
CS440/ECE448 Lecture 18:
Two-Player Games

Slides by Mark Hasegawa-Johnson & Svetlana 
Lazebnik, 3/31/2021
Distributed under CC-BY 4.0 
(https://creativecommons.org/licenses/by/4.0/). You 
are free to share and/or adapt if you give attribution.

By Karl Gottlieb von Windisch - Copper engraving from the book: Karl Gottlieb von Windisch, 
Briefe über den Schachspieler des Hrn. von Kempelen, nebst drei Kupferstichen die diese
berühmte Maschine vorstellen. 1783.Original Uploader was Schaelss (talk) at 11:12, 7. Apr 
2004., Public Domain, https://commons.wikimedia.org/w/index.php?curid=424092

https://creativecommons.org/licenses/by/4.0/


Why study games?
• Games are a traditional hallmark of intelligence
• Games are easy to formalize
• Games can be a good model of real-world competitive 

or cooperative activities
• Military confrontations, negotiation, auctions, etc.



Games vs. single-agent search
• We don’t know how the opponent will act
• The solution is not a fixed sequence of actions from start 

state to goal state, but a strategy or policy

Definition of policy: a policy is a function 𝜋: 𝒮 → 𝒜 that 
maps from world states, s ∈ 𝒮, to actions, a ∈ 𝒜.



Game AI: Origins

• Minimax algorithm: Ernst Zermelo, 1912
• Chess playing with evaluation function, quiescence 

search, selective search: 
Claude Shannon, 1949 (paper)
• Alpha-beta search: John McCarthy, 1956 
• Checkers program that learns its own evaluation 

function by playing against itself: Arthur Samuel,  
1956

http://archive.computerhistory.org/projects/chess/related_materials/text/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon/2-0%20and%202-1.Programming_a_computer_for_playing_chess.shannon.062303002.pdf


Types of game environments
Deterministic Stochastic

Perfect
information
(fully observable)
Imperfect 
information
(partially 
observable)

Chess, Checkers, 
Go

Backgammon, 
Monopoly

Battleship Scrabble, 
Poker, 
Bridge



Zero-sum Games



Alternating two-player zero-sum games

• Players take turns
• Each game outcome or terminal state has a utility for each player 

(e.g., 1 for win, 0 for tie, -1 for loss)
• The sum of both players’ utilities is a constant, e.g.,

Utility(player 0) + Utility(player 1) = 0

• Player 0 tries to maximize Utility(player 0).  Let’s call this player “Max”
• Player 1 tries to minimize Utility(player 0). Let’s call this player “Min”



Game tree
• A game of tic-tac-toe between two players, “max” and “min”



http://xkcd.com/832/

http://xkcd.com/832/


A more abstract game tree

Terminal utilities (for MAX)

A depth-two game



Standard notation for game trees

= game state from which MAX can play
= game state from which MIN can play

number = value of that game state for MAX



Minimax Search



The rules of every game

• Every possible outcome has a value (or “utility”) for me.
• Zero-sum game: if the value to me is +V, then the value to my 

opponent is –V.
• Phrased another way:

• My rational action, on each move, is to choose a move that will 
maximize the value of the outcome

• My opponent’s rational action is to choose a move that will minimize 
the value of the outcome

• Call me “Max”
• Call my opponent “Min”

https://www.bing.com/images/search?q=cartoon+character+max&qpvt=cartoon+character+max
https://www.bing.com/images/search?q=cartoon+character+minnie&id=7B8D2A79A0325AB6D14097C87939B5864C09247F&FORM=IARRTH


Game tree search

• Minimax value of a node: the utility (for MAX) of being in the 
corresponding state, assuming perfect play on both sides

• Minimax strategy: Choose the move that gives the best worst-case payoff

3 2 2

3



Computing the minimax value of a node

• Minimax(node) = 
§ Utility(node) if node is terminal
§ maxaction Minimax(Succ(node, action)) if player = MAX
§ minaction Minimax(Succ(node, action)) if player = MIN

3 2 2

3



Optimality of minimax

• The minimax strategy is optimal against 
an optimal opponent

• What if your opponent is suboptimal?
• If you play using the minimax-optimal

sequence of moves, then the utility you
earn will always be greater than or
equal to the amount that you predict. 

