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Parameter and Structure Learning for
Bayesian Networks

* Parameter Learning
e from Fully Observed data: Maximum Likelihood
* from Partially Observed data: Expectation Maximization
e from Partially Observed data: Hard EM

* Structure Learning
* The usual method: knowledge engineering
* An interesting recent method: causal analysis



Outline

* Parameter Learning



Flying cows
The scenario:

Central lllinois has recently had a
problem with flying cows.

.

A

Farmers have called the university
to complain that their cows flew
away.




Flying cows

The university dispatched a team
of expert vaccavolatologists. They
determined that almost all flying
cows were explained by one or
both of the following causes:

* Smart cows. The cows learned

how to fly, on their own, without
help.

* Alien intervention. UFOs taught
the cows how to fly.




Flying cows

The vaccavolatologists created a
Bayes net, to help them predict
any future instances of cow flying:

* P(A) = Probability that aliens
teach the cow.
* P(S) = Probability that a cow is

smart enough to figure out how
to fly on its own.

* P(F|S,A) = Probability that a cow
learns to fly.




Flying cows

They went out to watch a nearby
pasture for ten days.

* They reported the number of
days on which A, S, and/or F
occurred.

e Their results are shown in the
table at left (True is marked as

“T”; False is shown with a blank).

A ™
%““mt-r

1

2 T T
3

4 T T T
5 T

6

7 T T
3

9 T

10



Flying cows

The vaccavolatologists now wish to
estimate the parameters of their
Bayes net

* P(A)
* P(S)
* P(F|S,A)

...s0 that they will be better able to
testify before Congress about the
relative dangers of aliens versus
smart cows.

A ™
%““mt-r

1

2 T T
3

4 T T T
5 T

6

7 T T
3

9 T

10



Outline

* Parameter Learning
e from Fully Observed data: Maximum Likelihood



Maximum Likelihood

Estimation by | A

Suppose we have n training
examples, 1 < i < n, with known
values for each of the random
variables:

° Ai or _'Ai
° Si or _'Si
° Fi or _'Fi
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Maximum Likelihood

W s
s | F
— 44 S, —F,

Estimation
We can estimate model parameters 1
to be the values that maximize the 2 -4, S, F,
likelihood of the observations, 3 4 S P
. . 1413 193 13
subject to the constraints that
4 A, S, F,
P(A) + P(—4) =1 > As s h
P(F|S,A) + P(~F|S,4) =1 7 A, ~S; F,
8 _|A8 _ISS _IF8
9 A, —S, F,

10 _IA]_O _|510 _IF]_O



Maximum Likelihood

W
s | F
— 44 S, —F,

Estimation
The maximum likelihood parameters 1

are 2 -4, So F

4 d hich A 3 —A3 =53 —F;
ays on which A4;
P(A4) = #i,d Vtvtl l ‘ A g i
ays tota

y 5 Aq Se —F.

P(S) = # days on which S; 6 —4e —56 —Fe

~ #days total J Ay 257 kg

8 _|A8 _ISS _IF8

# days (A=a,S=s, F - -

P(Fls, a) = ys ( ) 9 Ao Ss Fy

# dayS (Aza’szs) 10 _IA]_O _|510 _IF]_O



Maximum Likelihood

W
s | F
-4 -8, S F,

Estimation

The maximum likelihood parameters 1

are 2 -4, S, F,
P(A) = %, P(S) = 1—20 3 —A3 =153 i
F F 1/6 6 —14¢ —156 —Fg
F T 1 7 A, =S, F,
T F 1/2 8 —-Ag —Sg —Fy
T T 1 9 -4 S Fy

10 _IA]_O —|510 _|F10



Conclusions: maximum likelihood estimation

* Smart cows are far more dangerous than aliens.

 Maximum likelihood estimation is very easy to use, IF you have
training data in which the values of ALL variables are observed.

e ...but what if some of the variables can’t be observed?

* For example: after the 6" day, the cows decide to stop responding to
written surveys. Therefore, it’s impossible to observe, on any given
day, how smart the cows are. We don’tknow ifs; =T ors; = F...




Outline

* Parameter Learning
e from Fully Observed data: Maximum Likelihood
* from Partially Observed data: Expectation Maximization



Partially observed data ““—

Suppose that we have the
following observations:

e We know whether A=True or
False.

 We know whether F=True or
False.

* After the 6" day, we don’t know
whether S is True or False (shown
aS H?H).

O 00 N o v A W N B
—

10 ?



Expectation Maximization (EM): Main idea

Remember that maximum likelihood estimation counts examples:

# days s=s,4=a, F
# days S=s,A4=a

P(F|S=s,A=a) =

Expectation maximization is similar, but using “expected counts” instead of
actual counts:

E[#daysS =5, A=a, F]
E[#daysS =5, A =a]

P(FIS=s,A=a) =

Where E[X] means “expected value of X”.



Expectation Maximization (EM): review
INITIALIZE: guess the model parameters.

