
CS 440/ECE448 Lecture 23:
Model-Based Reinforcement

Learning
Mark Hasegawa-Johnson, 4/2021

Including slides by Svetlana Lazebnik, 11/2016
CC-BY 4.0: Re-use at will, but please cite the source.

By Nicolas P. Rougier - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=29327040

Reinforcement learning
• Solving a known MDP

• Given:
• Transition model 𝑃(𝑠’| 𝑠, 𝑎)
• Reward function 𝑅(𝑠)

• Find:
• Policy p(𝑠)

• Reinforcement learning
• Transition model and reward function initially unknown
• Still need to find the right policy
• “Learn by doing”

Reinforcement learning:
Basic scheme
In each time step:
• Take some action
• Observe the outcome of the action: successor state and reward
• Update some internal representation of the environment and policy
• If you reach a terminal state, just start over (each pass through the

environment is called a trial)

Model-Based and Model-Free RL

• Model-Based Reinforcement Learning:
• Explore randomly.
• At each state 𝑠, see what reward you get. Estimate 𝑅(𝑠) from these

measurements.
• At each state 𝑠, try some action 𝑎, and see what state 𝑠’ you end up in.

Estimate 𝑃(𝑠’|𝑠, 𝑎) from these measurements.
• Once you have learned 𝑃(𝑠’|𝑠, 𝑎) and 𝑅(𝑠) well enough, then solve the MDP

to find the optimal policy, 𝜋(𝑠).
• Model-Free Reinforcement Learning:

• Learn a function 𝑄(𝑠, 𝑎) = quality of action 𝑎 in state 𝑠, or…
• Learn the best policy, 𝜋(𝑠), directly.
• Next lecture: more about how you might accomplish these things.

Example of model-based reinforcement
learning: Playing classic Atari video games

Model-Based Reinforcement Learning
for Atari (Kaiser, Babaeizadeh, Milos, Osinski, Campbell,
Czechowski, Erhan, Finn, Kozakowski, Levine, Mohiuddin,
Sepassi, Tucker, and Michalewski)

• Blog and videos:
https://sites.google.com/view/model
basedrlatari/home

• Article:
https://arxiv.org/abs/1903.00374

Screenshot of the video game “Freeway,” copyright
Activision. Reproduced here under the terms of fair use
enumerated at
https://en.wikipedia.org/w/index.php?curid=56419703

https://sites.google.com/view/modelbasedrlatari/home
https://arxiv.org/abs/1903.00374

Example of model-based reinforcement
learning: Theseus the Mouse

In 1950, Claude Shannon built a robot
mouse named Theseus. As he explored
his maze, Theseus learned:
• 𝑠 = Position in the maze
• 𝑎 = Forward, Left, Right, Back
• 𝑃 𝑠’ 𝑠, 𝑎 = 1 if the movement from 𝑠

to 𝑠’ succeeds, otherwise 0
• 𝑅 𝑠 = 1 when Theseus reaches the

end of the maze, 0 otherwise

Claude Shannon and Theseus the Mouse. Public
domain image, Bell Labs.

For more information about Theseus, and for a great
introduction to the goals of reinforcement learning in

general (and the problem of exploration versus
exploitation), I recommend this video.

https://techchannel.att.com/playvideo/2010/03/16/In-Their-Own-Words-Claude-Shannon-Demonstrates-Machine-Learning

Outline
• Reinforcement learning

• Model-based: learn 𝑃(𝑠’|𝑠, 𝑎) and 𝑅(𝑠), then solve the MDP.
• Model-free: learn 𝜋(𝑠) and/or 𝑄(𝑠, 𝑎).

• The observation, model, policy loop
• How it works: observe at random, estimate model, optimize policy
• How it can fail: an example

• Exploration versus Exploitation
• Epsilon-first learning: try every action, in every state, at least 𝜖 times.
• Epsilon-greedy learning: explore w/prob. 𝜖, exploit w/prob 1 − 𝜖.

Outline
• Reinforcement learning

• Model-based: learn 𝑃(𝑠’|𝑠, 𝑎) and 𝑅(𝑠), then solve the MDP.
• Model-free: learn 𝜋(𝑠) and/or 𝑄(𝑠, 𝑎).

• The observation, model, policy loop
• How it works: observe at random, estimate model, optimize policy
• How it can fail: an example

• Exploration versus Exploitation
• Epsilon-first learning: try every action, in every state, at least 𝜖 times.
• Epsilon-greedy learning: explore w/prob. 𝜖, exploit w/prob 1 − 𝜖.

