Collab Worksheet 5

CS440/ECE448, Spring 2021
Week of $3 / 8-3 / 12,2021$

Question 1

A particular two-layer neural net has input vector $x=[x[1], x[2]] . T$, hidden layer activations $h[1]=[h[1][1], h[1][2]] . T$, and a scalar output $h[2]$. Its weights and biases are stored in a pair of matrices $w[1]$ and $w[2]$ and a pair of vectors $b[1]$ and $b[2]$, respectively. Each of these variables may be indexed using either superscripts and subscripts, or using a python-like notation, as shown in Table 1. The weights and biases are given to you; their values are also provided in Table 1. The hidden layer nonlineary is ReLU; the output nonlinearity is a logistic sigmoid.

Table 1: Variables used in Problem 1.

Subscript Notation	Python-Like Notation
$x=\left[x_{1}, x_{2}\right]^{T}$	$\mathrm{x}=[\mathrm{x}[1], \mathrm{x}[2]] . \mathrm{T}$
$h^{(1)}=\left[h_{1}^{(1)}, h_{2}^{(1)}\right]^{T}$	$\mathrm{~h}=[\mathrm{h}[1,1] \mathrm{h}[1,2]] \cdot \mathrm{T}$
$h^{(2)}$	$\mathrm{h}[2]$
$w^{(1)}=\left[\begin{array}{cc}3 & 4 \\ 0 & 9\end{array}\right]$	$\mathrm{w}[1]=[[3,4],[0,9]]$
$b^{(1)}=[-3,3]^{T}$	$\mathrm{~b}[1]=[-3,3] \cdot \mathrm{T}$
$w^{(2)}=[5,4]$	$\mathrm{w}[2]=[5,4]$
$b^{(2)}=-7$	$\mathrm{~b}[2]=-7$

(a) Suppose the input is $x=[9,-6] \cdot T$. What is $h[1]$? Write your answer as a vector of sums of products; do not simplify.

Solution:

$$
h[1]=[\max (0,(3)(9)+(4)(-6)+-3), \max (0,(0)(9)+(9)(-6)+3)] \cdot T
$$

(b) Suppose the hidden layer is $h[1]=[4,5] . T$. What is $h[2]$? Write your answer as a ratio of terms involving the exponential of a sum of products; do not simplify.

Solution:

$$
h[2]=1 /(1+\exp (-(5)(4)-(4)(5)+7))
$$

Question 2

You have a two-layer neural network trained as an animal classifier. The input feature vector is $x=[x[1], x[2], x[3]] . T$, where $x[1], x[2]$, and $x[3]$ are some features. There are two hidden nodes $h[1]=[h[1][1], h[1][2]] . T$, and three output nodes, $h[2]=[h[2][1], h[2][2], h[2][3]] . T$, corresponding to the three output classes $h[2][1]=\operatorname{Pr}(\mathrm{Y}=\operatorname{dog} \mid \mathrm{X}=\mathrm{x}), h[2][2]=\operatorname{Pr}(\mathrm{Y}=$ cat $\mid \mathrm{X}=\mathrm{x})$, and $h[2][3]=\operatorname{Pr}(\mathrm{Y}=$ skunk $\mid \mathrm{X}=\mathrm{x})$. The hidden layer uses a sigmoid nonlinearity, the output layer uses a softmax. Each of these variables, and the weight matrices $w[l][j, k]$ and bias vectors $b[l][j]$, may be indexed using either superscripts and subscripts, or using a python-like notation, as shown in Table 2.

Table 2: Variables used in Problem 2.

Subscript Notation	Python-Like Notation
$x=\left[x_{1}, x, x_{3}\right]^{T}$	$\mathrm{x}=[\mathrm{x}[1], \mathrm{x}[2], \mathrm{x}[3]] . \mathrm{T}$
$h^{(1)}=\left[h_{1}^{(1)}, h_{2}^{(1)}\right]^{T}$	$\mathrm{~h}=[\mathrm{h}[1,1] \mathrm{h}[1,2]] . \mathrm{T}$
$h^{(2)}=\left[h_{1}^{(2)}, h_{2}^{(2)}, h_{3}^{(2)}\right]^{T}$	$\mathrm{~h}[2]=[\mathrm{h}[2][1], \mathrm{h}[2][2], \mathrm{h}[2][3]] . \mathrm{T}$
$w^{(1)}=\left[\begin{array}{ccc}w_{1,1}^{(1)} & w_{1,2}^{(1)} & w_{1,3}^{(1)} \\ w_{2,1}^{(1)} & w_{2,2}^{(1)} & w_{2,3}^{(1)}\end{array}\right]$	$\mathrm{w}[1]=[[\mathrm{w}[1][1,1], \ldots], \ldots,[\ldots, \mathrm{w}[1][2,3]]]$
$b^{(1)}=\left[b_{1}^{(1)}, b_{2}^{(1)}\right]^{T}$	$\mathrm{~b}[1]=[\mathrm{b}[1][1], \mathrm{b}[1][2]] . \mathrm{T}$
$w^{(2)}=\left[\begin{array}{ccc}w_{1,1}^{(2)} & w_{1,2}^{(2)} \\ w_{2,1}^{(2)} & w_{2,2}^{(2)} \\ w_{3,1}^{(2)} & w_{3,2}^{(2)}\end{array}\right]$	$\mathrm{w}[2]=[[\mathrm{w}[1][1,1], \ldots], \ldots,[\ldots, \mathrm{w}[2][3,2]]]$
$b^{(2)}=\left[b_{1}^{(2)}, \ldots, b_{3}^{(2)}\right]^{T}$	$\mathrm{~b}[2]=[\mathrm{b}[2][1], \ldots, \mathrm{b}[2][3]] . \mathrm{T}$

(a) A Maltese puppy has the feature vector $x=[2,20,-1] \cdot T$. Suppose all weights and biases are initialized to zero. What is $h[2]$?