11

Example from D. Klein and P. Abbeel



Multi-player games; Non-zero-sum games
• More than two players.  For example:
• Dog (🐶) tries to maximize the number of doggie treats
• Cat (🐱) tries to maximize the number of cat treats
• Mouse (🐭) tries to maximize the number of mouse treats 

• Non-zero-sum.  We can’t just assume that Min’s score is 
the opposite of Max’s.  Instead, utilities are now tuples.  
For example:
• (🐶5, 🐱8, 🐭2) = 5 doggie treats, 8 kitty treats, 2 mouse treats

• Each player maximizes their own utility at their node



Minimax in multi-player & non-zero-sum games

🐶

🐱 🐱

🐭 🐭 🐭 🐭

(🐶1, 
🐱2, 
🐭6) 

(🐶4, 
🐱3, 
🐭2) 

(🐶6, 
🐱1, 
🐭2) 

(🐶7, 
🐱4, 
🐭1) 

(🐶5, 
🐱1, 
🐭1) 

(🐶2, 
🐱5, 
🐭2) 

(🐶7, 
🐱7, 
🐭1) 

(🐶5, 
🐱4, 
🐭5) 

(🐶1, 
🐱2, 
🐭6) 

(🐶6, 
🐱1, 
🐭2) 

(🐶2, 
🐱5, 
🐭2) 

(🐶5, 
🐱4, 
🐭5) 

(🐶1, 
🐱2, 
🐭6) 

(🐶2, 
🐱5, 
🐭2) 

(🐶2, 🐱5, 🐭2) 



Limited-Horizon 
Computation



Games vs. single-agent search
• We don’t know how the opponent will act

• The solution is not a fixed sequence of actions from start state 
to goal state, but a strategy or policy (a mapping from state to 
best move in that state)



Games vs. single-agent search
• We don’t know how the opponent will act

• The solution is not a fixed sequence of actions from start state 
to goal state, but a strategy or policy (a mapping from state to 
best move in that state)

• Efficiency is critical to playing well
• The time to make a move is limited
• The branching factor, search depth, and number of terminal 

configurations are huge
• In chess, branching factor ≈ 35 and depth ≈ 100, giving a search tree of 

10154 nodes
• Number of atoms in the observable universe ≈ 1080

• This rules out searching all the way to the end of the game



Limited-Horizon Search

In a practical game, we compute minimax to a limited depth
• Depth=1: evaluate every possible current move, look at the resulting game 

state, decide which resulting game state looks the best, and take that 
action.  
• Computational complexity to choose your next move: 𝒪 𝑁 , if there are N possible 

moves.
• Depth=2: evaluate every possible current move, and every move that your

opponent might make in response, and then look at resulting game states.  
• Computational complexity to choose your next move: 𝒪 𝑁! .

• Depth=3: evaluate every possible sequence of three moves (mine, my
opponent’s, then mine), and look at the resulting game states.  
• Computational complexity to choose your next move: 𝒪 𝑁" .



Evaluation functions

In order to evaluate the quality of a game state s ∈ 𝒮, we need to 
design an evaluation function 𝑣(𝑠).  It should have the following 
properties:
• 𝑣(𝑠) should be a reasonable estimate of the outcome of the game, 

but
• It must be possible to compute 𝑣(𝑠) quickly, i.e., typically we desire

that its computational complexity is no more than 𝒪 𝑁 .  If its 
complexity was higher, then we might get better results by using a 
cheaper evaluation function in a deeper minimax search.



Example: 
Depth 1 
search, 
Chess

In chess, traditionally, the black 
player is MIN.
What move should MIN choose, 
from this board position?

Graphics: created by the PyChess community.
Game board shown: game1.txt from the MP5 distribution. 



Example: 
Depth 1 
search, 
Chess

𝑣 𝑠 = −4 𝑣 𝑠 = −4 𝑣 𝑠 = −4 𝑣 𝑠 = −5

In chess, traditionally, the black 
player is MIN.
Since one move has a final 
board value less than the 
others, MIN will choose that 
move (in a depth-1 search).



Example: 
Depth 2 
search, 
Chess

𝑣 𝑠 = −4 𝑣 𝑠 = −1

…

…

…

………

𝑣 𝑠 = −5 − 1X



Typical chess evaluation function
Each side receives:
•9 points per remaining queen
•5 points per remaining rook
•3 points per remaining bishop
•3 points per remaining knight
•1 point per remaining pawn
𝑣 𝑠 = points for white - points 
for black

The PyChess
evaluation function 
provides extra point
depending on the 
location of each piece 
on the board.



