
Lecture 27
Exam 3 Review

Mark Hasegawa-Johnson
May 3, 2021

Outline: Exam 3 will be multiple-choice, on
prairielearn, including 24 problems
• 4 problems: Midterm 1 material
• 4 problems: Midterm 2 material
• 4-5 problems: minimax, alpha-beta, expectiminimax
• 3-4 problems: game theory
• 5-7 problems: MDP, reinforcement learning
• 1 problem: AI fairness (definitions of fairness; causal graphs)
• 1 problem: computer vision (similar triangles; convolution)

Outline: Exam 3 will be multiple-choice, on
prairielearn, including 24 problems
• 4 problems: Midterm 1 material
• 4 problems: Midterm 2 material
• 4-5 problems: minimax, alpha-beta, expectiminimax
• 3-4 problems: game theory
• 5-7 problems: MDP, reinforcement learning
• 1 problem: AI fairness (definitions of fairness; causal graphs)
• 1 problem: computer vision (similar triangles; convolution)

Computing the minimax value of a node

• Minimax(node) =
§ Utility(node) if node is terminal
§ maxaction Minimax(Succ(node, action)) if player = MAX
§ minaction Minimax(Succ(node, action)) if player = MIN

3 2 2

3

The pruning thresholds, alpha and beta

Alpha-beta pruning requires us to keep track of two pruning thresholds,
alpha and beta.
• alpha (𝛼) is the highest score that MAX knows how to force MIN to

accept.
• beta (𝛽) is the lowest score that MIN knows how to force MAX to

accept.
• 𝛼 < 𝛽

Computational Complexity

Consider a sequence of two levels, with n moves per level, and with optimal
ordering.
• There are 𝑛! terminal nodes.
• Alpha-beta will evaluate all the daughters of the first daughter: 𝑛 nodes.
• Alpha-beta will also evaluate the first daughter of each non-first daughter:
𝑛 − 1 nodes.
• In total, alpha-beta will evaluate 2𝑛 − 1 out of every 𝑛! nodes.
• For a tree of depth d, the number of nodes evaluated by alpha-beta is

2𝑛 − 1 "/! = 𝑂{𝑛"/!}

2 5 14

X X X X

Expectiminimax: notation
= MAX node. 𝑈 𝑠 = max

!∈#(%)
𝑄(𝑠, 𝑎)

= MIN node. 𝑈 𝑠 = min
!∈#(%)

𝑄(𝑠, 𝑎)

= Chance node. 𝑄 𝑠, 𝑎 = ∑%'𝑃 𝑠' 𝑠, 𝑎 𝑈(𝑠')

Outline: Exam 3 will be multiple-choice, on
prairielearn, including 24 problems
• 4 problems: Midterm 1 material
• 4 problems: Midterm 2 material
• 4-5 problems: minimax, alpha-beta, expectiminimax
• 3-4 problems: game theory
• 5-7 problems: MDP, reinforcement learning
• 1 problem: AI fairness (definitions of fairness; causal graphs)
• 1 problem: computer vision (similar triangles; convolution)

Notation: simultaneous games
The payoff matrix shows:
• Each column is a different move for

player 1.
• Each row is a different move for player

2.
• Each square is labeled with the rewards

earned by each player in that square.

Payoff matrix

4
7

🐶

🐱 🐱

🐶1
🐱2

🐶7
🐱4

🐶5
🐱1

🐶5
🐱4

L

L L RR

R

4
5

1
5

2
1

L R

L

R

🐱

🐶

Nash Equilibrium

A Nash Equilibrium is a game outcome such that each player,
knowing the other player’s move in advance, responds rationally.

Defect Cooperate

Defect

Cooperate

10

0 100

10
010

10 100
Photo by Scott Bauer, Public Domain,

https://commons.wikimedia.org/w/index.
php?curid=245466

By Ancheta Wis, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=68

432449

Bo
b

Alice

Pareto optimal outcome

An outcome is Pareto-optimal if the only way to increase value for
one player is by decreasing value for the other.
• (Stag,Stag) is Pareto-optimal: one could increase Alice’s value, but

only by decreasing Bob’s value.
• (Alligator,Alligator) is Pareto-optimal: one could increase Bob’s

value, but only by decreasing Alice’s value.

