CS440/ECE448 Lecture 14: Parameter and Structure Learning for Bayesian Networks

By Mark Hasegawa-Johnson, 3/2021

With some slides by Svetlana Lazebnik, 9/2017

License: CC-BY 4.0

You may redistribute or remix if you cite the source.

Parameter and Structure Learning for Bayesian Networks

- Parameter Learning
 - from Fully Observed data: Maximum Likelihood
 - from Partially Observed data: Expectation Maximization
 - from Partially Observed data: Hard EM
- Structure Learning
 - The usual method: knowledge engineering
 - An interesting recent method: causal analysis

Outline

• Parameter Learning

- from Fully Observed data: Maximum Likelihood
- from Partially Observed data: Expectation Maximization
- Structure Learning
 - The usual method: knowledge engineering
 - An interesting recent method: causal analysis

The scenario:

Central Illinois has recently had a problem with flying cows.

Farmers have called the university to complain that their cows flew away.

The university dispatched a team of expert vaccavolatologists. They determined that almost all flying cows were explained by one or both of the following causes:

- <u>Smart cows</u>. The cows learned how to fly, on their own, without help.
- <u>Alien intervention</u>. UFOs taught the cows how to fly.

The vaccavolatologists created a Bayes net, to help them predict any future instances of cow flying:

- P(A) = Probability that aliens teach the cow.
- P(S) = Probability that a cow is smart enough to figure out how to fly on its own.
- P(F|S,A) = Probability that a cow learns to fly.

They went out to watch a nearby pasture for ten days.

- They reported the number of days on which A, S, and/or F occurred.
- Their results are shown in the table at left (True is marked as "T"; False is shown with a blank).

		¥	
Day	Α	S	F
1			
2		Т	Т
3			
4	Т	Т	Т
5	Т		
6			
7	Т		Т
8			
9			Т
10			

The vaccavolatologists now wish to estimate the parameters of their Bayes net

- P(A)
- P(S)
- P(F|S,A)

...so that they will be better able to testify before Congress about the relative dangers of aliens versus smart cows.

Day	А	S	F
1			
2		Т	Т
3			
4	Т	Т	Т
5	Т		
6			
7	Т		Т
8			
9			Т
10			

Outline

• Parameter Learning

- from Fully Observed data: Maximum Likelihood
- from Partially Observed data: Expectation Maximization
- from Partially Observed data: Hard EM
- Structure Learning
 - The usual method: knowledge engineering
 - An interesting recent method: causal analysis

Maximum Likelihood Estimation

Suppose we have n training examples, $1 \le i \le n$, with known values for each of the random variables:

- A_i or $\neg A_i$
- S_i or $\neg S_i$
- F_i or $\neg F_i$

Day	А	S	F
1	$\neg A_1$	$\neg S_1$	$\neg F_1$
2	$\neg A_2$	<i>S</i> ₂	F_2
3	$\neg A_3$	$\neg S_3$	$\neg F_3$
4	A_4	S_4	F_4
5	A_5	$\neg S_5$	$\neg F_5$
6	$\neg A_6$	$\neg S_6$	$\neg F_6$
7	A_7	$\neg S_7$	F_7
8	$\neg A_8$	$\neg S_8$	$\neg F_8$
9	$\neg A_9$	$\neg S_9$	F ₉
10	$\neg A_{10}$	$\neg S_{10}$	$\neg F_{10}$

Maximum Likelihood Estimation

We can estimate model parameters to be the values that maximize the likelihood of the observations, subject to the constraints that

> $P(A) + P(\neg A) = 1$ $P(S) + P(\neg S) = 1$ $P(F|S,A) + P(\neg F|S,A) = 1$

-				
	Day	А	S	F
	1	$\neg A_1$	$\neg S_1$	$\neg F_1$
	2	$\neg A_2$	<i>S</i> ₂	<i>F</i> ₂
	3	$\neg A_3$	$\neg S_3$	$\neg F_3$
	4	A_4	S_4	F_4
	5	A_5	$\neg S_5$	$\neg F_5$
	6	$\neg A_6$	$\neg S_6$	$\neg F_6$
	7	A_7	$\neg S_7$	F_7
	8	$\neg A_8$	$\neg S_8$	$\neg F_8$
	9	$\neg A_9$	$\neg S_9$	F_9
	10	$\neg A_{10}$	$\neg S_{10}$	$\neg F_{10}$

