
Collab Worksheet 4

CS440/ECE448, Spring 2021

Week of 2/26 - 3/3, 2021

Question 1
You are a Hollywood producer. You have a script in your hand and you want to make a movie.
Before starting, however, you want to predict if the film you want to make will rake in huge
profits, or utterly fail at the box office. You hire two critics A and B to read the script and
rate it on a scale of 1 to 5 (assume only integer scores). Each critic reads it independently and
announces their verdict. Of course, the critics might be biased and/or not perfect, therefore
you may not be able to simply average their scores. Instead, you decide to use a perceptron to
classify your data. There are three features: a constant bias, and the two reviewer scores. Thus
f0 = 1 (a constant bias), f1 = score given by reviewer A, and f2 = score given by reviewer B.

Movie Name A B Profit

Pellet Power 1 1 No

Ghosts! 3 2 Yes

Pac is bac 4 5 No

Not a Pizza 3 4 Yes

Endless Maze 2 3 Yes

(a) (5 points) Train the perceptron to generate ŷ = 1 if the movie returns a profit, ŷ = −1
otherwise. The initial weights are w0 = −1,w1 = 0,w2 = 0. Present each row of the table
as a training token, and update the perceptron weights before moving on to the next row.
Use a learning rate of α = 1. After each of the training examples has been presented once
(one epoch), what are the weights?

Solution: The first row of the table is correctly classified, therefore the weights are not
changed. The second row is incorrectly classified, therefore the weights are updated as
w = w+yf = [0, 3, 2]. Using these weights results in misclassification of the third row,
therefore the weights are updated again to [−1,−1,−3]. Using these weights results in
misclassification of the fourth row, therefore the weights are updated again to [0, 2, 1].
These weights correctly classify the fifth row.

(b) (3 points) Suppose that, instead of learning whether or not the movie is profitable, you
want to learn a perceptron that will always output ŷ = +1 when the total of the two
reviewer scores is more than 8, and ŷ = −1 otherwise. Is this possible? If so, what are the
weights w0, w1, and w2 that will make this possible?
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Solution: Yes, a perceptron can learn this function. Any weights such that w1 = w2

and w0 < −8w1 are correct; for example, the weights [−8.1, 1, 1].

(c) (2 points) Instead of either part (a) or part (b), suppose you want to learn a perceptron
that will always output ŷ = +1 when the two reviewers agree (when their scores are exactly
the same), and will output ŷ = −1 otherwise. Is this possible? If so, what are the weights
w0, w1 and w2 that will make this possible?

Solution: This problem is the logical complement of the XOR problem, therefore it
is not linearly separable, and cannot be learned by a perceptron.

Question 2
An image classification algorithm is being trained using the multiclass perceptron learning rule.
There are 10 classes, each parameterized by a weight vector wk, for 0 ≤ k ≤ 9. During the
last round of training, all of the training tokens were correctly classified. Which of the weight
vectors were updated, and why?

Solution: None. The perceptron learning rule updates the weight vectors only if the
classifier makes a mistake.

Question 3
Logistic regression is trained using gradient descent, with the goal of achieving the Bayes error
rate (the lowest possible error rate) on testing data. There are many reasons why gradient
descent might not successfully minimize the number of test-corpus errors. List at least three.

Solution: Here are a few:

1. Wrong criterion: The number of errors is not a differentiable criterion, so gradient
descent has to minimize a differentiable approximation. Minimizing the differentiable
approximation might not actually minimize the number of errors.

2. Generalization error: Minimizing error on the training corpus might not minimize
error on the test corpus.

3. Approximation error: The Bayes error rate might not be achievable by a linear
classifier. Since logistic regression learns a linear classifier, it might not be possible
to achieve the Bayes error rate.

4. Local optimum: Gradient descent converges to a local minimum of the training
criterion, not a global minimum.

5. Computational limitations: The amount of computation available for training
might not be enough for gradient descent to fully converge.
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Question 4
The softmax function is defined as

ŷk =
exp(ek)∑
j exp(ej)

Find dŷ5/de3 in terms of ŷ3, ŷ5, e3 and/or e5.

Solution:

dŷ5
de3

= − exp(e5)

(
∑

j exp(ej))2
d
∑

j exp(ej)

de3
= −exp(e5) exp(e3)

(
∑

j exp(ej))2
= −ŷ5ŷ3
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