Stag Alligator

Stag

Alligator

20

0 10

0
010

0 20Photo by Scott Bauer, Public Domain,
https://commons.wikimedia.org/w/index.

php?curid=245466

By Ancheta Wis, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=68

432449

Alice

Bo
b

Dominant strategy
If you didn’t know in advance what your opponent
was going to do, what would you do?
• If Bob knew that Alice was going to refuse, then it

be rational for Bob to testify (he’d get 0 years,
instead of 1).

• If Bob knew that Alice was going to testify, then it
would still be rational for him to testify (he’d get 5
years, instead of 10).

A dominant strategy is an action that minimizes cost,
for one player, regardless of what the other player
does.

Alice:
Testify

Alice:
Refuse

Bob:
Testify

Bob:
Refuse

By
Monogram

Pictures,
Public

Domain,
https://co
mmons.wi
kimedia.or
g/w/index.
php?curid=

50338507

-5

-10 -1

0
-10-5

0 -1

Mixed-strategy Nash Equilibrium

For Bob, random selection is rational only if he can’t improve his winnings by definitively
choosing one action or the other. If Alice’s strategy is to cooperate w/probability p,
• If Bob defects, he expects to win 1 − 𝑝 𝑤 + 𝑝𝑥.
• If Bob cooperates, he expects to win 1 − 𝑝 𝑦 + 𝑝𝑧.
So
• it’s only logical for Bob to use a mixed strategy if 1 − 𝑝 𝑤 + 𝑝𝑥 = 1 − 𝑝 𝑦 + 𝑝𝑧.

Defect w/
Prob. 1 − 𝑝

Coop. w/
Prob. 𝑝

Defect w/
Prob. 1 − 𝑞

Coop. w/
Prob. 𝑞

𝒘

𝒚 𝒛

𝒙
𝒃𝒂

𝒄 𝒅

Alice

Bob

Outline: Exam 3 will be multiple-choice, on
prairielearn, including 24 problems
• 4 problems: Midterm 1 material
• 4 problems: Midterm 2 material
• 4-5 problems: minimax, alpha-beta, expectiminimax
• 3-4 problems: game theory
• 5-7 problems: MDP, reinforcement learning
• 1 problem: AI fairness (definitions of fairness; causal graphs)
• 1 problem: computer vision (similar triangles; convolution)

The Bellman equation
• Recursive relationship between the utilities of

successive states:

• For N states, we get N nonlinear equations in N
unknowns
• Known quantities: 𝑃(𝑠’|𝑠, 𝑎), 𝑅(𝑠), and 𝛾. Unknowns: 𝑈(𝑠).
• Solving these N equations solves the MDP.
• Nonlinear -> no closed-form solution.

• If it weren’t for the “max,” this would be N linear equations in N
unknowns. We could solve it by just inverting an NxN matrix.

• The “max” means that there is no closed-form solution. Need to use
an iterative solution method, which might not converge to the globally
optimum soluton.

• Two solution methods: value iteration and policy iteration

å
Î

+=
')(

)'(),|'(max)()(
ssAa

sUassPsRsU g

Method 1: Value iteration
• Start out with iteration 𝑖 = 0, every 𝑈$ (𝑠) = 0
• Iterate until convergence

• During the ith iteration, update the utility of each state
according to this rule:

• In the limit of infinitely many iterations, guaranteed to
find the correct utility values.
• Error decreases exponentially, so in practice, don’t need an

infinite number of iterations…

å
Î+ +¬

')(1)'(),|'(max)()(
s

isAai sUassPsRsU g

Method 2: Policy Iteration

Start with some initial policy p0 and alternate between the following
steps:

• Policy Evaluation: calculate the utility of every state under the assumption
that the given policy is fixed and unchanging.

𝑈(𝑠 = 𝑅 𝑠 + 𝛾=
%'

𝑃(𝑠'|𝑠, 𝜋 𝑠)𝑈(𝑠′

• Policy Improvement: calculate a new policy pi+1 based on the updated
utilities.

𝜋)*+ 𝑠 = argmax
!

