CS440/ECE448 Lecture 19:
Alpha-Beta and Expectiminimax

Mark Hasegawa-Johnson, 4/2021
Including slides by Svetlana Lazebnik, 2/2017
CC-BY-4.0: feel free to copy if you cite the source

6]
(3) ® (5)
6] 7] [s] (8]
5 @ 0@ OO @®
5](6(7](4][5] [3][e][e](o][7][5] [2][&][6]

Alpha-beta pruning.
Jex9999, GFDL, 2007
https://commons.wikimedia.org/wiki/File:AB_pruning.svg

MAX

MIN

MAX

MIN

MAX

A contemporary backgammon set. Public domain photo by
Manuel Hegner, 2013,
https://commons.wikimedia.org/w/index.php?curid=25006945

Outline

* Alpha-beta pruning
* alpha (a) is the highest score that MAX knows how to force MIN to accept
* beta (f) is the lowest score the MIN knows how to force MAX to accept
e With optimum move ordering, computational complexity is O{nd/z}

* Expectiminimax: Minimax search for games of chance
* Besides MIN and MAX, there’s one more player: CHANCE
* The value of a CHANCE node is the expected value of its daughters
 Number of levels is doubled, branching factor is large

Minimax Search

MAX

MIN

3 12 8 2 4 6 14 S 2

* Minimax(node) =
= Utility(node) if node is terminal
" mMaX,.ion Minimax(Succ(node, action)) if player = MAX
" min,.i,, Minimax(Succ(node, action)) if player = MIN

Computational complexity of minimax

* Suppose that, at each game state, there are n possible moves
* Suppose we search to a depth of d
* Then the computational complexity is 0{n%}!

Basic idea of alpha-beta pruning

» Computational complexity of minimax is 0{n%}
* There is no known algorithm to make it polynomial time

 But... can we reduce the exponent? For example, could we make the
complexity 0{n%/?}?
* If we could do that, then it would become possible to search twice as

far, using the same amount of computation. This could be the
difference between a beginner chess player vs. a grand master.

Basic idea of alpha-beta pruning

* The basic idea of alpha-beta pruning is to reduce the complexity of
minimax from 0{n%} to 0{n%/?}.
* We can do this by only evaluating half of the levels.

* How can we “only evaluate half the levels” without any reduction of
accuracy?

Alpha-beta pruning
Why it works: It is possible to compute the exact minimax

decision without expanding every node in the game tree

MAX

MIN y

Alpha-beta pruning
* [t is possible to compute the exact minimax decision

without expanding every node in the game tree

MAX 23

MIN 3

Alpha-beta pruning

* [t is possible to compute the exact minimax decision
without expanding every node in the game tree

MAX 23

MIN 3 <2

Alpha-beta pruning

* [t is possible to compute the exact minimax decision
without expanding every node in the game tree

MAX 23

MIN 3 <2 <14

Alpha-beta pruning

* [t is possible to compute the exact minimax decision
without expanding every node in the game tree

MAX

MIN

Alpha-beta pruning

* [t is possible to compute the exact minimax decision
without expanding every node in the game tree

MAX

MIN

The pruning thresholds, alpha and beta

Alpha-beta pruning requires us to keep track of two pruning thresholds,
alpha and beta.

e alpha () is the highest score that MAX knows how to force MIN to
accept.

* beta () is the lowest score that MIN knows how to force MAX to
accept.

ca<f

Alpha-beta pruning
Why it works: It is possible to compute the exact minimax

decision without expanding every node in the game tree

MAX

MIN

Alpha-beta pruning
Why it works: It is possible to compute the exact minimax

decision without expanding every node in the game tree

MAX

MIN

Alpha-beta pruning
* [t is possible to compute the exact minimax decision

without expanding every node in the game tree

MAX

MIN

Alpha-beta pruning
* [t is possible to compute the exact minimax decision

without expanding every node in the game tree

MAX

MIN

Alpha-beta pruning

* [t is possible to compute the exact minimax decision
without expanding every node in the game tree

a =3,
MAX 23 — o
a =3,

Alpha-beta pruning

* [t is possible to compute the exact minimax decision
without expanding every node in the game tree

a =3,
MAX >3 _ o PRUNE!
* |f MAX lets us get to this
state, then MIN would
achieve a final score <=2

 Therefore MAX will never
let us get to this state!

* Therefore there’s no need
to score the remaning
children of this node.

MIN 3

Alpha-beta pruning

* [t is possible to compute the exact minimax decision
without expanding every node in the game tree

MAX

MIN

Alpha-beta pruning

* [t is possible to compute the exact minimax decision
without expanding every node in the game tree

MAX

MIN

Alpha-beta pruning

* [t is possible to compute the exact minimax decision
without expanding every node in the game tree

MAX

MIN

Alpha-beta pruning

* [t is possible to compute the exact minimax decision
without expanding every node in the game tree

Violationof a < f8
a =3, means it is now possible

A « to prune any remaining
children of this node.
a = 3,/
MIN 3

ﬁ:

Outline

e With optimum move ordering, computational complexity is O{nd/z}

* Expectiminimax: Minimax search for games of chance
* Besides MIN and MAX, there’s one more player: CHANCE
* The value of a CHANCE node is the expected value of its daughters
 Number of levels is doubled, branching factor is large

Computational complexity of alpha-beta

pruning

* The basic idea of alpha-beta pruning is to reduce the complexity of
minimax from 0{n%} to 0{n%/?}.