Maximum Likelihood Estimation

The maximum likelihood parameters are

 $P(A) = \frac{\# \text{ days on which } A_i}{\# \text{ days total}}$ $P(S) = \frac{\# \text{ days on which } S_i}{\# \text{ days total}}$ $P(F|s,a) = \frac{\# \text{ days } (A=a,S=s,F)}{\# \text{ days } (A=a,S=s)}$

		¥	
Day	А	S	F
1	$\neg A_1$	$\neg S_1$	$\neg F_1$
2	$\neg A_2$	<i>S</i> ₂	F_2
3	$\neg A_3$	$\neg S_3$	$\neg F_3$
4	A_4	S_4	F_4
5	A_5	$\neg S_5$	$\neg F_5$
6	$\neg A_6$	$\neg S_6$	$\neg F_6$
7	A_7	$\neg S_7$	F_7
8	$\neg A_8$	$\neg S_8$	$\neg F_8$
9	$\neg A_9$	$\neg S_9$	F_9
10	$\neg A_{10}$	$\neg S_{10}$	$\neg F_{10}$

Maximum						
Estimation			Day	Α	S	F
The maximu	ım likelihood p	parameters	1	$\neg A_1$	$\neg S_1$	$\neg F_1$
are	2	2	2	$\neg A_2$	<i>S</i> ₂	F_2
P(A) =	$=\frac{3}{10}$, $P(S)$	$) = \frac{2}{10}$	3	$\neg A_3$	$\neg S_3$	$\neg F_3$
	10	10	4	A_4	S_4	F ₄
а	S	P(F s, a)	5	A_5	$\neg S_5$	$\neg F_5$
F	F	1/6	6	$\neg A_6$	$\neg S_6$	$\neg F_6$
F	Т	1	7	A_7	$\neg S_7$	F_7
Т	F	1/2	8	$\neg A_8$	$\neg S_8$	$\neg F_8$
Т	Т	1	9	$\neg A_9$	$\neg S_9$	F_9
			10	$\neg A_{10}$	$\neg S_{10}$	$\neg F_{10}$

Conclusions: maximum likelihood estimation

- Smart cows are far more dangerous than aliens.
- Maximum likelihood estimation is very easy to use, IF you have training data in which the values of ALL variables are observed.
- ...but what if some of the variables can't be observed?
- For example: after the 6th day, the cows decide to stop responding to written surveys. Therefore, it's impossible to **<u>observe</u>**, on any given day, how smart the cows are. We don't know if $s_i = T$ or $s_i = F$...

Outline

• Parameter Learning

- from Fully Observed data: Maximum Likelihood
- from Partially Observed data: Expectation Maximization
- from Partially Observed data: Hard EM
- Structure Learning
 - The usual method: knowledge engineering
 - An interesting recent method: causal analysis

Partially observed data

Suppose that we have the following observations:

- We know whether A=True or False.
- We know whether F=True or False.
- After the 6th day, we don't know whether S is True or False (shown as "?").

A S F			
Day	Α	S	F
1			
2		Т	Т
3			
4	Т	Т	Т
5	Т		
6			
7	Т	?	Т
8		?	
9		?	Т
10		?	

Expectation Maximization (EM): Main idea

Remember that maximum likelihood estimation counts examples:

$$P(F|S = s, A = a) = \frac{\# \text{ days } S = s, A = a, F}{\# \text{ days } S = s, A = a}$$

Expectation maximization is similar, but using "expected counts" instead of actual counts:

$$P(F|S = s, A = a) = \frac{E[\# \text{ days } S = s, A = a, F]}{E[\# \text{ days } S = s, A = a]}$$

Where E[X] means "expected value of X".