=
%'

𝑃(𝑠'|𝑠, 𝑎)𝑈(𝑠′

Mode-Based Reinforcement Learning
The observation-model-policy loop:
1. Observation: Follow some initial policy, to guide your actions. Create a replay

buffer, i.e., a list of observed (s,a,R,s’) tuples.
2. Model: Try to learn 𝑃(𝑠’|𝑠, 𝑎) and 𝑅(𝑠).
3. Policy: Use your estimated 𝑃(𝑠’|𝑠, 𝑎) and 𝑅(𝑠) to decide on a new policy, and

repeat.

How to trade off exploration vs. exploitation
Epsilon-first strategy: when you reach state 𝑠, check how many times
you’ve tested each of its available actions.

• Explore for the first 𝝐 trials: If the least-explored action has been tested fewer
than ϵ times, then perform that action (ϵ is an integer).

• Exploit thereafter: Once you’ve finished exploring, start exploiting (work to
maximize your personal utility).

Epsilon-greedy strategy: in every state, every time, forever,
• Explore with probability 𝟎 < 𝝐 < 𝟏: choose any action, uniformly at random.
• Exploit with probability (𝟏 − 𝝐): choose the action with the highest expected

utility, according to your current estimates.
• Guarantee: 𝑃(𝑠’|𝑠, 𝑎) converges to its true value as #trials → ∞.

Q-learning
Q-learning is a model-free reinforcement learning strategy. It learns a
function Q(s,a) such that 𝑈 𝑠 = max

!∈# $
𝑄 𝑠, 𝑎 . Bellman’s equation

therefore becomes:

𝑄 𝑠, 𝑎 = 𝑅 𝑠 + 𝛾-
$%

𝑃 𝑠% 𝑠, 𝑎 max
!%∈#($%)

𝑄(𝑠′, 𝑎′)

Remember, it has these steps::
• Collect our current reward, R(s)
• Discount all future rewards by 𝛾
• Make a transition to a future state, s’, according to P(s’|s,a)
• Choose the optimum action, a’, from state s’, and collect all future rewards.

TD learning
1. When you reach state s, use your current exploration versus

exploitation policy, 𝜋%(𝑠), to choose some action 𝑎 = 𝜋%(𝑠).
2. Observe the tuple (s,a,R,s’), and calculate:

𝑄&'()& 𝑠, 𝑎 = 𝑅%(𝑠) + 𝛾 max
)*∈,(.*)

𝑄%(𝑠′, 𝑎′)

3. Calculate the time difference, and update:

𝑄%01 𝑠, 𝑎 = 𝑄% 𝑠, 𝑎 + 𝛼 𝑄&'()& 𝑠, 𝑎 − 𝑄% 𝑠, 𝑎

Repeat.

On-policy learning: SARSA
We can create an “on-policy learning” algorithm by deciding in advance which action (𝑎’) we’ll
perform in state 𝑠’, and then using that action in the update equation:

1. Use your current exploration versus exploitation policy, 𝜋!(𝑠), to choose some action
𝑎 = 𝜋!(𝑠).

2. Observe the state 𝑠’ that you end up in, and then use your current policy to choose
𝑎" = 𝜋!(𝑠′).

3. Instead of the observation (s,a,R,s’), you now have the observation (s,a,R,s’,a’). Calculate
Qlocal and the update equation as:

𝑄#$%&# 𝑠, 𝑎 = 𝑅!(𝑠) + 𝛾𝑄!(𝑠′, 𝑎′)

𝑄!'(𝑠, 𝑎 = 𝑄! 𝑠, 𝑎 + 𝛼 𝑄#$%&# 𝑠, 𝑎 − 𝑄! 𝑠, 𝑎

4. Go to step 2.

Deep Q-learning

Let’s define deep Q learning using the same 𝑄,-.!,:

ℒ =
1
2
𝐸 𝑄 𝑠, 𝑎 − 𝑄,-.!,(𝑠, 𝑎) /

where 𝑄,-.!,(𝑠, 𝑎) is:

𝑄,-.!,(𝑠, 𝑎) = 𝑅0(𝑠) + 𝛾 max
!'

𝑄 𝑠′, 𝑎′

Now we have an L that depends only on things we
know (𝑄 𝑠, 𝑎 , 𝑅0(𝑠), and 𝑄 𝑠′, 𝑎′), so it can be
calculated, differentiated, and used to update the
neural network.

