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Parameter and Structure Learning for 
Bayesian Networks
• Parameter Learning 

• from Fully Observed data: Maximum Likelihood
• from Partially Observed data: Expectation Maximization
• from Partially Observed data: Hard EM

• Structure Learning
• The usual method: knowledge engineering
• An interesting recent method: causal analysis
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Flying cows

The scenario:

Central Illinois has recently had a 
problem with flying cows.

Farmers have called the university 
to complain that their cows flew 
away.



Flying cows

The university dispatched a team 
of expert vaccavolatologists.  They 
determined that almost all flying 
cows were explained by one or 
both of the following causes:
• Smart cows.  The cows learned 

how to fly, on their own, without 
help.
• Alien intervention.  UFOs taught 

the cows how to fly.



Flying cows
The vaccavolatologists created a 
Bayes net, to help them predict 
any future instances of cow flying:
• P(A) = Probability that aliens 

teach the cow.
• P(S) = Probability that a cow is 

smart enough to figure out how 
to fly on its own.
• P(F|S,A) = Probability that a cow 

learns to fly.

A S

F



Flying cows
They went out to watch a nearby 
pasture for ten days.  
• They reported the number of 

days on which A, S, and/or F 
occurred.
• Their results are shown in the 

table at left (True is marked as 
“T”; False is shown with a blank).

A S
F

Day A S F

1

2 T T

3

4 T T T

5 T

6

7 T T

8

9 T

10



Flying cows
The vaccavolatologists now wish to 
estimate the parameters of their 
Bayes net
• P(A) 
• P(S) 
• P(F|S,A)

…so that they will be better able to 
testify before Congress about the 
relative dangers of aliens versus 
smart cows. 

A S
F

Day A S F

1

2 T T

3

4 T T T

5 T

6

7 T T

8

9 T

10
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Maximum Likelihood 
Estimation

Suppose we have n training 
examples, 1 ≤ 𝑖 ≤ 𝑛, with known 
values for each of the random 
variables: 
• 𝐴! or ¬𝐴!
• 𝑆! or ¬𝑆!
• 𝐹! or ¬𝐹!

A S
F

Day A S F

1 ¬𝐴! ¬𝑆! ¬𝐹!
2 ¬𝐴" 𝑆" 𝐹"
3 ¬𝐴# ¬𝑆# ¬𝐹#
4 𝐴$ 𝑆$ 𝐹$
5 𝐴% ¬𝑆% ¬𝐹%
6 ¬𝐴& ¬𝑆& ¬𝐹&
7 𝐴' ¬𝑆' 𝐹'
8 ¬𝐴( ¬𝑆( ¬𝐹(
9 ¬𝐴) ¬𝑆) 𝐹)

10 ¬𝐴!* ¬𝑆!* ¬𝐹!*



Maximum Likelihood 
Estimation

We can estimate model parameters 
to be the values that maximize the 
likelihood of the observations, 
subject to the constraints that

𝑃 𝐴 + 𝑃 ¬𝐴 = 1
𝑃 𝑆 + 𝑃 ¬𝑆 = 1

𝑃 𝐹|𝑆, 𝐴 + 𝑃 ¬𝐹|𝑆, 𝐴 = 1

A S
F

Day A S F

1 ¬𝐴! ¬𝑆! ¬𝐹!
2 ¬𝐴" 𝑆" 𝐹"
3 ¬𝐴# ¬𝑆# ¬𝐹#
4 𝐴$ 𝑆$ 𝐹$
5 𝐴% ¬𝑆% ¬𝐹%
6 ¬𝐴& ¬𝑆& ¬𝐹&
7 𝐴' ¬𝑆' 𝐹'
8 ¬𝐴( ¬𝑆( ¬𝐹(
9 ¬𝐴) ¬𝑆) 𝐹)

10 ¬𝐴!* ¬𝑆!* ¬𝐹!*



Maximum Likelihood 
Estimation

The maximum likelihood parameters 
are

𝑃 𝐴 =
# days on which 𝐴!