Solution: If all weights and biases are zero, then the excitation of each hidden node is $0 \times 2+0 \times 20+0 \times(-1)+0 \times 1=0$. With zero input, the sigmoid $1 /(1+$ $\exp (-f))=0.5$, but weights in the last layer are also all zero, so the excitations at the last layer are all zero. With a softmax nonlinearity, every output node is computing $\exp (0) / \sum_{i=1}^{3} \exp (0)=1 / 3$. So

$$
h[2]=\left[\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right]^{T}
$$

(b) Let $w[2][i, j]$ be the weight connecting the $i^{\text {th }}$ output node to the $j^{\text {th }}$ hidden node. What is $d h[2][2] / d w[2][2,1]$? Write your answer in terms of $h[2][i], w[2][i, j]$, and/or the hidden node activations $h[1][j]$, for any appropriate values of i and/or j.

Solution: Let's use the notation $e_{i}^{(2)}$ as the excitation of the $i^{\text {th }}$ output node. That
allows us to write the softmax as:

$$
h_{2}^{(2)}=\frac{\exp \left(e_{2}^{(2)}\right)}{\sum_{j=1}^{3} \exp \left(e_{j}^{(2)}\right)}, \quad e_{j}^{(2)}=b_{j}^{(2)}+\sum_{i} w_{j i} h_{i}^{(1)}
$$

Then:

$$
\begin{aligned}
\frac{d h_{2}^{(2)}}{d w_{21}^{(2)}} & =\frac{1}{\sum_{i=1}^{3} \exp \left(e_{i}^{(2)}\right)} \frac{d \exp \left(e_{2}^{(2)}\right)}{d w_{21}^{(2)}}+\exp \left(e_{2}^{(2)}\right) \frac{\left.d\left(1 / \sum_{i} \exp \left(e_{i}^{(2)}\right)\right)\right)}{d w_{21}^{(2)}} \\
& =\frac{1}{\sum_{i=1}^{3} \exp \left(e_{i}^{(2)}\right)} \exp \left(e_{2}^{(2)}\right) \frac{d e_{2}^{(2)}}{d w_{21}^{(2)}}+\exp \left(e_{2}^{(2)}\right)\left(-\frac{1}{\left(\sum_{i=1}^{3} \exp \left(e_{i}^{(2)}\right)\right)^{2}}\right) \frac{\left.d\left(\sum \exp \left(e_{i}^{(2)}\right)\right)\right)}{d w_{21}^{(2)}} \\
& =\frac{\exp \left(e_{2}^{(2)}\right)}{\sum_{i=1}^{3} \exp \left(e_{i}^{(2)}\right)} h_{1}^{(1)}-\frac{\exp \left(e_{2}^{(2)}\right)}{\left(\sum_{i=1}^{3} \exp \left(e_{i}^{(2)}\right)\right)^{2}} \frac{d \exp \left(e_{2}^{(2)}\right)}{d w_{21}^{(2)}} \\
& =\frac{\exp \left(e_{2}^{(2)}\right)}{\sum_{i=1}^{3} \exp \left(e_{i}^{(2)}\right)} h_{1}^{(1)}-\frac{\exp \left(e_{2}^{(2)}\right)}{\left(\sum_{i=1}^{3} \exp \left(e_{i}^{(2)}\right)\right)^{2}} \exp \left(e_{2}^{(2)}\right) \frac{d e_{2}^{(2)}}{d w_{21}^{(2)}} \\
& =\frac{\exp \left(e_{2}^{(2)}\right)}{\sum_{i=1}^{3} \exp \left(e_{i}^{(2)}\right)} h_{1}^{(1)}-\frac{\exp \left(e_{2}^{(2)}\right)^{2}}{\left(\sum_{i=1}^{3} \exp \left(e_{i}^{(2)}\right)\right)^{2}} h_{1}^{(1)} \\
& =h_{2}^{(2)}\left(1-h_{2}^{(2)}\right) h_{1}^{(1)}
\end{aligned}
$$

(c) Suppose that you are presented with an all-zero feature vector $x=[0,0,0] \cdot T$. Suppose that the first-layer weight matrix is also all zero, $w[1][j, k]=0$, but the bias is nonzero, specifically, it has the value $b[1]=[12,13] . T$. Suppose that, for this particular training token, $d h[2][2] / d h[1][1]=15$. What is $d h[2][2] / d b[1][1]$? Write your answer as a product of fractions involving exponentials of integers; there should be only constants in your answer, no variables, but you need not simplify.

Solution:

$$
\begin{aligned}
\frac{d h_{2}^{(2)}}{d b_{1}^{(1)}} & =\frac{d h_{2}^{(2)}}{d h_{1}^{(1)}} \frac{d h_{1}^{(1)}}{d e_{1}^{(1)}} \frac{d e_{1}^{(1)}}{d b_{1}^{(1)}} \\
& =\frac{d h_{2}^{(2)}}{d h_{1}^{(1)}} \sigma^{\prime}\left(d e_{1}^{(1)}\right) \\
& =\frac{d h_{2}^{(2)}}{d h_{1}^{(1)}}\left(\frac{\exp \left(-e_{1}^{(1)}\right)}{\left(1+\exp \left(-e_{1}^{(1)}\right)\right)^{2}}\right) \\
& =15\left(\frac{\exp (-12)}{(1+\exp (-12))^{2}}\right)
\end{aligned}
$$