Policy learning methods
• Suppose that 𝑠 is continuous, but 𝑎 is discrete (e.g., a one-hot vector).
• Then learning the policy directly can be much faster than learning Q

values.
• We can train a neural network for a stochastic policy---a policy that

chooses an action at random, using the probability distribution:

𝜋 𝑠, 𝑎 =
𝑒2(.,))

∑)* 𝑒2(.,)*)

Actor-critic algorithm

So let’s train two neural nets!
• 𝑄 𝑠, 𝑎 is the critic, and is

trained according to the deep
Q-learning algorithm (MMSE).
• 𝜋 𝑠, 𝑎 is the actor, and is

trained to satisfy the critic: The Critic, by Lajos Tihanyi. Oil
on canvas, 1916.
Public Domain,

https://commons.wikimedia.org
/w/index.php?curid=17837438

Actors from the Comédie Française, by Antoine
Watteau, 1720. Public Domain,

https://commons.wikimedia.org/w/index.php?curid=
15418670

𝜋 𝑠, 𝑎 = argmax3
L

𝜋 𝑠, 𝑎 𝑄 𝑠, 𝑎

Outline: Exam 3 will be multiple-choice, on
prairielearn, including 24 problems
• 4 problems: Midterm 1 material
• 4 problems: Midterm 2 material
• 4-5 problems: minimax, alpha-beta, expectiminimax
• 3-4 problems: game theory
• 5-7 problems: MDP, reinforcement learning
• 1 problem: AI fairness (definitions of fairness; causal graphs)
• 1 problem: computer vision (similar triangles; convolution)

Standard Definitions of Fairness in AI
Demographic Parity:
The probability of a positive outcome is the same, regardless of protected attribute.

𝑃 M𝑌 = 1|𝐴 = 𝑎 = 𝑃 M𝑌 = 1|𝐴 = 𝑎′ ∀𝑎, 𝑎′

Predictive Parity:
Precision is the same, regardless of protected attribute.

𝑃 𝑌 = 1| M𝑌 = 1, 𝐴 = 𝑎 = 𝑃 𝑌 = 1| M𝑌 = 1, 𝐴 = 𝑎′ ∀𝑎, 𝑎′

Error Rate Balance:
Recall is the same, regardless of protected attribute.

𝑃 M𝑌 = 1|𝑌 = 1, 𝐴 = 𝑎 = 𝑃 M𝑌 = 1|𝑌 = 1, 𝐴 = 𝑎′ ∀ Q𝑦, 𝑎, 𝑎′

State-of-the-art Solution: Explain Your
Assumptions to Your Users

• The Transparency Dogma says that an
algorithm’s assumptions should be
published in a way that users can
understand, so that users can participate
in a public debate about the fairness of
the assumptions.

• A common way to do this is by drawing a
Bayesian network.

• Example shown: the Bickel-Hammel-
O’Connell data. Admission was
conditionally independent of Gender,
given Department.

Gender

Department

Admission

Outline: Exam 3 will be multiple-choice, on
prairielearn, including 24 problems
• 4 problems: Midterm 1 material
• 4 problems: Midterm 2 material
• 4-5 problems: minimax, alpha-beta, expectiminimax
• 3-4 problems: game theory
• 5-7 problems: MDP, reinforcement learning
• 1 problem: AI fairness (definitions of fairness; causal graphs)
• 1 problem: computer vision (similar triangles; convolution)

The pinhole camera equations

• These are similar triangles! So
𝑦′
𝑓 =

−𝑦
𝑧 ,

𝑥′
𝑓 =

−𝑥
𝑧

• Solving for (x’,y’), we get the
pinhole camera equations:

𝑥* =
−𝑓𝑥
𝑧

, 𝑦′ =
−𝑓𝑦
𝑧

Image
plane

Object

Pinhole

y’

y

z

f z

Vanishing point

• Suppose we are imaging a couple of
parallel lines, for which x and y
depend on z:

Line 1: 𝑎𝑥(+ 𝑧 = 𝑏(, 𝑐𝑦(+ 𝑧 = 𝑑(
Line 2: 𝑎𝑥) + 𝑧 = 𝑏), 𝑐𝑦) + 𝑧 = 𝑑)
So

Line 1: lim
*→,

𝑥(′ =
-
!

, lim
*→,

𝑦(% =
-
.

