674) , ℎM
(6) = 𝑔(6) 𝜉M

(6)

• One-hot vectors

𝑦C,E = L1 𝑐 = true class label of the 𝑖OP token
0 otherwise

• Softmax

𝑓E �⃗�C =
𝑒Q/0R⃗

∑NS4D 𝑒Q10R⃗
= P Class = 𝑐 𝑋 = �⃗�,𝑊

• Stochastic gradient descent w/cross-entropy
𝔏C = − ln P C = 𝑐C 𝑋 = �⃗�C ,𝑊 , 𝑤 ← 𝑤 −

𝜂
2
∇Q𝔏C

• Toolkits: https://pytorch.org/tutorials/beginner/pytorch_with_examples.html

https://pytorch.org/tutorials/beginner/pytorch_with_examples.html