ITERATE until convergence:

1. E-Step:E[#daysS =5s,A=a,F = f]=Y;q-as=rP(S =5la,f)
# days S=s,A=a,F=f]
E[#days S=s, A=a]

2. M-Step: P(F = f|S=s,A=qa) =21

Continue the iteration, shown above, until the model parameters stop
changing.



X A
Example: Initialize

Marilyn Modigliani is a professional vaccavolatologist. She gives us
these initial guesses about the possible model parameters (her guesses
are probably not quite right, but they are as good a guess as anybody
else’s):

1 1
P(A) =72 P(S) =-

4
2| s | P(Flsa)
F F 0
F T 1/2
T F 1/2
T T 1



Y aH
E->tep “hay | A s | F

Based on Marilyn’s model, we 1
calculate P(S|a;, f;) for each of 7 T T
the missing days, as shown in the -
table at right.
4 T T T
5 T
6
7 T 2/5 T
8 1/7
9 1 T

10 1/7



E-Step 239 M

The expected counts are

E[#daysS =s,A=a,F = f] = z P(S =sj|a,f)

iaj=a,fi=f
n— E[# daysS|a,f] E[# days —|S|a,f]
F F
— == 1+1+1 — = —
0+0+0+7+7 = +1+ +7+7 -
F T 1+1=2 0+0=0
T F 0 1
T T 2 7 3 3
1 4+—=== 0+—-=-—
* 5 5 * 5 5



M-Step

n— E[# daysS|a,f] E[# days —|S|a,f]
F F

0404042+ = 4141404222

77 ? 77" 7
F T 1+1=2 0+0=0
T F 0 1
T T 2 7 3

3
lab==— 0+===
575 575



n_ E[# daysS|a,f] E[# days —|S|a,f]
F F

33
0+0+0+7+? ; 1+1+1+7+; 7
F T 1+41=2 0+0=0
T F 0 1
T T 2 7 3 3
1+g=g 0+§=§

M-Step
Now let’s re-estimate the model parameters. For example,

E[#daysS =0,A=0,F = 1]

P(F=1|§5=0,A=0) =
( | ) E[#daysS =0, A= 0]




n— E[# daysS|a,f] E[# days —|S|a,f]
F F

0+0+0+7+; 3 1+1+1+7+; 7—

F T 1+1=2 0+0=0

T F 0 1

T T 2 7 3
1+5=5 0+5=53

M-Step

Now let’s re-estimate the model parameters. For example,

E[#daysS=1,A=0,F = 1]

PF=1|S5=1,A=0) =
( | ) E[#daysS =1, A= 0]




Q9 A ™
M-Step
The re-estimated probabilities are Hn

# days A 3 F F 0 0
PA — = — 33 =
(4) # days total 10 = +0
F T 2 7
2 7 2 "3
P(S)_E[#daysS]_7+2+0+§_ 94 =+2
- #daystotal 10 - 350 T F 3/5 3
3 8
1+§
T T 7/5




Expectation Maximization (EM): review
INITIALIZE: guess the model parameters.

ITERATE until convergence:

1. E-Step:E[#daysS =5s,A=a,F = f]=Y;q-as=rP(S =5la,f)
# days S=s,A=a,F=f]
E[#days S=s, A=a]

2. M-Step: P(F = f|S=s,A=qa) =21

Continue the iteration, shown above, until the model parameters stop
changing.



Properties of the EM algorithm

* [t always converges.

* The parameters it converges to (P(A), P(S), and P(F|A,S)):
* are guaranteed to be at least as good as your initial guess, but

* They depend on your initial guess. Different initial guesses may
result in different results, after the algorithm converges.

* For example, Marilyn’s initial guess was P(F|—=S,—A4) = 0. Notice
that we ended up with the same value! According to the fully
observed data we saw earlier, that might not be the best possible
parameter for these data.



Outline

* Parameter Learning
e from Fully Observed data: Maximum Likelihood
* from Partially Observed data: Expectation Maximization
e from Partially Observed data: Hard EM



Hard EM

* EM is sensitive to your initial guess: bad initial guess -> bad model
parameters

e Hard EM is a little less sensitive.



Hard EM

How it works:
* Calculate P(S]a;, f;) for each of the missing days, then

* Harden your estimates: for each of the missing days, choose the most
probable value of the missing variable.

* Proceed with the rest of EM as normal.




WP F.. Rl
Example ooy | A s R

Based on Marilyn’s model, we 1
calculate P(S|a;, f;) for each of 7 T T
the missing days, as shown in the -
table at right.
4 T T T
5 T
6
7 T 2/5 T
8 1/7
9 1 T

10 1/7



W Y. Rl
Example o | A s

... then harden your estimates. For 1
each missing day, choose the most ’) T T
likely value of S, either O or 1. -
4 T T T
5 T
6
7 T 0 T
8 0
9 1 T
10 0



M-Step

v,

Now we can re-estimate the model 1
parameters using simple formulas: 2 T T
. 3
P(4) = # days on which 4; . . : :
# days total
5 T
# days on which S; 6
P(S) =—~ l
# days total 7 T 0 T
8 0
# days (A=a,S=s, F
P(FlS, a) = y ( ) 9 1 T
# days (A=a,S=s) i 0



v,

M-Step
The new parameters are 1
3 3
P(A)=-—, P(S)=— 2 T T
(W) ==5,  P(S) == ;
4 T T T
2| s | P(FIsa) NN T
F F 0 6
F T 1 7 T 0 T
T F 1/2 3 0
T T 1 9 1 T
10 0



Hard EM

* Less sensitive than soft EM to the exact parameter values of your
initial guess.