Line 2: lim
*→,

𝑥)′ =
-
!

, lim
*→,

𝑦)% =
-
.

Image
plane

Object

Pinhole

y’

y

z

-f

Difference of Gaussians

A “difference-of-Gaussians” filter is created by
subtracting two Gaussian-blur filters, like this:

ℎ 𝑚, 𝑛 =
1

2𝜋𝜎) 𝑒
/ 0

1
!
2 3
1

!

ℎ4′ 𝑚,𝑛 =
ℎ 𝑚, 𝑛 + 1 − ℎ 𝑚, 𝑛 − 1

2

ℎ5′ 𝑚,𝑛 =
ℎ 𝑚 + 1, 𝑛 − ℎ 𝑚 − 1, 𝑛

2

𝑥’

ℎ1′ 𝑥’, 0

A “difference-of-Gaussians”
filter looks kind of like this:

𝑦’

ℎ1′ 1, 𝑦′

Some Sample Problems

• Review exam Question 3: Alpha-beta pruning
• Review exam Question 10: Game theory
• Review exam Question 14: MDP

Question 3: alpha-beta pruning

a) Write down minimax value of
each node.

b) How will the game proceed?
c) Cross out branches that would

be pruned by alpha-beta.
d) Suppose you could re-order

the branches using some
heuristic. What re-ordering
would maximize the number
pruned?

Question 3: alpha-beta pruning

a) Write down minimax value of
each node.

b) How will the game proceed?
c) Cross out branches that would

be pruned by alpha-beta.
d) Suppose you could re-order

the branches using some
heuristic. What re-ordering
would maximize the number
pruned?

Question 3: alpha-beta pruning

a) Write down minimax value of
each node.

b) How will the game proceed?
c) Cross out branches that would

be pruned by alpha-beta.
d) Suppose you could re-order

the branches using some
heuristic. What re-ordering
would maximize the number
pruned?

Question 3: alpha-beta pruning

a) Write down minimax value of
each node.

b) How will the game proceed?
c) Cross out branches that would

be pruned by alpha-beta.
d) Suppose you could re-order

the branches using some
heuristic. What re-ordering
would maximize the number
pruned?

Question 3: alpha-beta pruning

a) Write down minimax value of
each node.

b) How will the game proceed?
c) Cross out branches that would

be pruned by alpha-beta.
d) Suppose you could re-order

the branches using some
heuristic. What re-ordering
would maximize the number
pruned?

5 6 7 11 3 4 5 10 2 5 6 8 1 2 6 15

5 ≤ 𝟑 ≤ 𝟐 ≤ 𝟏

5

X X X X X X X X X

Question 10: Game theory

Suppose that both Alice and Bob want to go from one place to another.
There are two routes, R1 and R2. The utility of a route is inversely
proportional to the number of cars on the road. For instance, if both Alice
and Bob choose route R1, the utility of R1 for each of them is 1/2.
• Write out the payoff matrix.
• Is this a zero-sum game?
• Find dominant strategies, if any. If there are no dominant strategies,

explain why not.
• Find pure strategy equilibria, if any. If there is no pure strategy equilibrium,

explain why not.
• Find the mixed-strategy equilibrium.

Question 10: Game theory

Suppose that both Alice and Bob want to go from one place to another.
There are two routes, R1 and R2. The utility of a route is inversely
proportional to the number of cars on the road. For instance, if both
Alice and Bob choose route R1, the utility of R1 for each of them is 1/2.
• Write out the payoff matrix.

B:R1 B:R2
A:R1 0.5,0.5 1,1
A:R2 1,1 0.5,0.5

Question 10: Game theory

Suppose that both Alice and Bob want to go from one place to another.
There are two routes, R1 and R2. The utility of a route is inversely
proportional to the number of cars on the road. For instance, if both
Alice and Bob choose route R1, the utility of R1 for each of them is 1/2.
• Write out the payoff matrix.

B:R1 B:R2
A:R1 0.5,0.5 1,1
A:R2 1,1 0.5,0.5

• Is this a zero-sum game?
No. The rewards for Alice and Bob don’t sum to zero within each square.

