
CS440/ECE448 Lecture 19:
Alpha-Beta and Expectiminimax

Mark Hasegawa-Johnson, 4/2021

Including slides by Svetlana Lazebnik, 2/2017
CC-BY-4.0: feel free to copy if you cite the source

A contemporary backgammon set. Public domain photo by
Manuel Hegner, 2013,

https://commons.wikimedia.org/w/index.php?curid=25006945

Alpha-beta pruning.
Jex9999, GFDL, 2007

https://commons.wikimedia.org/wiki/File:AB_pruning.svg

Outline

• Alpha-beta pruning
• alpha (𝛼) is the highest score that MAX knows how to force MIN to accept
• beta (𝛽) is the lowest score the MIN knows how to force MAX to accept
• With optimum move ordering, computational complexity is 𝑂{𝑛!/#}

• Expectiminimax: Minimax search for games of chance
• Besides MIN and MAX, there’s one more player: CHANCE
• The value of a CHANCE node is the expected value of its daughters
• Number of levels is doubled, branching factor is large

Minimax Search

• Minimax(node) =
§ Utility(node) if node is terminal
§ maxaction Minimax(Succ(node, action)) if player = MAX
§ minaction Minimax(Succ(node, action)) if player = MIN

3 2 2

3

Computational complexity of minimax

• Suppose that, at each game state, there are n possible moves
• Suppose we search to a depth of d
• Then the computational complexity is 𝑂{𝑛!}!

Basic idea of alpha-beta pruning

• Computational complexity of minimax is 𝑂{𝑛!}
• There is no known algorithm to make it polynomial time
• But… can we reduce the exponent? For example, could we make the

complexity 𝑂{𝑛!/#}?
• If we could do that, then it would become possible to search twice as

far, using the same amount of computation. This could be the
difference between a beginner chess player vs. a grand master.

Basic idea of alpha-beta pruning

• The basic idea of alpha-beta pruning is to reduce the complexity of
minimax from 𝑂{𝑛!} to 𝑂{𝑛!/#}.
• We can do this by only evaluating half of the levels.
• How can we ”only evaluate half the levels” without any reduction of

accuracy?

Alpha-beta pruning
Why it works: It is possible to compute the exact minimax
decision without expanding every node in the game tree

Alpha-beta pruning
• It is possible to compute the exact minimax decision

without expanding every node in the game tree

3

³3

Alpha-beta pruning
• It is possible to compute the exact minimax decision

without expanding every node in the game tree

3

³3

£2

Alpha-beta pruning
• It is possible to compute the exact minimax decision

without expanding every node in the game tree

3

³3

£2 £14

Alpha-beta pruning
• It is possible to compute the exact minimax decision

without expanding every node in the game tree

3

³3

£2 £5

Alpha-beta pruning
• It is possible to compute the exact minimax decision

without expanding every node in the game tree

3

3

£2 2

The pruning thresholds, alpha and beta

Alpha-beta pruning requires us to keep track of two pruning thresholds,
alpha and beta.
• alpha (𝛼) is the highest score that MAX knows how to force MIN to

accept.
• beta (𝛽) is the lowest score that MIN knows how to force MAX to

accept.
• 𝛼 < 𝛽

Alpha-beta pruning
Why it works: It is possible to compute the exact minimax
decision without expanding every node in the game tree

𝛼 = −∞,
𝛽 = ∞

Alpha-beta pruning
Why it works: It is possible to compute the exact minimax
decision without expanding every node in the game tree

𝛼 = −∞,
𝛽 = ∞

𝛼 = −∞,
𝛽 = ∞

Alpha-beta pruning
• It is possible to compute the exact minimax decision

without expanding every node in the game tree

3 𝛼 = −∞,
𝛽 = 3

𝛼 = −∞,
𝛽 = ∞

Alpha-beta pruning
• It is possible to compute the exact minimax decision

without expanding every node in the game tree

3

³3

𝛼 = −∞,
𝛽 = 3

𝛼 = 3,
𝛽 = ∞

Alpha-beta pruning
• It is possible to compute the exact minimax decision

without expanding every node in the game tree

3

³3

£2

𝛼 = 3,
𝛽 = ∞

𝛼 = 3,
𝛽 = ∞

Alpha-beta pruning
• It is possible to compute the exact minimax decision

without expanding every node in the game tree

3

³3

£2

𝛼 = 3,
𝛽 = ∞

𝛼 = 3,
𝛽 = ∞

X

PRUNE!
• If MAX lets us get to this

state, then MIN would
achieve a final score <=2
• Therefore MAX will never

let us get to this state!
• Therefore there’s no need

to score the remaning
children of this node.

