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Topics covered

• Lecture 2: Search
• Lecture 3: A*
• Lecture 4: Heuristics
• Lecture 5: Probability
• Lecture 6: Naïve Bayes
• Lecture 7: Classifiers 



Lecture 2: Search

• Search in general:
• State: enough info to decide if you’re at the goal state
• Node: state + information about the path taken to get here (tree search)
• Frontier
• Explored Set/Explored Dict

• Breadth-first search (BFS):
• Frontier is a FIFO queue
• Time complexity and space complexity are both 𝑂{𝑏!}.  
• Optimal, if each action has the same cost.

• Depth-first search (DFS):
• Frontier is a LIFO stack
• Time complexity is 𝑂{𝑏"}, but space complexity is only 𝑂{𝑚𝑏}.
• Not optimal. Not even complete.



Lecture 3: A*

• Uniform Cost Search: Like BFS, but for variable-cost actions
• Frontier is a priority queue, sorted by g(n)
• Finds the optimal path

• Greedy Search
• Frontier is a priority queue, sorted by h(n)
• Not optimal.  Not even complete.

• A* Search: 
• Frontier is a priority queue, sorted by f(n)=g(n)+h(n)
• Optimal and complete, as long as h(n) is admissible



Lecture 4: Heuristics

• Consistent
• If heuristic is consistent, A* works with an explored set
• With an inconsistent heuristic, A* works (1) with an explored dict, or (2) with 

neither an explored set nor an explored dict.

• Zero = UCS
• Dominant
• Designing a heuristic by simplifying the problem
• Dominant heuristic as the max of many heuristics



Lecture 5: Probability

• Axioms of probability: non-negative, max 1, probability of union
• Events
• Random variables
• Conditional probability
• Marginal probability
• Independence
• Conditional Independence



Lecture 6: Naïve Bayes

• Class labels and observations
• Using Bayes’ rule to estimate the most probable class label
• The naïve Bayes assumption: observations conditionally independent 

given the class label
• Maximum likelihood estimation of the model parameters
• Laplace smoothing



Lecture 7: Classifiers

• The Bayesian classifier: MAP = MPE
• False alarms, missed detections, and confusion matrix
• Training a classifier, choosing a classifier, evaluating a classifier
• Nearest-neighbor classifier
• Linear classifiers
• Implementation of symbolic logic using a linear classifier



Some sample problems, from the practice 
exam
• Question 5: BFS, DFS, UCS, A*
• Question 8: Axioms of probability
• Question 6: Naïve Bayes



Question 5: BFS, DFS, UCS and A*

S denotes the start state, G denotes the goal state, step costs are written 
next to each arc.  Assume that ties are broken alphabetically.



5(a): What path does BFS return?

• Frontier starts with {S}
• S is popped, A and G are inserted, so it contains {A,G}
• A is popped, B and C are inserted, so it contains {G,B,C}
• G is popped.  It is the goal state.

Answer: S,G



5(b): What path does DFS return?

• Frontier starts with {S}
• S is popped, A and G are inserted, so it contains {A,G}
• A is popped, B and C are inserted, so it contains {B,C,G}
• B is popped, D is inserted, so it contains {D,C,G}
• D is popped, G is inserted, so it contains {G,D,C,G}
• G is popped.  It is the goal state.

Answer: S,A,B,D,G



5(c): What path does UCS return?

• Frontier starts with {0:S}
• S is popped, A and G are inserted, so it contains {1:A,12:G}
• A is popped, B and C are inserted, so it contains {2:C,4:B,12:G}
• C is popped, D and G are inserted, so frontier contains {3:D,4:B,4:G,12:G}
• D is popped, G is inserted, so frontier contains {4:B,4:G,6:G,12:G}
• B is popped, and if there is no explored set, D is inserted, so frontier 

contains {4:G, 6:G, 7:D, 12:G}
• G is popped.  It is the goal.

Answer: S,A,C,G – the optimal path



5(d): Heuristic h1

Heuristic h1 has the following values:
h1(S)=5, h1(A)=3, h1(B)=6, h1(C)=2, h1(D)=3, h1(G)=0

• Is it admissible?
No.  h1(S) = 5, but d(S)=4.

• Is it consistent?
No.  An inadmissible heuristic is never consistent.



5(d): Heuristic h2

Heuristic h2 has the following values:
h2(S)=4, h2(A)=2, h2(B)=6, h2(C)=1, h2(D)=3, h2(G)=0

• Is it admissible?
Yes.  h2(n) <= d(n) for all nodes n.

• Is it consistent?
No.  d(S)-d(A)=1, but h2(S)-h2(A)=2. 



Question 8: Axioms of probability

Use the axioms of probability to prove that P(¬A) = 1−P(A).



Question 8: Axioms of probability

The axioms of probability are:
1. Non-negative: 𝑃(𝐴) ≥ 0 for any event A, with zero probability for 

impossible events.
2. Max 1: If Ω is the union of all possible events, 𝑃(Ω) = 1.
3. Probability of union: 𝑃(𝐴 ∨ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∧ 𝐵)
Use the axioms of probability to prove that P(¬A) = 1−P(A).



Question 8: Axioms of probability

The axioms of probability are:
1. Non-negative: 𝑃(𝐴) ≥ 0 for any event A, with zero probability for 

impossible events.
2. Max 1: If Ω is the union of all possible events, 𝑃(Ω) = 1.
3. Probability of union: 𝑃(𝐴 ∨ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∧ 𝐵)
Use the axioms of probability to prove that P(¬A) = 1−P(A).
Step 1: Either A occurs, or ¬A occurs.  Therefore the union 𝐴 ∨ ¬𝐴 is 
the union of all possible events, therefore P 𝐴 ∨ ¬𝐴 = 1.