Expectation Maximization (EM): review **INITIALIZE**: **guess** the model parameters.

ITERATE until convergence:

1. E-Step:
$$E[\# \text{ days } S = s, A = a, F = f] = \sum_{i:a_i = a, f_i = f} P(S = s | a, f)$$

2. M-Step: $P(F = f | S = s, A = a) = \frac{E[\# \text{ days } S = s, A = a, F = f]}{E[\# \text{ days } S = s, A = a]}$

Continue the iteration, shown above, until the model parameters stop changing.

Example: Initialize

Marilyn Modigliani is a professional vaccavolatologist. She gives us these initial guesses about the possible model parameters (her guesses are probably not quite right, but they are as good a guess as anybody else's):

$$P(A) = \frac{1}{4}, \qquad P(S) = \frac{1}{4}$$

а	S	$P(F s, \boldsymbol{a})$
F	F	0
F	Т	1/2
Т	F	1/2
Т	Т	1

E-Step

Based on Marilyn's model, we calculate $P(S|a_i, f_i)$ for each of the missing days, as shown in the table at right.

A S F			
Day	А	S	F
1			
2		Т	Т
3			
4	Т	Т	Т
5	Т		
6			
7	Т	2/5	Т
8		1/7	
9		1	Т
10		1/7	

E-Step

The expected counts are

$$E[\# \text{ days } S = s, A = a, F = f] = \sum_{i:a_i = a, f_i = f} P(S = s|a, f)$$

AS

а	f	E[# days S a, f]	$E[\# days \neg S a, f]$
F	F	$0 + 0 + 0 + \frac{1}{7} + \frac{1}{7} = \frac{2}{7}$	$1 + 1 + 1 + \frac{6}{7} + \frac{6}{7} = \frac{33}{7}$
F	Т	1 + 1 = 2	0+0=0
Т	F	0	1
Т	т	$1 + \frac{2}{5} = \frac{7}{5}$	$0 + \frac{3}{5} = \frac{3}{5}$

а	f	E [# days S a, f]	$E[\# days \neg S a, f]$
F	F	$0 + 0 + 0 + \frac{1}{7} + \frac{1}{7} = \frac{2}{7}$	$1 + 1 + 1 + \frac{6}{7} + \frac{6}{7} = \frac{33}{7}$
F	Т	1 + 1 = 2	0+0=0
Т	F	0	1
т	т	$1 + \frac{2}{5} = \frac{7}{5}$	$0 + \frac{3}{5} = \frac{3}{5}$

а	f	E [# days S a, f]	$E[\# days \neg S a, f]$
F	F	$0 + 0 + 0 + \frac{1}{7} + \frac{1}{7} = \frac{2}{7}$	$1 + 1 + 1 + \frac{6}{7} + \frac{6}{7} = \frac{33}{7}$
F	Т	1 + 1 = 2	0+0=0
Т	F	0	1
Т	т	$1 + \frac{2}{5} = \frac{7}{5}$	$0 + \frac{3}{5} = \frac{3}{5}$

Now let's re-estimate the model parameters. For example,

$$P(F = 1 | S = 0, A = 0) = \frac{E[\# \text{ days } S = 0, A = 0, F = 1]}{E[\# \text{ days } S = 0, A = 0]}$$
$$= \frac{0}{\frac{33}{7} + 0} = 0$$

а	f	E [# days S a, f]	$E[\# days \neg S a, f]$
F	F	$0 + 0 + 0 + \frac{1}{7} + \frac{1}{7} = \frac{2}{7}$	$1 + 1 + 1 + \frac{6}{7} + \frac{6}{7} = \frac{33}{7}$
F	Т	1 + 1 = 2	0+0=0
Т	F	0	1
Т	т	$1 + \frac{2}{5} = \frac{7}{5}$	$0 + \frac{3}{5} = \frac{3}{5}$

