CS 440/ECE448 Lecture 23:
Model-Based Reinforcement
Learning

Mark Hasegawa-Johnson, 4/2021
Including slides by Svetlana Lazebnik, 11/2016
CC-BY 4.0: Re-use at will, but please cite the source.

By Nicolas P. Rougier - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=29327040

Reinforcement learning

* Solving a known MDP
* Given:
* Transition model P(s’| s, a)
* Reward function R(s)

* Find:
* Policy t(s)

* Reinforcement learning
* Transition model and reward function initially unknown
* Still need to find the right policy
* “Learn by doing”

Reinforcement learning:
Basic scheme

In each time step:

* Take some action
* Observe the outcome of the action: successor state and reward

* Update some internal representation of the environment and policy

* If you reach a terminal state, just start over (each pass through the
environment is called a trial)

Model-Based and Model-Free RL

* Model-Based Reinforcement Learning:

* Explore randomly.

* At each state s, see what reward you get. Estimate R(s) from these
measurements.

* At each state s, try some action a, and see what state s’ you end up in.
Estimate P(s’|s, a) from these measurements.

* Once you have learned P(s’|s,a) and R(s) well enough, then solve the MDP
to find the optimal policy, m(s).
* Model-Free Reinforcement Learning:
 Learn a function Q (s, a) = quality of action a in state s, or...
* Learn the best policy, m(s), directly.
* Next lecture: more about how you might accomplish these things.

Example of model-based reinforcement
learning: Playing classic Atari video games

Screenshot of the video game “Freeway,” copyright
Activision. Reproduced here under the terms of fair use

enumerated at
https://en.wikipedia.org/w/index.php?curid=56419703

Model-Based Reinforcement Learning

for Atari (Kaiser, Babaeizadeh, Milos, Osinski, Campbell,

Czechowski, Erhan, Finn, Kozakowski, Levine, Mohiuddin,
Sepassi, Tucker, and Michalewski)

Blog and videos:
https://sites.google.com/view/model

basedrlatari/home

Article:
https://arxiv.org/abs/1903.00374

https://sites.google.com/view/modelbasedrlatari/home
https://arxiv.org/abs/1903.00374

Example of model-based reinforcement
learning: Theseus the Mouse

In 1950, Claude Shannon built a robot
mouse named Theseus. As he explored
his maze, Theseus learned:

e s = Position in the maze
* a = Forward, Left, Right, Back

e P(s’|s,a) = 1 if the movement from s ‘ —
: Claude Sh d Theseus the Mouse. Publi
to s’ succeeds, otherwise 0 PHEe AR on 2 imag;egse“ U e TR

° =
R (S) 1 When Theseus reaches the For more information about Theseus, and for a great

end of the Mmaze, O otherwise introduction to the goals of reinforcement learning in
general (and the problem of exploration versus

exploitation), | recommend this video.

https://techchannel.att.com/playvideo/2010/03/16/In-Their-Own-Words-Claude-Shannon-Demonstrates-Machine-Learning

Outline

* Reinforcement learning
* Model-based: learn P(s’|s,a) and R(s), then solve the MDP.
* Model-free: learn m(s) and/or Q(s, a).

* The observation, model, policy loop
* How it works: observe at random, estimate model, optimize policy
* How it can fail: an example

* Exploration versus Exploitation
* Epsilon-first learning: try every action, in every state, at least € times.
* Epsilon-greedy learning: explore w/prob. €, exploit w/prob 1 — €.

Outline

* The observation, model, policy loop
* How it works: observe at random, estimate model, optimize policy
* How it can fail: an example

* Exploration versus Exploitation
* Epsilon-first learning: try every action, in every state, at least € times.
* Epsilon-greedy learning: explore w/prob. €, exploit w/prob 1 — €.

The observation-model-policy loop

Basic idea:
1. Observation: Follow some initial policy, to guide your actions.
2. Model: Try to learn P(s’|s,a) and R(s).

3. Policy: Use your estimated P(s’|s,a) and R(s) to decide on a new policy, and
repeat.

1. Observation: Follow some initial policy, and

keep a record of what happens
Enter the maze...

A view from
inside a corn
maze near §
Christchurch, &
New Zealand }

By Hugho226 -
Own work, CCO,
https://commons.
wikimedia.org/w/
index.php?curid=
30724285

2. Model: Try to learn P(s’|s,a) and R(s)

A view from
inside a corn
maze near
Christchurch,
New Zealand

By Hugho226 -
Own work, CCO,
https://commons.
wikimedia.org/w/
index.php?curid=
30724285

jEnterthe maze...

By Philip Mitchell -
http://www.dwarvenforge.com/dwarvenforums/viewtopic.php?pid=15595#p 15595, CC
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1913429

3. Policy: Solve the MDP to find a new policy

..update your map as you

g

By Edward Burne-Jones - IgFxdQtUgyzs7Q at Google Cultural Institute, By Philip Mitchell -
zoom level maximum, Public Domain, http://www.dwarvenforge.com/dwarvenforums/viewtopic.php?pid=15595#p15595, CC
https://commons.wikimedia.org/w/index.php?curid=29661124 BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1913429

1. Follow some initial policy, to guide your actions

For t = 1 to n (for some sufficiently large value of n):
e Observe: find out what is your current state (s).
 Act: use your current policy to choose an action (a).
| * Observe: see what state you move to (s’).

sy Hugho22s-ownvor. o Observe: see what reward you receive (R).

CCo,

https://commons.wikimedi

sorg/windexphprcurid= If you finish the game within this many steps, start over,
until you reach your desired n.

