Collab Worksheet 6

CS440/ECE448, Spring 2021
Week of $3 / 17-3 / 22,2021$

Question 1

Consider a Bayes network with three binary random variables, A, B, and C, with the relationship and model parameters shown below:

$$
\begin{aligned}
P(A) & =0.4 \\
P(B) & =0.1 \\
P(C \mid A, B) & = \begin{cases}0.7 & A=\text { False }, B=\text { False } \\
0.7 & A=\text { False }, B=\text { True } \\
0.1 & A=\text { True } B=\text { False } \\
0.9 & A=\text { True }, B=\text { True }\end{cases}
\end{aligned}
$$

(a) What is $P(C)$? Write your answer in numerical form, but you don't need to simplify.

Solution:

$$
P(C)=(0.6)(0.9)(0.7)+(0.6)(0.1)(0.7)+(0.4)(0.9)(0.1)+(0.4)(0.1)(0.9)
$$

(b) What is $P(A=\operatorname{True} \mid B=$ True, $C=$ True $)$? Write your answer in numerical form, but you don't need to simplify.

Solution:

$$
P(A=\operatorname{True} \mid B=\text { True }, C=\text { True })=\frac{(0.4)(0.1)(0.9)}{(0.4)(0.1)(0.9)+(0.6)(0.1)(0.7)}
$$

Question 2

Consider a Bayes network with three binary random variables, A, B, and C, with the relationship shown below:

You've been asked to re-estimate the parameters of the network based on the following observations:

Token	A	B	C
1	False	True	False
2	True	True	False
3	False	False	True
4	False	False	True

(a) Given the data in the table, what are the maximum likelihood estimates of the model parameters?

Solution:

$$
\begin{aligned}
P(C) & =1 / 2 \\
P(A \mid C) & = \begin{cases}0 & C=\text { True } \\
1 / 2 & C=\text { False }\end{cases} \\
P(B \mid C) & = \begin{cases}0 & C=\text { True } \\
1 & C=\text { False }\end{cases}
\end{aligned}
$$

(b) Your roommate discovers two extra training tokens, scrawled on a half-burned piece of notebook paper. Unfortunately, the two new training tokens are incomplete: they only contain measurements of B and C, but no measurements of A. Including the original four training tokens plus the two new ones, your dataset is now:

Token	A	B	C
1	False	True	False
2	True	True	False
3	False	False	True
4	False	False	True
5	$?$	True	True
6	$?$	False	False

Using the model parameters that you estimated in part (a) as input to the EM algorithm, what is the expected number of observations of the event $A=$ True?

Solution: There is one visible observations of $A=$ True. There are also two training tokens with hidden values of A. The two hidden values co-occur with values $C=$ True and $C=$ False, respectively. The corresponding probabilities of A are currently
estimated at $P(A \mid C=$ True $)=0$ and $P(A \mid C=$ False $=1 / 2$, so the total expected number of occurrences of $A=$ True is $1+0+0.5=1.5$.

Question 3

Consider an astronomy problem with five variables: N, M_{1}, M_{2}, F_{1}, and $F_{2} . N$ is the true number of stars in a particular small patch of sky. Two astronomers in different parts of the world are trying to measure the value of N. Unfortunately, their telescopes sometimes suffer a hardware fault: denote the occurrence of a hardware fault using the binary variables F_{1} and F_{2}, respectively, and specify that the probability of a hardware fault is f. If $F_{1}=$ True, then the measurement obtained by astronomer $\# 1$ is too small by at least three stars, $M_{1} \leq$ $\max (0, N-3)$. If $F_{1}=$ False, then $M_{1} \approx N$, but it might be too large or too small by one star (it might be $N-1$ or $N+1$). Suppose that $P\left(M_{1}=N-1\right)=e$, and $P\left(M_{1}=N+1\right)=e$. Similar arguments relate the variables F_{2}, M_{2} and N, with exactly the same parameters e and f.
(a) Draw a Bayesian network for this problem.

(b) Write out a conditional distribution for $P\left(M_{1} \mid N\right)$ for the case where $N \in\{1,2,3\}$ and $M_{1} \in\{0,1,2,3,4\}$. Each entry in the conditional distribution table should be expressed as a function of the parameters e and/or f.

Solution:		M_{1}					
	N	0	1	2	3	4	
	1	$f+e$	$1-f-2 e$	e	0	0	
	2	f	e	$1-f-2 e$	e	0	
	3	f	0	e	$1-f-2 e$	e	

(c) Suppose $M_{1}=1$ and $M_{2}=3$. What are the possible numbers of stars if you assume no prior constraint on the values of N ?

Solution: $N=2$ is possible, if both made small mistakes. $N=4$ is possible, if M_{2} made a small and M_{1} a big mistake. $N \geq 6$ is possible, if both M_{1} and M_{2} made big mistakes.
(d) What is the most likely number of stars, given the observations $M_{1}=1, M_{2}=3$? Explain how to compute this, or if it is not possible to compute, explain what additional information is needed and how it would affect the result.

Solution: You can't solve this problem unless you know the distribution $P(N)$.