Evaluation functions in general

Evaluation function must be reasonably accurate, but computationally
simple. Often this means a linear evaluation function:

𝑣 𝑠 = 𝑤!𝑓! 𝑠 + 𝑤"𝑓" 𝑠 +⋯
• 𝑓! 𝑠 , 𝑓" 𝑠 ,… are features of the game state 𝑠
• 𝑤!, 𝑤"… are real-valued weights.

Notice: this is just a one-layer neural net, with input vector 𝑓 𝑠 =
𝑓! 𝑠 , 𝑓" 𝑠 ,… and weight vector 𝑤 = 𝑤!, 𝑤", … .

Recently, deeper neural nets are also sometimes used.



Cutting off search

• Horizon effect: you may incorrectly estimate the value of a state by 
overlooking an event that is just beyond the depth limit
• For example, a damaging move by the opponent that can be delayed but not 

avoided

• Remedies: search a small number of possible extensions to depth+1.
• Quiescence search: consider only “unstable” moves, e.g., moves that capture 

a piece.
• Singular extension: consider only very strong moves.
• Stochastic search: randomly sample a small number of possible future paths.



Stochastic search



• An approximate solution: stochastic search

𝑣(𝑠) ≈
1
𝑛:
#$!

%

𝑣(𝑖&' random game starting from 𝑠)

• Asymptotically optimal: as 𝑛 → ∞, the approximation gets better.
• Controlled computational complexity: choose n to match the amount of 

computation you can afford.

Stochastic search



• Instead of depth-limited search with 
an evaluation function, 
use randomized simulations

• Starting at the current state (root of 
search tree), iterate:
• Select a leaf node for expansion using 

some type of random move selection 
policy

• Continue until desired depth
• For any given move, average the value

of the final game states to determine 
the value of the move.

C. Browne et al., A survey of Monte Carlo Tree Search Methods, 2012

Stochastic search

http://ccg.doc.gold.ac.uk/papers/browne_tciaig12_1.pdf


Case study: AlphaGo

• “Gentlemen 
should not 
waste their time 
on trivial games 
-- they should 
play Go.”

• -- Confucius,

• The Analects

• ca. 500 B. C. E.

Anton Ninno, Roy Laird, Ph.D.
antonninno@yahoo.com
roylaird@gmail.com

special thanks to Kiseido Publications 



AlphaGo
Deep convolutional neural 
networks
• Treat the Go board as an 

image
• Can be trained to predict 

distribution over 
possible moves (policy) 
or expected value of 
position

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529, January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html


AlphaGo
• Policy network: Given a game state, 𝑠,

predict what would be the best next move.
• Input: game board as an image, 𝑠.  
• Output: 𝑝(𝑎|𝑠), probability that action 
𝑎 is best.

• Value network: Given a game state, 𝑠, 
compute the expected value of the board 
for player 0 (MAX).
• Input: game board as an image, 𝑠.  
• Output: 𝑣(𝑠), value of the game state.

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529, January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html


Stochastic Search in AlphaGo
• Each edge in the search tree has 
• Probabilities 𝑝(𝑎|𝑠) computed by the policy network
• State+Move values 𝑄 𝑠, 𝑎 computed by the value network
• Counts 𝑁 𝑠, 𝑎 specifying how many times that move has been tried

• Tree traversal policy selects actions randomly according to 
some combination of 𝑝(𝑎|𝑠), 𝑄 𝑠, 𝑎 , and 𝑁 𝑠, 𝑎
• At the end of each simulation, values of the final boards are 

averaged in order to re-estimate the value of the initial move.



D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 529, January 2016

Stochastic Search in AlphaGo

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html


Summary
• A zero-sum game can be expressed as a minimax tree.
• Limited-horizon search is always necessary (you can’t search to the 

end of the game), and always suboptimal.
• Evaluation function: a relatively low-complexity function that

estimates the value of the board (maybe linear, maybe a neural net)
• Stochastic search: randomly choose moves, out to some pre-

determined depth, then average the final board positions to estimate 
the value of the initial move