The observation-model-policy loop
Basic idea:
1. Observation: Follow some initial policy, to guide your actions.
2. Model: Try to learn 𝑃(𝑠’|𝑠, 𝑎) and 𝑅(𝑠).
3. Policy: Use your estimated 𝑃(𝑠’|𝑠, 𝑎) and 𝑅(𝑠) to decide on a new policy, and

repeat.

1. Observation: Follow some initial policy, and
keep a record of what happens

Enter the maze…
A view from

inside a corn
maze near

Christchurch,
New Zealand

By Hugho226 -
Own work, CC0,

https://commons.
wikimedia.org/w/
index.php?curid=

30724285

2. Model: Try to learn P(s’|s,a) and R(s)

Enter the maze…
A view from

inside a corn
maze near

Christchurch,
New Zealand

By Hugho226 -
Own work, CC0,

https://commons.
wikimedia.org/w/
index.php?curid=

30724285

…update your map as you go…

By Philip Mitchell -
http://www.dwarvenforge.com/dwarvenforums/viewtopic.php?pid=15595#p15595, CC
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1913429

3. Policy: Solve the MDP to find a new policy
…and figure out what to do.

By Edward Burne-Jones - lgFxdQtUgyzs7Q at Google Cultural Institute,
zoom level maximum, Public Domain,

https://commons.wikimedia.org/w/index.php?curid=29661124

…update your map as you go…

By Philip Mitchell -
http://www.dwarvenforge.com/dwarvenforums/viewtopic.php?pid=15595#p15595, CC
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1913429

1. Follow some initial policy, to guide your actions

By Hugho226 - Own work,
CC0,

https://commons.wikimedi
a.org/w/index.php?curid=3

0724285

For 𝑡 = 1 to 𝑛 (for some sufficiently large value of 𝑛):
• Observe: find out what is your current state (s).
• Act: use your current policy to choose an action (a).
• Observe: see what state you move to (s’).
• Observe: see what reward you receive (R).
If you finish the game within this many steps, start over,
until you reach your desired 𝑛.
Keep a record of your (𝑠, 𝑎, 𝑠’, 𝑅) tuples. These are now
your training database:

𝒟 = 𝑠!, 𝑎!, 𝑠!" , 𝑅! , 𝑠#, 𝑎#, 𝑠#" , 𝑅# , … , (𝑠$, 𝑎$, 𝑠$" , 𝑅$)

2. Try to learn P(s’|s,a) and R(s)

By Philip Mitchell -
http://www.dwarvenforge.com/dwa
rvenforums/viewtopic.php?pid=1559

5#p15595, CC BY-SA 3.0

Just like Bayesian networks! Use maximum likelihood
parameter learning, possibly also with Laplace smoothing.

𝑃 𝑠" 𝑠, 𝑎 =
times that action 𝑎 in state 𝑠 led to state 𝑠′
times action 𝑎 was performed in state 𝑠

𝑅 𝑠 = 𝑅 that was received when you were in state 𝑠

If 𝑠 or 𝑎 are continuous-valued, you’ll have to estimate
these using a neural network or some other parametric
model.

3. Update your policy

By Edward Burne-Jones -
lgFxdQtUgyzs7Q at Google

Cultural Institute, zoom level
maximum, Public Domain,

https://commons.wikimedia.org
/w/index.php?curid=29661124

𝑈 𝑠 = 𝑅 𝑠 + 𝛾max
%
H
&"

𝑃 𝑠" 𝑠, 𝑎 𝑈(𝑠")

As you know from last lecture, you’ll have to use value
iteration or policy iteration to solve for 𝜋(𝑠) given
𝑃(𝑠’|𝑠, 𝑎) and 𝑅(𝑠).

Model-based reinforcement learning
Basic idea:
1. Observation: Follow some initial policy, to guide your actions.
2. Model: Try to learn P(s’|s,a) and R(s).
3. Policy: Use your estimated P(s’|s,a) and R(s) to decide on a new policy, and repeat.

Why does this fail?

Observe-Model-Policy loop

Suppose we know the states (A,
B, C, …) and the actions (Right,
Left, Up, Down), but we don’t
know rewards or transition
probabilities.

A B C

D E F

G H I

J K L

Observe

Start with some initial policy,
e.g., “choose a direction at
random.”

A B C

D E F

G H I

J K L

Observe

Record the sequence of actions
and consequences. A B C

D E F

G H I

J K L

s a s’ R
A Right B -0.04
B Down E -0.04
E Left D -0.04
D Right E 1

Model
Estimate the transitions & rewards.