Alpha-beta pruning
• It is possible to compute the exact minimax decision

without expanding every node in the game tree

3

³3

£2

𝛼 = 3,
𝛽 = ∞

𝛼 = 3,
𝛽 = ∞

Alpha-beta pruning
• It is possible to compute the exact minimax decision

without expanding every node in the game tree

3

³3

£2

𝛼 = 3,
𝛽 = ∞

𝛼 = 3,
𝛽 = 14

Alpha-beta pruning
• It is possible to compute the exact minimax decision

without expanding every node in the game tree

3

³3

£2
𝛼 = 3,
𝛽 = 5

𝛼 = 3,
𝛽 = ∞

Alpha-beta pruning
• It is possible to compute the exact minimax decision

without expanding every node in the game tree

3

3

£2

𝛼 = 3,
𝛽 = ∞

𝛼 = 3,
𝛽 = 2

Violation of 𝛼 < 𝛽
means it is now possible
to prune any remaining
children of this node.

Outline

• Alpha-beta pruning
• alpha (𝛼) is the highest score that MAX knows how to force MIN to accept
• beta (𝛽) is the lowest score the MIN knows how to force MAX to accept
• With optimum move ordering, computational complexity is 𝑂{𝑛!/#}

• Expectiminimax: Minimax search for games of chance
• Besides MIN and MAX, there’s one more player: CHANCE
• The value of a CHANCE node is the expected value of its daughters
• Number of levels is doubled, branching factor is large

Computational complexity of alpha-beta
pruning
• The basic idea of alpha-beta pruning is to reduce the complexity of

minimax from 𝑂{𝑛!} to 𝑂{𝑛!/#}.
• That can be done with no loss of accuracy,
• … but only if the children of any given node are optimally ordered.

Optimal ordering

Minimum computational complexity (𝑂{𝑛!/#}) is only achieved if:

• The children of a MAX node are evaluated, in order, starting with the
highest-value child.
• The children of a MIN node are evaluated, in order, starting with the

lowest-value child.

Non-optimal ordering
In this tree, the moves are not optimally ordered, so we were only
able to prune two nodes.

X X

3

3

£2 2

Optimal ordering
In this tree, the moves ARE optimally ordered, so we are able to
prune four nodes (out of nine).

X X

3

3

£2

2 5 14

£2

X X

Optimal ordering
In this tree, the moves ARE optimally ordered, so we are able to
prune four nodes (out of nine).

X X

3

3

£2

2 5 14

£2

X X

Computational Complexity

Consider a sequence of two levels, with n moves per level, and with optimal
ordering.
• There are 𝑛! terminal nodes.
• Alpha-beta will evaluate all the daughters of the first daughter: 𝑛 nodes.
• Alpha-beta will also evaluate the first daughter of each non-first daughter:
𝑛 − 1 nodes.
• In total, alpha-beta will evaluate 2𝑛 − 1 out of every 𝑛! nodes.
• For a tree of depth d, the number of nodes evaluated by alpha-beta is

2𝑛 − 1 "/! = 𝑂{𝑛"/!}

2 5 14

X X X X

Computational Complexity

…but wait… this means we need to know, IN ADVANCE, which move has the
highest value, and which move has the lowest value!!

• Obviously, it is not possible to know the true value of a move without
evaluating it.
• However, heuristics often are pretty good.
• We use the heuristic to decide which move to evaluate first.
• For games like chess, with good heuristics, complexity of alpha-beta is closer

to 𝑂{𝑛"/!} than to 𝑂{𝑛"}.

2 5 14

X X X X

Alpha-beta pruning
• Pruning does not affect final result
• Amount of pruning depends on move ordering

• Should start with the “best” moves (highest-value for MAX or
lowest-value for MIN)

• For chess, can try captures first, then threats, then forward
moves, then backward moves

• Can also try to remember “killer moves” from other branches
of the tree

• With perfect ordering, the time to find the best move is
reduced to O(bm/2) from O(bm)
• Depth of search is effectively doubled

Outline

• Alpha-beta pruning
• alpha (𝛼) is the highest score that MAX knows how to force MIN to accept
• beta (𝛽) is the lowest score the MIN knows how to force MAX to accept
• With optimum move ordering, computational complexity is 𝑂{𝑛!/#}

• Expectiminimax: Minimax search for games of chance
• Besides MIN and MAX, there’s one more player: CHANCE
• The value of a CHANCE node is the expected value of its daughters
• Number of levels is doubled, branching factor is large

Stochastic games

How can we incorporate dice throwing into the game
tree?

Minimax
State evolves deterministically (when a player
acts, that action uniquely determines the
following state).