* That can be done with no loss of accuracy,

e ... but only if the children of any given node are optimally ordered.

Optimal ordering
Minimum computational complexity (0{n%/?}) is only achieved if:

* The children of a MAX node are evaluated, in order, starting with the
highest-value child.

* The children of a MIN node are evaluated, in order, starting with the
lowest-value child.

Non-optimal ordering

In this tree, the moves are not optimally ordered, so we were only
able to prune two nodes.

MAX

MIN

Optimal ordering

In this tree, the moves ARE optimally ordered, so we are able to
prune four nodes (out of nine).

MAX 3/\

MIN 3 \/ <2 \/ \/<2

Optimal ordering

In this tree, the moves ARE optimally ordered, so we are able to
prune four nodes (out of nine).

MAX 3/\

MIN 3 \/ <2 \/ \/<2

Computational Complexity

MIN

3 12 8 2 4 6 ’ 5 14

Consider a sequence of two levels, with n moves per level, and with optimal
ordering.

* There are n? terminal nodes.
* Alpha-beta will evaluate all the daughters of the first daughter: n nodes.

* Alpha-beta will also evaluate the first daughter of each non-first daughter:
n — 1 nodes.

* In total, alpha-beta will evaluate 2n — 1 out of every n? nodes.
* For a tree of depth d, the number of nodes evaluated by alpha-beta is

(2n —1)%2 = 0n%/%}

Computational Complexity

MIN

3 12 8 2 4 6 ’ 5 14

...but wait... this means we need to know, IN ADVANCE, which move has the
highest value, and which move has the lowest value!!

* Obviously, it is not possible to know the true value of a move without
evaluating it.

 However, heuristics often are pretty good.
e \We use the heuristic to decide which move to evaluate first.

* For games like chess, with good heuristics, complexity of alpha-beta is closer
to 0{n%/?} than to 0{n?}.

Alpha-beta pruning

* Pruning does not affect final result

 Amount of pruning depends on move ordering

* Should start with the “best” moves (highest-value for MAX or
lowest-value for MIN)

* For chess, can try captures first, then threats, then forward
moves, then backward moves

e Can also try to remember “killer moves” from other branches
of the tree

* With perfect ordering, the time to find the best move is
reduced to O(b™2) from O(b™)

* Depth of search is effectively doubled

Outline

* Expectiminimax: Minimax search for games of chance
* Besides MIN and MAX, there’s one more player: CHANCE
* The value of a CHANCE node is the expected value of its daughters
 Number of levels is doubled, branching factor is large

Stochastic games

How can we incorporate dice throwing into the game
tree?

Minimax

State evolves deterministically (when a player
acts, that action uniquely determines the
following state).

Current state is visible to both players.

Each player tries to maximize his or her own
reward:

* Maximize (over all possible moves | can
make) the

* Minimum (over all possible moves Min can
make) of the resulting utility:

U(s) = S{ggg{g) U(s")

U(s') = min U(s")

SIHec(sr)

Expectiminimax

State evolves stochastically (when a player
acts, the game changes RANDOMLY, with a
probability distribution P(s'|s, a) that depends
on the action, a).

Current state, s, is visible to the player.

The player tries to maximize his or her own
reward:

* Maximize (over all possible moves | can
make) the

* Expected value (over all possible successor
states) of the resulting utility:

Q(s,a) = z P(s'|s,a)U(s")

Expectiminimax

State evolves stochastically (when a player acts, that
action influences the state transition probability).

Current state is visible to both players.
Each player tries to maximize his or her own reward:
* Maximize (over all possible moves | can make) the

* Minimum (over all possible moves Min can make) of the

» Expected value (over all possible successor states) of the
resulting utility:

U(s) = mgxz P(s'|s,a)U(s")

U(s") = minz P(s"|s',a)U(s")
a’
S

Expectiminimax: notation
A = MAX node. U(s) = max Q(s,a)

acA(s)

v = MIN node. U(s) = min_Q(s,a)

acA(s)

’ = Chance node. Q(s,a) = X, P(s'|s,a)U(s")

Expectiminimax example

e MIN: Min decides whether to count
heads (action H) or tails (action T) as a
forward movement.

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

Expectiminimax example

e MIN: Min decides whether to count
heads (action H) or tails (action T) as a
forward movement.

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

Expectiminimax example

e MIN: Min decides whether to count
heads (action H) or tails (action T) as a
forward movement.

* Chance: she flips a coin and moves her
game piece in the direction indicated.