# days total

𝑃 𝑆 =
# days on which 𝑆!

# days total

𝑃 𝐹|𝑠, 𝑎 =
# days (A=𝑎,S=𝑠, F)
# days (A=𝑎,S=𝑠)

A S
F

Day A S F

1 ¬𝐴! ¬𝑆! ¬𝐹!
2 ¬𝐴" 𝑆" 𝐹"
3 ¬𝐴# ¬𝑆# ¬𝐹#
4 𝐴$ 𝑆$ 𝐹$
5 𝐴% ¬𝑆% ¬𝐹%
6 ¬𝐴& ¬𝑆& ¬𝐹&
7 𝐴' ¬𝑆' 𝐹'
8 ¬𝐴( ¬𝑆( ¬𝐹(
9 ¬𝐴) ¬𝑆) 𝐹)

10 ¬𝐴!* ¬𝑆!* ¬𝐹!*



Maximum Likelihood 
Estimation

The maximum likelihood parameters 
are

𝑃 𝐴 =
3
10 , 𝑃 𝑆 =

2
10

A S
F

a s 𝑃 𝐹|𝑠, 𝒂
F F 1/6
F T 1
T F 1/2
T T 1

Day A S F

1 ¬𝐴! ¬𝑆! ¬𝐹!
2 ¬𝐴" 𝑆" 𝐹"
3 ¬𝐴# ¬𝑆# ¬𝐹#
4 𝐴$ 𝑆$ 𝐹$
5 𝐴% ¬𝑆% ¬𝐹%
6 ¬𝐴& ¬𝑆& ¬𝐹&
7 𝐴' ¬𝑆' 𝐹'
8 ¬𝐴( ¬𝑆( ¬𝐹(
9 ¬𝐴) ¬𝑆) 𝐹)

10 ¬𝐴!* ¬𝑆!* ¬𝐹!*



Conclusions: maximum likelihood estimation

• Smart cows are far more dangerous than aliens.
• Maximum likelihood estimation is very easy to use, IF you have 

training data in which the values of ALL variables are observed.

• …but what if some of the variables can’t be observed?
• For example: after the 6th day, the cows decide to stop responding to 

written surveys.  Therefore, it’s impossible to observe, on any given 
day, how smart the cows are.  We don’t know if 𝑠! = 𝑇 or 𝑠! = 𝐹…



Outline

• Parameter Learning 
• from Fully Observed data: Maximum Likelihood
• from Partially Observed data: Expectation Maximization
• from Partially Observed data: Hard EM 

• Structure Learning
• The usual method: knowledge engineering
• An interesting recent method: causal analysis



Partially observed data
Suppose that we have the 
following observations:
• We know whether A=True or 

False.
• We know whether F=True or 

False.
• After the 6th day, we don’t know 

whether S is True or False (shown 
as ”?”). 

Day A S F

1

2 T T

3

4 T T T

5 T

6

7 T ? T

8 ?

9 ? T

10 ?

A S
F



Expectation Maximization (EM): Main idea 

Remember that maximum likelihood estimation counts examples:

𝑃 𝐹 𝑆 = 𝑠, 𝐴 = 𝑎 = # days 𝑆 #$, &#', (
# days )#$, &#'

Expectation maximization is similar, but using “expected counts” instead of 
actual counts:

𝑃 𝐹 𝑆 = 𝑠, 𝐴 = 𝑎 =
𝐸[# days 𝑆 = 𝑠, 𝐴 = 𝑎, 𝐹]
𝐸[# days 𝑆 = 𝑠, 𝐴 = 𝑎]

Where E[X] means “expected value of X”.



Expectation Maximization (EM): review
INITIALIZE: guess the model parameters.