Current state is visible to both players.

Each player tries to maximize his or her own
reward:

• Maximize (over all possible moves I can
make) the

• Minimum (over all possible moves Min can
make) of the resulting utility:

𝑈 𝑠 = max
$%∈'($)

𝑈(𝑠%)

𝑈 𝑠′ = min
$%%∈'($%)

𝑈(𝑠%%)

Expectiminimax
State evolves stochastically (when a player
acts, the game changes RANDOMLY, with a
probability distribution 𝑃 𝑠% 𝑠, 𝑎 that depends
on the action, 𝑎).

Current state, 𝑠, is visible to the player.

The player tries to maximize his or her own
reward:

• Maximize (over all possible moves I can
make) the

• Expected value (over all possible successor
states) of the resulting utility:

𝑄 𝑠, 𝑎 = =
$%

𝑃 𝑠% 𝑠, 𝑎 𝑈(𝑠%)

Expectiminimax
State evolves stochastically (when a player acts, that
action influences the state transition probability).

Current state is visible to both players.

Each player tries to maximize his or her own reward:

• Maximize (over all possible moves I can make) the

• Minimum (over all possible moves Min can make) of the

• Expected value (over all possible successor states) of the
resulting utility:

𝑈 𝑠 = max
*

=
$%

𝑃 𝑠% 𝑠, 𝑎 𝑈(𝑠%)

𝑈 𝑠′ = min
*%

=
$%%

𝑃 𝑠%% 𝑠′, 𝑎′ 𝑈(𝑠%%)

Expectiminimax: notation
= MAX node. 𝑈 𝑠 = max

*∈+($)
𝑄(𝑠, 𝑎)

= MIN node. 𝑈 𝑠 = min
*∈+($)

𝑄(𝑠, 𝑎)

= Chance node. 𝑄 𝑠, 𝑎 = ∑$%𝑃 𝑠% 𝑠, 𝑎 𝑈(𝑠%)

Expectiminimax example
• MIN: Min decides whether to count

heads (action H) or tails (action T) as a
forward movement.

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

H

Expectiminimax example
• MIN: Min decides whether to count

heads (action H) or tails (action T) as a
forward movement.

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

H

Expectiminimax example
• MIN: Min decides whether to count

heads (action H) or tails (action T) as a
forward movement.

• Chance: she flips a coin and moves her
game piece in the direction indicated.

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

By ICMA Photos - Coin
Toss, CC BY-SA 2.0,

https://commons.wikimed
ia.org/w/index.php?curid=

71147286

Expectiminimax example
• MIN: Min decides whether to count

heads (action H) or tails (action T) as a
forward movement.

• Chance: she flips a coin and moves her
game piece in the direction indicated.

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

By NJR ZA - Own work, CC
BY-SA 3.0,

https://commons.wikimed
ia.org/w/index.php?curid=

4228918

Expectiminimax example
• MIN: Min decides whether to count

heads (action H) or tails (action T) as a
forward movement.

• Chance: she flips a coin and moves her
game piece in the direction indicated.

• MAX: Max decides whether to count
heads (action H) or tails (action T) as a
forward movement.

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

H

By NJR ZA - Own work, CC
BY-SA 3.0,

https://commons.wikimed
ia.org/w/index.php?curid=

4228918

Expectiminimax example

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

By NJR ZA - Own work, CC
BY-SA 3.0,

https://commons.wikimed
ia.org/w/index.php?curid=

4228918

• MIN: Min decides whether to count
heads (action H) or tails (action T) as a
forward movement.

• Chance: she flips a coin and moves her
game piece in the direction indicated.

• MAX: Max decides whether to count
heads (action H) or tails (action T) as a
forward movement.

• Chance: he flips a coin and moves his
game piece in the direction indicated.

By NJR ZA - Own work, CC
BY-SA 3.0,

https://commons.wikimed
ia.org/w/index.php?curid=

4228918

Expectiminimax example

Emojis by Twitter, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=59974366.
$2 By Bureau of Engraving and Printing: U.S. Department of the Treasury - own scanned, Public

Domain, https://commons.wikimedia.org/w/index.php?curid=56299470

By NJR ZA - Own work, CC
BY-SA 3.0,

https://commons.wikimed
ia.org/w/index.php?curid=

4228918

By NJR ZA - Own work, CC
BY-SA 3.0,

https://commons.wikimed
ia.org/w/index.php?curid=

4228918

• MIN: Min decides whether to count
heads (action H) or tails (action T) as a
forward movement.

• Chance: she flips a coin and moves her
game piece in the direction indicated.

• MAX: Max decides whether to count
heads (action H) or tails (action T) as a
forward movement.

