## Collab Worksheet 3

CS440/ECE448, Spring 2021
Week of $2 / 19-2 / 24,2021$

## Question 1

You're on a phone call with your friend, trying to help figure out why their computer won't start. There are only two possibilities, $Y=\mathrm{CPU}$, or $Y=$ PowerSupply, with prior probability $P(Y=\mathrm{CPU})=0.3$.
You ask your friend whether the computer makes noise when they try to turn it on. There are two possibilities, $E=$ quiet, and $E=$ loud. You know that a power supply problem often leaves a quiet computer, but that the relationship is stochastic, as shown:

$$
P(E=\text { noise } \mid Y=\mathrm{CPU})=0.8, \quad P(E=\text { noise } \mid Y=\text { PowerSupply })=0.4
$$

(a) What is the MAP classifier function $\hat{Y}(E)$, as a function of $E$ ?
(b) What is the Bayes error rate?
(c) CPU damage is more expensive than power supply damage, so let's define a false alarm to be the case where your classifier says $\hat{Y}=\mathrm{CPU}$, but the actual problem is $Y=$ PowerSupply. Under this definition, what are the false-alarm rate and missed-detection rate of the MAP classifier?

## Question 2

Consider the following binary logic function:

$$
y=\neg\left(\left(x_{1} \wedge \neg x_{2} \wedge \neg x_{3}\right) \vee\left(x_{1} \wedge x_{2} \wedge \neg x_{3}\right)\right)
$$

Convert truth values to numbers in the obvious way: let $x_{i}=1$ be a synonoym for $x_{i}=$ True, and let $x_{i}=0$ by a synonym for $x_{i}=$ False. Let $x=\left[x_{1}, x_{2}, x_{3}\right]^{T}$ and $w=\left[w_{1}, w_{2}, w_{3}\right]^{T}$, let $x^{T} w$ denote the dot product of vectors $x$ and $w$, and let $u(\cdot)$ denote the unit step function. Find a set of parameters $w_{1}, w_{2}, w_{3}$ and $b$ such that the logic function shown above can be computed as $y=u\left(w^{T} x+b\right)$.

## Question 3

We want to implement a classifier that takes two input values, where each value is either 0,1 or 2 , and outputs a 1 if at least one of the two inputs has value 2 ; otherwise it outputs a 0 . Can this function be implemented by a linear classifier? If so, construct a linear classifier that does it; if not, say why not.

## Question 4

Consider a problem with a binary label variable, $Y$, whose prior is $P(Y=1)=0.4$. Suppose that there are 100 binary evidence variables, $E=\left[E_{1}, \ldots, E_{100}\right]$, each with likelihoods given by $P\left(E_{i}=1 \mid Y=0\right)=0.3$ and $P\left(E_{i}=1 \mid Y=1\right)=0.8$ for $1 \leq i \leq 100$.
(a) Specify the classifier function, $\hat{y}(e)$, for a naive Bayes classifier, where $e=\left[e_{1}, \ldots, e_{100}\right]$ is the set of observed values of the evidence variables.
(b) The naive Bayes classifier can be written as

$$
\hat{y}(e)=\left\{\begin{array}{ll}
1 & w^{T} e+b>0 \\
0 & \text { otherwise }
\end{array},\right.
$$

where $w^{T} e$ is the dot product between the vectors $w$ and $e$. Find $w$ and $b$ (write them as expressions in terms of constants; don't simplify).