ITERATE until convergence:
1. E-Step: 𝐸[# days 𝑆 = 𝑠, 𝐴 = 𝑎, 𝐹 = 𝑓] = ∑!:#+$#,&+$&𝑃 𝑆 = 𝑠|𝑎, 𝑓

2. M-Step: 𝑃 𝐹 = 𝑓 𝑆 = 𝑠, 𝐴 = 𝑎 = '[#days *$+,,$#,-$&]
'[#days *$+, ,$#]

Continue the iteration, shown above, until the model parameters stop 
changing.



Example: Initialize
Marilyn Modigliani is a professional vaccavolatologist.  She gives us 
these initial guesses about the possible model parameters (her guesses 
are probably not quite right, but they are as good a guess as anybody 
else’s):

𝑃 𝐴 =
1
4 , 𝑃 𝑆 =

1
4

a s 𝑃 𝐹|𝑠, 𝒂
F F 0
F T 1/2
T F 1/2
T T 1

A S
F



E-Step
Based on Marilyn’s model, we 
calculate 𝑃 𝑆|𝑎!, 𝑓! for each of 
the missing days, as shown in the 
table at right.

Day A S F

1

2 T T

3

4 T T T

5 T

6

7 T 2/5 T

8 1/7

9 1 T

10 1/7

A S
F



E-Step
The expected counts are 

𝐸[# days 𝑆 = 𝑠, 𝐴 = 𝑎, 𝐹 = 𝑓] = L
!:#+$#,&+$&

𝑃 𝑆 = 𝑠|𝑎, 𝑓

A S
F

a f 𝑬[# 𝒅𝒂𝒚𝒔 𝑺|𝑎, 𝑓] 𝑬[# 𝒅𝒂𝒚𝒔 ¬𝑺|𝑎, 𝑓]
F F

0 + 0 + 0 +
1
7
+
1
7
=
2
7

1 + 1 + 1 +
6
7
+
6
7
=
33
7

F T 1 + 1 = 2 0+0=0
T F 0 1
T T

1 +
2
5
=
7
5

0 +
3
5
=
3
5



a f 𝑬[# 𝒅𝒂𝒚𝒔 𝑺|𝑎, 𝑓] 𝑬[# 𝒅𝒂𝒚𝒔 ¬𝑺|𝑎, 𝑓]
F F

0 + 0 + 0 +
1
7
+
1
7
=
2
7

1 + 1 + 1 +
6
7
+
6
7
=
33
7

F T 1 + 1 = 2 0+0=0
T F 0 1
T T

1 +
2
5
=
7
5

0 +
3
5
=
3
5

M-Step



Now let’s re-estimate the model parameters.  For example, 

𝑃 𝐹 = 1 𝑆 = 0, 𝐴 = 0 =
𝐸[# days 𝑆 = 0, 𝐴 = 0, 𝐹 = 1]
𝐸[# days 𝑆 = 0, 𝐴 = 0]

=
0

33
7 + 0

= 0

M-Step

a f 𝑬[# 𝒅𝒂𝒚𝒔 𝑺|𝑎, 𝑓] 𝑬[# 𝒅𝒂𝒚𝒔 ¬𝑺|𝑎, 𝑓]
F F

0 + 0 + 0 +
1
7
+
1
7
=
2
7

1 + 1 + 1 +
6
7
+
6
7
=
33
7

F T 1 + 1 = 2 0+0=0
T F 0 1
T T

1 +
2
5
=
7
5

0 +
3
5
=
3
5



Now let’s re-estimate the model parameters.  For example, 

𝑃 𝐹 = 1 𝑆 = 1, 𝐴 = 0 =
𝐸[# days 𝑆 = 1, 𝐴 = 0, 𝐹 = 1]
𝐸[# days 𝑆 = 1, 𝐴 = 0]