A B C

D E F

G H I

J K L

s R(s)
A -0.04
B -0.04
D 1
E -0.04

Else ?

s,a s’ P(s’|s,a)
A,Right B 1.0
A,Right * 0
B,Down E 1.0
B,Down * 0
D,Left E 1.0
D,Left * 0
E,Right D 1.0
E,Right * 0

Else * ?

Policy
Use value iteration or policy iteration to find the new optimal policy.

A B C

D E F

G H I

J K L

𝑠 𝝅(𝑠)
A Right
B Down
D Left
E Right

Else ?

What went wrong?

• If you always act according to your current estimated
optimal policy, then you will never learn the consequences
of any other action.
• On the other hand, if you always act randomly, then you’ll

never maximize reward.
• How can we balance these things?

Outline
• Reinforcement learning

• Model-based: learn 𝑃(𝑠’|𝑠, 𝑎) and 𝑅(𝑠), then solve the MDP.
• Model-free: learn 𝜋(𝑠) and/or 𝑄(𝑠, 𝑎).

• The observation, model, policy loop
• How it works: observe at random, estimate model, optimize policy
• How it can fail: an example

• Exploration versus Exploitation
• Epsilon-first learning: try every action, in every state, at least 𝜖 times.
• Epsilon-greedy learning: explore w/prob. 𝜖, exploit w/prob 1 − 𝜖.

How did Theseus solve this problem?

• If you’re in state 𝑠, and there’s an
action, 𝑎, that you’ve never taken
before while in this state, then
take it.
• If you’ve already taken all possible

actions from this state, then
choose the best one.
• Continue re-estimating the model

after every action. If transition
probabilities change, compute a
better policy.

Claude Shannon and Theseus the Mouse. Public
domain image, Bell Labs.

Extending Theseus to stochastic
environments: the epsilon-first strategy
• If you have tried (state,action)

combination less than 𝜖 times,
then try it.
• Choose 𝜖 so that your estimate of
𝑃(𝑠’|𝑠, 𝑎) will have some desired
precision, e.g., 𝜖 = 10 gives
precision of 0.1.
• Continue re-estimating the model

after every action. If transition
probabilities change, compute a
better policy.

Claude Shannon and Theseus the Mouse. Public
domain image, Bell Labs.

Advantages and disadvantages of the epsilon-
first strategy
Advantages:
• After you’ve finished estimating

the model, then you get to
concentrate on maximizing
reward.

Disadvantage:
• Your understanding of disfavored

actions will never improve,
because you’ll stop using them.

Claude Shannon and Theseus the Mouse. Public
domain image, Bell Labs.

Exploration vs. Exploitation
• Exploration: take a new action with unknown consequences

• Pros:
• Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far

• Cons:
• When you’re exploring, you’re not maximizing your utility
• Something bad might happen

• Exploitation: go with the best strategy found so far
• Pros:

• Maximize reward as reflected in the current utility estimates
• Avoid bad stuff

• Cons:
• Might also prevent you from discovering the true optimal strategy

“Search represents a core feature of cognition:”
Exploration versus exploitation in space, mind, and society.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410143/

How to trade off exploration vs. exploitation
Epsilon-first strategy: when you reach state 𝑠, check how many times
you’ve tested each of its available actions.

• Explore for the first 𝝐 trials: If the least-explored action has been tested fewer
than ϵ times, then perform that action (ϵ is an integer).

• Exploit thereafter: Once you’ve finished exploring, start exploiting (work to
maximize your personal utility).

Epsilon-greedy strategy: in every state, every time, forever,
• Explore with probability 𝟎 < 𝝐 < 𝟏: choose any action, uniformly at random.
• Exploit with probability (𝟏 − 𝝐): choose the action with the highest expected

utility, according to your current estimates.
• Guarantee: 𝑃(𝑠’|𝑠, 𝑎) converges to its true value as #trials → ∞.

Outline
• Reinforcement learning

• Model-based: learn 𝑃(𝑠’|𝑠, 𝑎) and 𝑅(𝑠), then solve the MDP.
• Model-free: learn 𝜋(𝑠) and/or 𝑄(𝑠, 𝑎).

• The observation, model, policy loop
• How it works: observe at random, estimate model, optimize policy
• How it can fail: an example

• Exploration versus Exploitation
• Epsilon-first learning: try every action, in every state, at least 𝜖 times.
• Epsilon-greedy learning: explore w/prob. 𝜖, exploit w/prob 1 − 𝜖.