Now let's re-estimate the model parameters. For example,

$$P(F = 1|S = 1, A = 0) = \frac{E[\# \text{ days } S = 1, A = 0, F = 1]}{E[\# \text{ days } S = 1, A = 0]}$$
$$= \frac{\frac{2}{\frac{2}{7}}}{\frac{2}{7}} = \frac{7}{8}$$

The re-estimated probabilities are

$$P(A) = \frac{\# \text{ days } A}{\# \text{ days total}} = \frac{3}{10}$$
$$P(S) = \frac{E[\# \text{ days } S]}{\# \text{ days total}} = \frac{\frac{2}{7} + 2 + 0 + \frac{7}{5}}{10} = \frac{94}{350}$$

а	S	P(F S = s, A = a)
F	F	$\frac{0}{\frac{33}{7}+0} = 0$
F	Т	$\frac{2}{\frac{2}{7}+2} = \frac{7}{8}$
т	F	$\frac{3/5}{1+\frac{3}{5}} = \frac{3}{8}$
Т	Т	$\frac{7/5}{0+7/5} = 1$

Expectation Maximization (EM): review **INITIALIZE**: **guess** the model parameters.

ITERATE until convergence:

1. E-Step:
$$E[\# \text{ days } S = s, A = a, F = f] = \sum_{i:a_i = a, f_i = f} P(S = s | a, f)$$

2. M-Step: $P(F = f | S = s, A = a) = \frac{E[\# \text{ days } S = s, A = a, F = f]}{E[\# \text{ days } S = s, A = a]}$

Continue the iteration, shown above, until the model parameters stop changing.

Properties of the EM algorithm

- It always converges.
- The parameters it converges to (P(A), P(S), and P(F|A,S)):
 - are guaranteed to be <u>at least as good as</u> your initial guess, but
 - They depend on your initial guess. Different initial guesses may result in different results, after the algorithm converges.
 - For example, Marilyn's initial guess was P(F|¬S, ¬A) = 0. Notice that we ended up with the same value! According to the fully observed data we saw earlier, that might not be the best possible parameter for these data.

Outline

- Parameter Learning
 - from Fully Observed data: Maximum Likelihood
 - from Partially Observed data: Expectation Maximization
 - from Partially Observed data: Hard EM
- Structure Learning
 - The usual method: knowledge engineering
 - An interesting recent method: causal analysis

Hard EM

- EM is sensitive to your initial guess: bad initial guess -> bad model parameters
- Hard EM is a little less sensitive.

Hard EM

How it works:

- Calculate $P(S|a_i, f_i)$ for each of the missing days, then
- <u>Harden your estimates</u>: for each of the missing days, choose the most probable value of the missing variable.
- Proceed with the rest of EM as normal.

Example

Based on Marilyn's model, we calculate $P(S|a_i, f_i)$ for each of the missing days, as shown in the table at right.

A S F			
Day	А	S	F
1			
2		Т	Т
3			
4	Т	Т	Т
5	Т		
6			
7	Т	2/5	Т
8		1/7	
9		1	Т
10		1/7	

Example

... then harden your estimates. For each missing day, choose the most likely value of S, either 0 or 1.

A S F			
Day	Α	S	F
1			
2		Т	Т
3			
4	Т	Т	Т
5	Т		
6			
7	Т	0	Т
8		0	
9		1	Т
10		0	

Now we can re-estimate the model parameters using simple formulas:

$$P(A) = \frac{\# \text{ days on which } A_i}{\# \text{ days total}}$$
$$P(S) = \frac{\# \text{ days on which } S_i}{\# \text{ days total}}$$
$$P(F|s, a) = \frac{\# \text{ days } (A=a,S=s,F)}{\# \text{ days } (A=a,S=s)}$$

Day	Α	S	F
1			
2		Т	Т
3			
4	Т	Т	Т
5	Т		
6			
7	Т	0	Т
8		0	
9		1	Т
10		0	

M-Step	C
--------	---

rs are	
	3
P(S) =	10
	rs are $P(S) =$

а	S	$P(F s, \boldsymbol{a})$
F	F	0
F	т	1
т	F	1/2
Т	Т	1

A	Ş			
	Day	Α	S	F
	1			
	2		Т	Т
	3			
	4	Т	Т	Т
a)	5	Т		
	6			
	7	Т	0	Т
	8		0	
	9		1	Т
	10		0	

Hard EM

- Less sensitive than soft EM to the exact parameter values of your initial guess.
- ... however, the final estimate from hard EM is often not as good as the estimate from soft EM.
- Often, the best approach is to use hard EM until convergence, then use the values from hard EM to initialize soft EM.