=
2

2
7 + 2

=
7
8

M-Step

a f 𝑬[# 𝒅𝒂𝒚𝒔 𝑺|𝑎, 𝑓] 𝑬[# 𝒅𝒂𝒚𝒔 ¬𝑺|𝑎, 𝑓]
F F

0 + 0 + 0 +
1
7
+
1
7
=
2
7

1 + 1 + 1 +
6
7
+
6
7
=
33
7

F T 1 + 1 = 2 0+0=0
T F 0 1
T T

1 +
2
5
=
7
5

0 +
3
5
=
3
5



M-Step
The re-estimated probabilities are

𝑃 𝐴 =
# days 𝐴
# days total =

3
10

𝑃 𝑆 =
𝐸 # days 𝑆
# days total

=
2
7 + 2 + 0 +

7
5

10
=
94
350

A S
F

a s 𝑃 𝐹 𝑆 = 𝑠, 𝐴 = 𝑎
F F 0

33
7 + 0

= 0

F T 2
2
7 + 2

=
7
8

T F 3/5

1 + 3
5

=
3
8

T T 7/5
0 + 7/5

= 1



Expectation Maximization (EM): review
INITIALIZE: guess the model parameters.

ITERATE until convergence:
1. E-Step: 𝐸[# days 𝑆 = 𝑠, 𝐴 = 𝑎, 𝐹 = 𝑓] = ∑!:#+$#,&+$&𝑃 𝑆 = 𝑠|𝑎, 𝑓

2. M-Step: 𝑃 𝐹 = 𝑓 𝑆 = 𝑠, 𝐴 = 𝑎 = '[#days *$+,,$#,-$&]
'[#days *$+, ,$#]

Continue the iteration, shown above, until the model parameters stop 
changing.



Properties of the EM algorithm

• It always converges.
• The parameters it converges to (P(A), P(S), and P(F|A,S)):
• are guaranteed to be at least as good as your initial guess, but 
• They depend on your initial guess.  Different initial guesses may 

result in different results, after the algorithm converges.
• For example, Marilyn’s initial guess was 𝑃 𝐹|¬𝑆,¬𝐴 = 𝟎.  Notice 

that we ended up with the same value!   According to the fully 
observed data we saw earlier, that might not be the best possible 
parameter for these data.



Outline

• Parameter Learning 
• from Fully Observed data: Maximum Likelihood
• from Partially Observed data: Expectation Maximization
• from Partially Observed data: Hard EM

• Structure Learning
• The usual method: knowledge engineering
• An interesting recent method: causal analysis



Hard EM

• EM is sensitive to your initial guess: bad initial guess -> bad model
parameters
• Hard EM is a little less sensitive.



Hard EM

How it works:
• Calculate 𝑃 𝑆|𝑎!, 𝑓! for each of the missing days, then
• Harden your estimates: for each of the missing days, choose the most 

probable value of the missing variable.
• Proceed with the rest of EM as normal.



Example
Based on Marilyn’s model, we 
calculate 𝑃 𝑆|𝑎!, 𝑓! for each of 
the missing days, as shown in the 
table at right.

Day A S F

1

2 T T

3

4 T T T

5 T

6

7 T 2/5 T

8 1/7

9 1 T

10 1/7

A S
F



Example
… then harden your estimates.  For 
each missing day, choose the most 
likely value of S, either 0 or 1.

Day A S F

1

2 T T

3

4 T T T

5 T

6

7 T 0 T

8 0

9 1 T

10 0

A S
F



M-Step

Now we can re-estimate the model 
parameters using simple formulas:

𝑃 𝐴 =
# days on which 𝐴!

# days total

𝑃 𝑆 =
# days on which 𝑆!