By ICMA Photos - Coin
Toss, CC BY-SA 2.0,
https://commons.wikimed
ia.org/w/index.php?curid=
71147286

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

Expectiminimax example

e MIN: Min decides whether to count
heads (action H) or tails (action T) as a
forward movement.

* Chance: she flips a coin and moves her
game piece in the direction indicated.

By NJR ZA - Own work, CC
BY-SA 3.0,
https://commons.wikimed
ia.org/w/index.php?curid=
4228918

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

Expectiminimax example

e MIN: Min decides whether to count
heads (action H) or tails (action T) as a
forward movement.

* Chance: she flips a coin and moves her
game piece in the direction indicated.

e MAX: Max decides whether to count
heads (action H) or tails (action T) as a
forward movement.

By NJR ZA - Own work, CC
BY-SA 3.0,
https://commons.wikimed
ia.org/w/index.php?curid=
4228918

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

Expectiminimax example

MIN: Min decides whether to count
heads (action H) or tails (action T) as a
forward movement.

* Chance: she flips a coin and moves her By NIR ZA - Own work, CC By NIR ZA - Own work, CC
. BY-SA 3.0, BY-SA 3.0,
game piece in the direction indicated. https://commons.wikimed https://commons.wikimed
ia.org/w/index.php?curid= ia.org/w/index.php?curid=
* MAX: Max decides whether to count 1228918 4228018

heads (action H) or tails (action T) as a
forward movement.

Chance: he flips a coin and moves his
game piece in the direction indicated. &

Emojis by Twitter, CC BY 4.0,
https://commons.wikimedia.org/w/index.php?curid=59974366

Expectiminimax example

MIN: Min decides whether to count
heads (action H) or tails (action T) as a
forward movement.

* Chance: she flips a coin and moves her By NIR ZA - Own work, CC By NIR ZA - Own work, CC
. BY-SA 3.0, BY-SA 3.0,
game piece in the direction indicated. https://commons.wikimed https://commons.wikimed
ia.org/w/index.php?curid= ia.org/w/index.php?curid=
* MAX: Max decides whether to count 1228918 4228018

heads (action H) or tails (action T) as a
forward movement.

Chance: he flips a coin and moves his
game piece in the direction indicated.

Reward: $2 to the winner, SO for a draw. A
PR

Emojis by Twitter, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=59974366.
$2 By Bureau of Engraving and Printing: U.S. Department of the Treasury - own scanned, Public
Domain, https://commons.wikimedia.org/w/index.php?curid=56299470

Expectiminimax example

e MIN: Min decides whether to count
heads (action H) or tails (action T) as a
forward movement.

* Chance: she flips a coin and moves her
game piece in the direction indicated.

e MAX: Max decides whether to count
heads (action H) or tails (action T) as a
forward movement.

* Chance: he flips a coin and moves his T/\H H
game piece in the direction indicated.

0-2-20200220020-2-20

Reward: S2 to the winner, SO for a draw.

Expectiminimax example

Chance node:

Q(s,a) =), P(s'|s,a)U(s")

T/\H

0-2-20200220020-2-20

Expectiminimax example

Max node:

U(s) = max, (s, a)

T/\H

0-2-20200220020-2-20

Expectiminimax example

Chance node:

Q(s,a) =), P(s'|s,a)U(s")

T/\H

0-2-20200220020-2-20

Expectiminimax example

Min node:

U(s) = min_Q(s,a)

acA(s)

T/\H
0-2-20200220020-2-20

Outline

 Number of levels is doubled, branching factor is large

Expectiminimax example #2

MIN: Min decides whether she’s going
to move D — 3 or 3 — D steps forward,
where D is the roll of the dice.

Chance: she rolls the dice and moves
her game piece in the direction
indicated.

MAX: Max decides whether he’s going
to move D — 3 or 3 — D steps forward,
where D is the roll of the dice.

Chance: he rolls the dice and moves his
game piece in the direction indicated.

Reward: loser pays the winner a number
of dollars equal to the number of spaces
difference.

By Kolby Kirk, CC BY 3.0,

https://commons.wikimedia.or
g/w/index.php?curid=3037476

Emojis by Twitter, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=59974366.

Expectiminimax example #2

* MIN: Min decides whether she’s going
to move D — 3 or 3 — D steps forward,
where D is the roll of the dice.

* Chance: she rolls the dice and moves
her game piece in the direction
indicated.

* MAX: Max decides whether he’s going
to move D — 3 or 3 — D steps forward,
where D is the roll of the dice.

* Chance: he rolls the dice and moves his
game piece in the direction indicated.

Reward: loser pays the winner a number
of dollars equal to the number of spaces
difference.

Outline

* Alpha-beta pruning
* alpha (a) is the highest score that MAX knows how to force MIN to accept
* beta (f) is the lowest score the MIN knows how to force MAX to accept
e With optimum move ordering, computational complexity is O{nd/z}

* Expectiminimax: Minimax search for games of chance
* Besides MIN and MAX, there’s one more player: CHANCE
* The value of a CHANCE node is the expected value of its daughters
 Number of levels is doubled, branching factor is large