Question 8: Axioms of probability

The axioms of probability are:
1. Non-negative: 𝑃(𝐴) ≥ 0 for any event A, with zero probability for 

impossible events.
2. Max 1: If Ω is the union of all possible events, 𝑃(Ω) = 1.
3. Probability of union: 𝑃(𝐴 ∨ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∧ 𝐵)
Use the axioms of probability to prove that P(¬A) = 1−P(A).
Step 1: Either A occurs, or ¬A occurs.  Therefore the union 𝐴 ∨ ¬𝐴 is 
the union of all possible events, therefore P 𝐴 ∨ ¬𝐴 = 1.
Step 2: P 𝐴 ∨ ¬𝐴 = 𝑃 𝐴 + 𝑃 ¬𝐴 − 𝑃(𝐴 ∧ ¬𝐴).  



Question 8: Axioms of probability

The axioms of probability are:
1. Non-negative: 𝑃(𝐴) ≥ 0 for any event A, with zero probability for 

impossible events.
2. Max 1: If Ω is the union of all possible events, 𝑃(Ω) = 1.
3. Probability of union: 𝑃(𝐴 ∨ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∧ 𝐵)
Use the axioms of probability to prove that P(¬A) = 1−P(A).
Step 1: Either A occurs, or ¬A occurs.  Therefore the union 𝐴 ∨ ¬𝐴 is 
the union of all possible events, therefore P 𝐴 ∨ ¬𝐴 = 1.
Step 2: P 𝐴 ∨ ¬𝐴 = 𝑃 𝐴 + 𝑃 ¬𝐴 − 𝑃(𝐴 ∧ ¬𝐴).  
Step 3: A and ¬A is impossible, so 𝑃 𝐴 ∧ ¬𝐴 = 0, therefore 

P 𝐴 ∨ ¬𝐴 = 𝑃 𝐴 + 𝑃 ¬𝐴



Question 8: Axioms of probability

The axioms of probability are:
1. Non-negative: 𝑃(𝐴) ≥ 0 for any event A, with zero probability for 

impossible events.
2. Max 1: If Ω is the union of all possible events, 𝑃(Ω) = 1.
3. Probability of union: 𝑃(𝐴 ∨ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∧ 𝐵)
Use the axioms of probability to prove that P(¬A) = 1−P(A).
Step 1: Either A occurs, or ¬A occurs.  Therefore the union 𝐴 ∨ ¬𝐴 is the 
union of all possible events, therefore P 𝐴 ∨ ¬𝐴 = 1.
Step 2: P 𝐴 ∨ ¬𝐴 = 𝑃 𝐴 + 𝑃 ¬𝐴 − 𝑃(𝐴 ∧ ¬𝐴).  
Step 3: A and ¬A is impossible, so 𝑃 𝐴 ∧ ¬𝐴 = 0.
Step 4:  1 = 𝑃 𝐴 + 𝑃 ¬𝐴 , i.e., P(¬A) = 1−P(A).



Question 6: Naïve Bayes

You’re creating a sentiment classifier. Let Y=1 for positive sentiment, 
Y=0 for negative sentiment.  You have a training corpus with four movie 
reviews:

Index Sentiment Review

1 1 what a great movie
2 1 I love this film

3 0 what a horrible movie
4 0 I hate this film



Question 6(a-b)

(a) What’s the maximum likelihood estimate of P(Y=1)?
Solution: 2/4

(b) What are maximum likelihood estimates of P(W|Y=0) and P(W|Y=1)?
Solution: each part of the corpus has 8 words, so ML estimates are:

Index Sentiment Review
1 1 what a great movie

2 1 I love this film

3 0 what a horrible movie
4 0 I hate this film

P(W|Y)

Y what a movie I this film great love horrible hate

1 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 0 0
0 1/8 1/8 1/8 1/8 1/8 1/8 0 0 1/8 1/8



Question 6(c)

Use Laplace smoothing, with k=1.
Solution: add 10 to each denominator, and 1 to each numerator:

Index Sentiment Review
1 1 what a great movie

2 1 I love this film

3 0 what a horrible movie
4 0 I hate this film

P(W|Y)

Y what a movie I this film great love horrible hate
1 2/18 2/18 2/18 2/18 2/18 2/18 2/18 2/18 1/18 1/18

0 2/18 2/18 2/18 2/18 2/18 2/18 1/18 1/18 2/18 2/18



Question 6(d)
Using methods unknown to your, your professor has come up with the 
following estimates:

P(W|Y

Y great love horrible hate
1 0.01 0.01 0.005 0.005

0 0.005 0.005 0.01 0.01

…and P(Y=1)=0.5.  All other words are “out of vocabulary;” you can treat them 
as if they had P(W|Y=0)=P(W|Y=1)=1.  Under these assumptions, what is the 
probability that the following review is a positive review:

I’m horrible fond of this movie, and I hate anyone who insults it.



Question 6(d) Solution
P(W|Y

Y great love horrible hate

1 0.01 0.01 0.005 0.005
0 0.005 0.005 0.01 0.01

Solution:
The only words not “out of vocabulary” are “horrible” and “hate.”  We have
P(Y=0,horrible,hate)=P(Y=0)P(horrible|Y=0)P(hate|Y=0) = 0.5(0.01)(0.01)
P(Y=1,horrible,hate)=P(Y=1)P(horrible|Y=1)P(hate|Y=1) = 0.5(0.005)(0.005)

Using Bayes’ rule:

𝑃 𝑌 = 1 horrible, hate =
0.5(0.005)(0.005)

0.5(0.005)(0.005) + 0.5(0.01)(0.01)

I’m horrible fond of this movie, and I hate anyone who insults it.
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