• Chance: he flips a coin and moves his
game piece in the direction indicated.

Reward: $2 to the winner, $0 for a draw.

Expectiminimax example
• MIN: Min decides whether to count

heads (action H) or tails (action T) as a
forward movement.

• Chance: she flips a coin and moves her
game piece in the direction indicated.

• MAX: Max decides whether to count
heads (action H) or tails (action T) as a
forward movement.

• Chance: he flips a coin and moves his
game piece in the direction indicated.

Reward: $2 to the winner, $0 for a draw. 0 -2 0 0 0 2 0 2 0 -2 0-2 2 2 0 -2

H

H

H

H

HHH

H

T

T T

TTTT

T H

Expectiminimax example

0 -2 0 0 0 2 0 2 0 -2 0-2 2 2 0 -2

-1 -1 1 1 1 1 -1 -1

H

H

H

H

HHH

H

T

T T

TTTT

T

Chance node:

𝑄 𝑠, 𝑎 = ∑$%𝑃 𝑠% 𝑠, 𝑎 𝑈(𝑠%)

H

Expectiminimax example

0 -2 0 0 0 2 0 2 0 -2 0-2 2 2 0 -2

-1 -1 1 1 1 1 -1 -1

-1 1 1 -1

H

H

H

H

HHH

H

T

T T

TTTT

T

Max node:

𝑈 𝑠 = max
&∈(($)

𝑄(𝑠, 𝑎)

H

Expectiminimax example

0 -2 0 0 0 2 0 2 0 -2 0-2 2 2 0 -2

-1 -1 1 1 1 1 -1 -1

-1 1 1 -1

0 0

H

H

H

H

HHH

H

T

T T

TTTT

T

Chance node:

𝑄 𝑠, 𝑎 = ∑$%𝑃 𝑠% 𝑠, 𝑎 𝑈(𝑠%)

H

Expectiminimax example

0 -2 0 0 0 2 0 2 0 -2 0-2 2 2 0 -2

-1 -1 1 1 1 1 -1 -1

-1 1 -1 1

0 0

H

H

H

H

HHH

H

T

T T

TTTT

T

Min node:

𝑈 𝑠 = min
&∈(($)

𝑄(𝑠, 𝑎)

H

Outline

• Alpha-beta pruning
• alpha (𝛼) is the highest score that MAX knows how to force MIN to accept
• beta (𝛽) is the lowest score the MIN knows how to force MAX to accept
• With optimum move ordering, computational complexity is 𝑂{𝑛!/#}

• Expectiminimax: Minimax search for games of chance
• Besides MIN and MAX, there’s one more player: CHANCE
• The value of a CHANCE node is the expected value of its daughters
• Number of levels is doubled, branching factor is large

Expectiminimax example #2

Emojis by Twitter, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=59974366.

By Kolby Kirk, CC BY 3.0,
https://commons.wikimedia.or
g/w/index.php?curid=3037476

• MIN: Min decides whether she’s going
to move 𝐷 − 3 or 3 − 𝐷 steps forward,
where 𝐷 is the roll of the dice.

• Chance: she rolls the dice and moves
her game piece in the direction
indicated.

• MAX: Max decides whether he’s going
to move 𝐷 − 3 or 3 − 𝐷 steps forward,
where 𝐷 is the roll of the dice.

• Chance: he rolls the dice and moves his
game piece in the direction indicated.

Reward: loser pays the winner a number
of dollars equal to the number of spaces
difference.

Expectiminimax example #2
• MIN: Min decides whether she’s going

to move 𝐷 − 3 or 3 − 𝐷 steps forward,
where 𝐷 is the roll of the dice.

• Chance: she rolls the dice and moves
her game piece in the direction
indicated.

• MAX: Max decides whether he’s going
to move 𝐷 − 3 or 3 − 𝐷 steps forward,
where 𝐷 is the roll of the dice.

• Chance: he rolls the dice and moves his
game piece in the direction indicated.

Reward: loser pays the winner a number
of dollars equal to the number of spaces
difference.

3 − 𝐷

…2

𝐷 − 3

1 1
…… …… ……

3 4 5 6 …
…

…

Outline

• Alpha-beta pruning
• alpha (𝛼) is the highest score that MAX knows how to force MIN to accept
• beta (𝛽) is the lowest score the MIN knows how to force MAX to accept
• With optimum move ordering, computational complexity is 𝑂{𝑛!/#}

• Expectiminimax: Minimax search for games of chance
• Besides MIN and MAX, there’s one more player: CHANCE
• The value of a CHANCE node is the expected value of its daughters
• Number of levels is doubled, branching factor is large