Keep a record of your (s,a,s’, R) tuples. These are now
your training database:

D = {(s1,a1,51,R1), (52,a2,52,R), ..., (Sp, An, Sp, Ry) }

2. Try to learn P(s’|s,a) and R(s)

Just like Bayesian networks! Use maximum likelihood
parameter learning, possibly also with Laplace smoothing. o Philp Miehel .

http://www.dwarvenforge.com/dwa
rvenforums/viewtopic.php?pid=1559
5#p15595, CC BY-SA 3.0

, # times that action a in state s led to state s’
P(s'|s,a) =

times action a was performed in state s

R(s) = R that was received when you were in state s

If s or a are continuous-valued, you’ll have to estimate

these using a neural network or some other parametric
model.

3. Up

|

date your policy

| * U(s) = R(s) + y max E P(s'|s,a)U(s")
= N a
S/

As you know from last lecture, you’ll have to use value

(gPxdQtUgyzs7Q at Google iteration or policy iteration to solve for (s) given
Cultural Institute, zoom level)
maximum, Public Domain, P(S |S' a) and R(S).

https://commons.wikimedia.org
/w/index.php?curid=29661124

Model-based reinforcement learning

Basic idea:

1. Observation: Follow some initial policy, to guide your actions.

2. Model: Try to learn P(s’|s,a) and R(s).

3. Policy: Use your estimated P(s’|s,a) and R(s) to decide on a new policy, and repeat.

Why does this fail?

Observe-Model-Policy loop

Suppose we know the states (A,
B, C, ...) and the actions (Right,
Left, Up, Down), but we don’t
know rewards or transition
probabilities.

Observe

Start with some initial policy,
e.g., “choose a direction at
random.”

Observe

Record the sequence of actions
and consequences.

A Right B -0.04
B Down E -0.04
E Left D -0.04
D Right E 1

Model

Estimate the transitions & rewards.

A -004 ARight
B -0.04 ARight * 0

D 1 B,Down E 1.0
E -0.04 B,Down * 0
Else ¥ D,Left E 1.0
D,Left * 0
ERight D 1.0
E,Right * 0

Else & ?

Policy

Use value iteration or policy iteration to find the new optimal policy.

What went wrong?

* If you always act according to your current estimated
optimal policy, then you will never learn the consequences
of any other action.

* On the other hand, if you always act randomly, then you’ll
never maximize reward.

* How can we balance these things?

Outline

* Exploration versus Exploitation
* Epsilon-first learning: try every action, in every state, at least € times.
* Epsilon-greedy learning: explore w/prob. €, exploit w/prob 1 — €.

How did Theseus solve this problem?

* |f you're in state s, and there’s an
action, a, that you’ve never taken
before while in this state, then
take it.

* |f you’ve already taken all possible
actions from this state, then 3
choose the best one. : -

° Continue re—estimating the mode| Claude Shannon and Theseus the Mouse. Public
: " domain image, Bell Labs.
after every action. If transition Omain Image, beflLabs
probabilities change, compute a
better policy.

Extending Theseus to stochastic
environments: the epsilon-first strategy

* If you have tried (state,action)
combination less than € times,

then try it.

* Choose € so that your estimate of
P(s’|s, a) will have some desired
precision, e.g., € = 10 gives
precision of 0.1.

* Continue re-estimating the model
after every action. If transition
probabilities change, compute a
better policy.

Claude Shannon and Theseus the Mouse. Public
domain image, Bell Labs.

Advantages and disadvantages of the epsilon-

first strategy

Advantages:

 After you've finished estimating
the model, then you get to
concentrate on maximizing
reward.

Disadvantage:

* Your understanding of disfavored
actions will never improve,
because you’ll stop using them.

Claude Shannon and Theseus the Mouse. Public

domain image, Bell Labs.

Exploration vs. Exploitation

* Exploration: take a new action with unknown consequences

* Pros:

* Get a more accurate model of the environment

* Discover higher-reward states than the ones found so far
* Cons:

* When you’re exploring, you’re not maximizing your utility
* Something bad might happen

 Exploitation: go with the best strategy found so far

* Pros:

* Maximize reward as reflected in the current utility estimates
* Avoid bad stuff

* Cons:
* Might also prevent you from discovering the true optimal strategy

“Search represents a core feature of cognition:”
Exploration versus exploitation in space, mind, and society.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410143/

How to trade off exploration vs. exploitation

Epsilon-first strategy: when you reach state s, check how many times
you’'ve tested each of its available actions.

» Explore for the first € trials: If the least-explored action has been tested fewer
than € times, then perform that action (€ is an integer).

» Exploit thereafter: Once you’ve finished exploring, start exploiting (work to
maximize your personal utility).

Epsilon-greedy strategy: in every state, every time, forever,
* Explore with probability 0 < € < 1: choose any action, uniformly at random.

» Exploit with probability (1 — €): choose the action with the highest expected
utility, according to your current estimates.

* Guarantee: P(s’|s, a) converges to its true value as #trials = oo,

Outline

* Reinforcement learning
* Model-based: learn P(s’|s,a) and R(s), then solve the MDP.
* Model-free: learn m(s) and/or Q(s, a).

* The observation, model, policy loop
* How it works: observe at random, estimate model, optimize policy
* How it can fail: an example

* Exploration versus Exploitation
* Epsilon-first learning: try every action, in every state, at least € times.
* Epsilon-greedy learning: explore w/prob. €, exploit w/prob 1 — €.