# days total

𝑃 𝐹|𝑠, 𝑎 =
# days (A=𝑎,S=𝑠, F)
# days (A=𝑎,S=𝑠)

A S
F

Day A S F

1

2 T T

3

4 T T T

5 T

6

7 T 0 T

8 0

9 1 T

10 0



M-Step

The new parameters are

𝑃 𝐴 =
3
10 , 𝑃 𝑆 =

3
10

A S
F

a s 𝑃 𝐹|𝑠, 𝒂
F F 0
F T 1
T F 1/2
T T 1

Day A S F

1

2 T T

3

4 T T T

5 T

6

7 T 0 T

8 0

9 1 T

10 0



Hard EM

• Less sensitive than soft EM to the exact parameter values of your 
initial guess.
• … however, the final estimate from hard EM is often not as good as

the estimate from soft EM.
• Often, the best approach is to use hard EM until convergence, then 

use the values from hard EM to initialize soft EM.



Outline
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• An interesting recent method: causal analysis



Knowledge engineering

1. Find somebody who knows a lot about the problem you’re 
trying to model (flying cows, or burglars in Los Angeles, or 
whatever).  

2. Get them to tell you which variables depend on which others.
3. Draw corresponding circles and arrows.
4. Done!  Proceed to parameter estimation.



Huang, McMurran, Dhadyalla & Jones, ”Probability-based 
vehicle fault diagnosis: Bayesian network method,” 2008

Example: Bayesian diagnostic model for the symptom 
“no sound.”



Example Bayes Network: speech acoustics and speech 
appearance depend on glottis, tongue, and lip positions

Audiovisual Speech Recognition with Articulator Positions as Hidden Variables

Mark Hasegawa-Johnson, Karen Livescu, Partha Lal and Kate Saenko
International Congress on Phonetic Sciences 1719:299-302, 2007

http://isle.illinois.edu/sst/pubs/2007/hasegawa-johnson07icphs.pdf
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Causal analysis
Suppose you know that you have V variables X1, … ,XV, but you don’t know which variables 
depend on which others.  You can learn this from the data:
For every possible ordering of the variables (there are V! possible orderings):
1. Create a blank initial network
2. For each variable in this ordering, i = 1 to V:

a. add variable Xi to the network
b. Check your training data.  If there is any variable X1, … ,Xi-1 that CHANGES the 

probability of Xi=1, then add that variable to the set Parents(Xi) such that
P(Xi | Parents(Xi)) = P(Xi | X1, ... Xi-1)

3. Count the number of edges in the graph with this ordering.

Choose the graph with the smallest number of edges.



• Suppose we choose the ordering M, J, A, B, E

Example: The Los Angeles burglar alarm
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• Suppose we choose the ordering M, J, A, B, E
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• Suppose we choose the ordering M, J, A, B, E

Example: The Los Angeles burglar alarm



• Suppose we choose the ordering M, J, A, B, E

Example: The Los Angeles burglar alarm



• Deciding conditional independence is hard in noncausal directions
• The causal direction seems much more natural

• Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers needed (vs. 
1+1+4+2+2=10 for the causal ordering)

versus

Example: The Los Angeles burglar alarm



Why store it in causal order? A: Saves 
memory
• Suppose we have a Boolean variable Xi with k Boolean parents. How many rows 

does its conditional probability table have? 
• 2k rows for all the combinations of parent values
• Each row requires one number for P(Xi = true | parent values)

• If each variable has no more than k parents, how many numbers does the 
complete network require? 
• O(n · 2k) numbers – vs. O(2n) for the full joint distribution

• How many nodes for the burglary network? 
1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25-1 = 31)



Parameter and Structure Learning for 
Bayesian Networks
•Maximum Likelihood (ML):

𝑃 𝐹|𝑆 = 𝑠, 𝐴 = 𝑎 =
# days (A=𝑎, S=𝑠, F)
# days (A=𝑎, S=𝑠)

• Expectation Maximization (EM):

𝑃 𝐹 𝑆 = 𝑠, 𝐴 = 𝑎 =
𝐸[# days 𝐴 = 𝑎, 𝑆 = 𝑠, 𝐹]
𝐸[# days 𝐴 = 𝑎, 𝑆 = 𝑠]

• Knowledge Engineering: ask an expert.
• Causal Analysis: construct all possible graphs, keep the one with 

the fewest edges.


