Collab Worksheet 3 Solutions

CS440/ECE448, Spring 2021
Week of $2 / 19-2 / 24,2021$

Question 1

You're on a phone call with your friend, trying to help figure out why their computer won't start. There are only two possibilities, $Y=\mathrm{CPU}$, or $Y=$ PowerSupply, with prior probability $P(Y=\mathrm{CPU})=0.3$.
You ask your friend whether the computer makes noise when they try to turn it on. There are two possibilities, $E=$ quiet, and $E=$ loud. You know that a power supply problem often leaves a quiet computer, but that the relationship is stochastic, as shown:

$$
P(E=\text { noise } \mid Y=\mathrm{CPU})=0.8, \quad P(E=\text { noise } \mid Y=\text { PowerSupply })=0.4
$$

(a) What is the MAP classifier function $\hat{Y}(E)$, as a function of E ?

Solution: The joint probabilities of evidence and label are:

$$
\begin{array}{ll}
P(\text { noise }, C P U)=0.24, & P(\text { noise }, \text { PowerSupply })=0.28 \\
P(\text { quiet }, C P U)=0.06, & P(\text { quiet }, \text { PowerSupply })=0.42
\end{array}
$$

Choosing the maximum a posteriori label given each observation gives

$$
\hat{Y}(\text { noise })=\text { PowerSupply }, \quad \hat{Y}(\text { quiet })=\text { PowerSupply }
$$

In other words, regardless of whether the computer is noisy or quiet, the power supply is always the most probable source of the problem.
(b) What is the Bayes error rate?

Solution: The Bayes error rate is the probability of error of the optimal classifier, which is $P($ noise, CPU$)+P($ quiet, CPU$)=0.3$.
(c) CPU damage is more expensive than power supply damage, so let's define a false alarm to be the case where your classifier says $\hat{Y}=\mathrm{CPU}$, but the actual problem is $Y=$ PowerSupply. Under this definition, what are the false-alarm rate and missed-detection rate of the MAP classifier?

Solution: The MAP classifier always guesses "Power Supply," so the false alarm and missed detection rates are

$$
\begin{aligned}
& P(\hat{Y}=\mathrm{CPU} \mid Y=\text { PowerSupply })=0.0 \\
& P(\hat{Y}=\text { PowerSupply } \mid Y=\mathrm{CPU})=1.0
\end{aligned}
$$

Question 2

Consider the following binary logic function:

$$
y=\neg\left(\left(x_{1} \wedge \neg x_{2} \wedge \neg x_{3}\right) \vee\left(x_{1} \wedge x_{2} \wedge \neg x_{3}\right)\right)
$$

Convert truth values to numbers in the obvious way: let $x_{i}=1$ be a synonoym for $x_{i}=$ True, and let $x_{i}=0$ by a synonym for $x_{i}=$ False. Let $x=\left[x_{1}, x_{2}, x_{3}\right]^{T}$ and $w=\left[w_{1}, w_{2}, w_{3}\right]^{T}$, let $x^{T} w$ denote the dot product of vectors x and w, and let $u(\cdot)$ denote the unit step function. Find a set of parameters w_{1}, w_{2}, w_{3} and b such that the logic function shown above can be computed as $y=u\left(w^{T} x+b\right)$.

Solution: Drawing up a truth table, we get

x_{1}	x_{2}	x_{3}	y
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Looking at the truth table (or simplifying the original formula), we see that $y=1$ unless $x_{1}=1$ and $x_{3}=0$, e.g., unless $x_{1}-x_{3}>0.5$. We can write this as, for example, $y=u\left(-x_{1}+x_{3}+0.5\right)$, i.e., $w=[-1,0,1], b=0.5$.

Question 3

We want to implement a classifier that takes two input values, where each value is either 0,1 or 2 , and outputs a 1 if at least one of the two inputs has value 2 ; otherwise it outputs a 0 . Can this function be implemented by a linear classifier? If so, construct a linear classifier that does it; if not, say why not.

Solution: In this case the input space of all possible examples with their target outputs is:

	0	1	2
2	1	1	1
1	0	0	1
0	0	0	1

Since there is clearly no line that can separate the two classes, this function is not linearly separable and so it cannot be learned by a Perceptron.

Question 4

Consider a problem with a binary label variable, Y, whose prior is $P(Y=1)=0.4$. Suppose that there are 100 binary evidence variables, $E=\left[E_{1}, \ldots, E_{100}\right]$, each with likelihoods given by $P\left(E_{i}=1 \mid Y=0\right)=0.3$ and $P\left(E_{i}=1 \mid Y=1\right)=0.8$ for $1 \leq i \leq 100$.
(a) Specify the classifier function, $\hat{y}(e)$, for a naive Bayes classifier, where $e=\left[e_{1}, \ldots, e_{100}\right]$ is the set of observed values of the evidence variables.

Solution:

$$
\hat{y}(e)= \begin{cases}1 & P(Y=1) \prod_{i: e_{i}=1} P\left(E_{i}=1 \mid Y=1\right) \prod_{i: e_{i}=0} P\left(E_{i}=0 \mid Y=1\right)> \\ & (1-P(Y=1)) \prod_{i: e_{i}=1} P\left(E_{i}=1 \mid Y=0\right) \prod_{i: e_{i}=0} P\left(E_{i}=0 \mid Y=0\right) \\ 0 & \text { otherwise }\end{cases}
$$

Plugging in the given parameter values, we have

$$
\hat{y}(e)= \begin{cases}1 & 0.4 \prod_{i=1}^{100}(0.8)^{e_{i}}(0.2)^{1-e_{i}}>0.6 \prod_{i=1}^{100}(0.3)^{e_{i}}(0.7)^{1-e_{i}} \\ 0 & \text { otherwise }\end{cases}
$$

(b) The naive Bayes classifier can be written as

$$
\hat{y}(e)=\left\{\begin{array}{ll}
1 & w^{T} e+b>0 \\
0 & \text { otherwise }
\end{array},\right.
$$

where $w^{T} e$ is the dot product between the vectors w and e. Find w and b (write them as expressions in terms of constants; don't simplify).

Solution:

$\hat{y}(e)= \begin{cases}1 & \ln (0.4)+\sum_{i=1}^{100} e_{i} \ln (0.8)+\left(1-e_{i}\right) \ln (0.2)>\ln (0.6)+\sum_{i=1}^{100} e_{i} \ln (0.3)+\left(1-e_{i}\right) \ln (0.7) \\ 0 & \text { otherwise }\end{cases}$
so the parameters are

$$
\begin{aligned}
b & =\ln (0.4)-\ln (0.6)+100 \ln (0.2)-100 \ln (0.7) \\
w_{i} & =\ln (0.8)-\ln (0.2)-\ln (0.3)+\ln (0.7), \quad 1 \leq i \leq 100
\end{aligned}
$$