Question 10: Game theory

• Find dominant strategy, if any. If there is none, explain why not.
There is no dominant strategy. The best action for Alice depends on
what Bob does. The best action for Bob depends on what Alice does.
• Find pure-strategy equilibria, if any. If there is none, explain why not.
There are two. If Alice takes R1 and Bob takes R2, then Alice has no
reason to want to change. Similarly, if Alice takes R2 and Bob takes R1,
then Alice has no reason to want to change.

B:R1 B:R2
A:R1 0.5,0.5 1,1
A:R2 1,1 0.5,0.5

Question 10: Game theory

• Find the mixed-strategy equilibrium.
Suppose Alice chooses R2 with probability p. Then it is rational for Bob
to choose randomly only if

0.5 1 − 𝑝 + 𝑝 = 1 − 𝑝 + 0.5𝑝
So p=0.5. Since it is now rational for Bob to choose randomly, suppose
he chooses R2 with probability q. Then it is rational for Alice to choose
randomly only if

0.5 1 − 𝑞 + 𝑞 = 1 − 𝑞 + 0.5𝑞
So random choice is a Nash equilibrium only if p=0.5, q=0.5.

B:R1 B:R2
A:R1 0.5,0.5 1,1
A:R2 1,1 0.5,0.5

Question 14: MDP
Consider a 3x2 gridworld, with rewards for
each state as shown at right. Robot starts
in the square with R(s)=0; if it reaches the
square with R(s)=-1 or R(s)=1, the game
ends. Transition probability is

𝑃 𝑠' 𝑠, 𝑎 = V0.8 𝑠' = 𝑎
0.2 𝑠' = 𝑠

• What is U(s) after second round of value
iteration, with 𝛾 = 1?

• After how many rounds of value iteration
is U(s)>0, for the first time, in the starting
state?

-0.04 -0.04
-1 1
0 -0.04

Question 14: MDP

• What is U(s) after second round of value iteration,
with 𝛾 = 1?

𝑈!'(𝑠 = 𝑅 𝑠 + 𝛾max
&

5
)"

𝑃(𝑠"|𝑠, 𝑎)𝑈!(𝑠")

So if we start with 𝑈* 𝑠 = 0, then we have
𝑈(𝑠 = 𝑅(𝑠), and 𝑈+ 𝑠 as shown at right.

𝑅(𝑠) = −0.04 𝑅(𝑠) = −0.04
𝑅(𝑠) = −1 𝑅(𝑠) = 1
𝑅(𝑠) = 0 𝑅(𝑠) = −0.04

𝑈/ 𝑠 = −0.08 𝑈/ 𝑠 = 0.752
𝑈/ 𝑠 = −1 𝑈/ 𝑠 = 1

𝑈/ 𝑠 = −0.032 𝑈/ 𝑠 = 0.752

Question 14: MDP

• After how many rounds of value iteration is
U(s)>0, for the first time, in the starting state?

𝑈!'(𝑠 = 𝑅 𝑠 + 𝛾max
&

5
)"

𝑃(𝑠"|𝑠, 𝑎)𝑈!(𝑠")

𝑈(𝑠 = 𝑅(𝑠). 𝑈+ 𝑠 takes into account rewards
that can be earned after taking up to one step. In
general, 𝑈! 𝑠 takes into account rewards that can
be earned after taking up to t-1 steps. The R(s)=1
square is t-1=2 steps away from the start state, so
𝑈! 𝑠 will be able to count that reward on iteration
number t=3.

𝑅(𝑠) = −0.04 𝑅(𝑠) = −0.04
𝑅(𝑠) = −1 𝑅(𝑠) = 1
𝑅(𝑠) = 0 𝑅(𝑠) = −0.04

𝑈/ 𝑠 = −0.08 𝑈/ 𝑠 = 0.752
𝑈/ 𝑠 = −1 𝑈/ 𝑠 = 1

𝑈/ 𝑠 = −0.032 𝑈/ 𝑠 = 0.752

Outline: Exam 3 will be multiple-choice, on
prairielearn, including 24 problems
• 4 problems: Midterm 1 material
• 4 problems: Midterm 2 material
• 4-5 problems: minimax, alpha-beta, expectiminimax
• 3-4 problems: game theory
• 5-7 problems: MDP, reinforcement learning
• 1 problem: AI fairness (definitions of fairness; causal graphs)
• 1 problem: computer vision (similar triangles; convolution)