* ... however, the final estimate from hard EM is often not as good as
the estimate from soft EM.

» Often, the best approach is to use hard EM until convergence, then
use the values from hard EM to initialize soft EM.



Outline

* Parameter Learning
e from Fully Observed data: Maximum Likelihood
* from Partially Observed data: Expectation Maximization
e from Partially Observed data: Hard EM

* Structure Learning
* The usual method: knowledge engineering



Knowledge engineering

. Find somebody who knows a lot about the problem you’re
trying to model (flying cows, or burglars in Los Angeles, or

whatever).
. Get them to tell you which variables depend on which others.
. Draw corresponding circles and arrows.
. Done! Proceed to parameter estimation.



Example' Bayesian diagnostic model for the symptom
nosound”

s the problem go when .

— 10
6 Is DTC U200328 logged...

G
Rs " i R

V

i;—-—/“‘

S
SYS NoSound

Huang, McMurran, Dhadyalla & Jones, ”Probability-based
vehicle fault diagnosis: Bayesian network method,” 2008

Fig. 6 Bayesian diagnostic model for the symptom “no sound”



Example Bayes Network: speech acoustics and speech
appearance depend on glottis, tongue, and lip positions

~phone_index_glottis

phone_name_glottis

phone_index_tongue

phone_name_tongue

phone_index_lips

phone_name_lips

\
\ observations

Audiovisual Speech Recognition with Articulator Positions as Hidden Variables

Mark Hasegawa-Johnson, Karen Livescu, Partha Lal and Kate Saenko

International Congress on Phonetic Sciences 1719:299-302, 2007


http://isle.illinois.edu/sst/pubs/2007/hasegawa-johnson07icphs.pdf

Outline

* Parameter Learning
e from Fully Observed data: Maximum Likelihood
* from Partially Observed data: Expectation Maximization
e from Partially Observed data: Hard EM

* Structure Learning
* The usual method: knowledge engineering
* An interesting recent method: causal analysis



Causal analysis

Suppose you know that you have V variables X, ... ,Xy, but you don’t know which variables
depend on which others. You can learn this from the data:

For every possible ordering of the variables (there are V! possible orderings):
1. Create a blank initial network

2. For each variable in this ordering, i=1to V:
a. add variable X; to the network

b. Check your training data. If there is any variable X;, ... ,X;; that CHANGES the
probability of X;=1, then add that variable to the set Parents(X;) such that
P(XI | ParentS(X,)) = P(XI | Xll Xi—l)

3. Count the number of edges in the graph with this ordering.

Choose the graph with the smallest number of edges.



Example: The Los Angeles burglar alarm

e Suppose we choose the ordering M, J, A, B, E



Example: The Los Angeles burglar alarm

e Suppose we choose the ordering M, J, A, B, E



Example: The Los Angeles burglar alarm

e Suppose we choose the ordering M, J, A, B, E



Example: The Los Angeles burglar alarm

e Suppose we choose the ordering M, J, A, B, E




Example: The Los Angeles burglar alarm

e Suppose we choose the ordering M, J, A, B, E




Example: The Los Angeles burglar alarm

e Suppose we choose the ordering M, J, A, B, E




Example: The Los Angeles burglar alarm

e Suppose we choose the ordering M, J, A, B, E

Earthquake



Example: The Los Angeles burglar alarm

e Suppose we choose the ordering M, J, A, B, E

Earthquake



Example: The Los Angeles burglar alarm

g ®

* Deciding conditional independence is hard in noncausal directions
* The causal direction seems much more natural

Earthquake

Burga

* Network is less compact: 1+2+4+ 2+ 4 =13 numbers needed (vs.
1+1+4+2+2=10 for the causal ordering)



Why store it in causal order? A: Saves
memory

* Suppose we have a Boolean variable X; with k Boolean parents. How many rows
does its conditional probability table have?

» 2K rows for all the combinations of parent values
* Each row requires one number for P(X; = true | parent values)

* If each variable has no more than k parents, how many numbers does the
complete network require?

e O(n - 2X) numbers — vs. O(2") for the full joint distribution
* How many nodes for the burglary network?

1+1+4+2+2=10 numbers (vs. 2°-1 =31) /@)

@’/@\@



Parameter and Structure Learning for
Bayesian Networks

* Maximum Likelihood (ML):

# days (A=a, S=s, F
P(FIS=s,A=aqa) = ys )

# days (A=a, S=5s)

* Expectation Maximization (EM):
P(FIS = 5,4 = )_E[#daysAza,st, F]
- AT AT E[#daysA =a, S = 5]

* Knowledge Engineering: ask an expert.

* Causal Analysis: construct all possible graphs, keep the one with
the fewest edges.