Outline

- Parameter Learning
 - from Fully Observed data: Maximum Likelihood
 - from Partially Observed data: Expectation Maximization
 - from Partially Observed data: Hard EM
- Structure Learning
 - The usual method: knowledge engineering
 - An interesting recent method: causal analysis

Knowledge engineering

- 1. Find somebody who knows a lot about the problem you're trying to model (flying cows, or burglars in Los Angeles, or whatever).
- 2. Get them to tell you which variables depend on which others.
- 3. Draw corresponding circles and arrows.
- 4. Done! Proceed to parameter estimation.

Example: Bayesian diagnostic model for the symptom "no sound."

Fig. 6 Bayesian diagnostic model for the symptom "no sound"

vehicle fault diagnosis: Bayesian network method," 2008

Example Bayes Network: <u>speech acoustics</u> and <u>speech</u> <u>appearance</u> depend on glottis, tongue, and lip positions

Audiovisual Speech Recognition with Articulator Positions as Hidden Variables Mark Hasegawa-Johnson, Karen Livescu, Partha Lal and Kate Saenko International Congress on Phonetic Sciences 1719:299-302, 2007

Outline

- Parameter Learning
 - from Fully Observed data: Maximum Likelihood
 - from Partially Observed data: Expectation Maximization
 - from Partially Observed data: Hard EM
- Structure Learning
 - The usual method: knowledge engineering
 - An interesting recent method: causal analysis

Causal analysis

Suppose you know that you have V variables X_1, \dots, X_V , but you don't know which variables depend on which others. You can learn this from the data:

For every possible ordering of the variables (there are V! possible orderings):

- 1. Create a blank initial network
- 2. For each variable in this ordering, i = 1 to V:
 - a. add variable X_i to the network
 - b. Check your training data. If there is any variable $X_1, ..., X_{i-1}$ that CHANGES the probability of $X_i=1$, then add that variable to the set Parents(X_i) such that $P(X_i | Parents(X_i)) = P(X_i | X_1, ..., X_{i-1})$
- 3. Count the number of edges in the graph with this ordering.

Choose the graph with the smallest number of edges.

- Deciding conditional independence is hard in noncausal directions
 - The causal direction seems much more natural
- Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed (vs. 1+1+4+2+2=10 for the causal ordering)

Why store it in causal order? A: Saves memory

- Suppose we have a Boolean variable X_i with k Boolean parents. How many rows does its conditional probability table have?
 - 2^k rows for all the combinations of parent values
 - Each row requires one number for P(X_i = true | parent values)
- If each variable has no more than k parents, how many numbers does the complete network require?
 - $O(n \cdot 2^k)$ numbers vs. $O(2^n)$ for the full joint distribution
- How many nodes for the burglary network?

1 + 1 + 4 + 2 + 2 = 10 numbers (vs. $2^{5}-1 = 31$)

Parameter and Structure Learning for Bayesian Networks

• Maximum Likelihood (ML):

$$P(F|S = s, A = a) = \frac{\# \text{ days } (A=a, S=s, F)}{\# \text{ days } (A=a, S=s)}$$

- Expectation Maximization (EM): $P(F|S = s, A = a) = \frac{E[\# \text{ days } A = a, S = s, F]}{E[\# \text{ days } A = a, S = s]}$
- Knowledge Engineering: ask an expert.
- Causal Analysis: construct all possible graphs, keep the one with the fewest edges.