Topics covered

• Lecture 2: Search
• Lecture 3: A*
• Lecture 4: Heuristics
• Lecture 5: Probability
• Lecture 6: Naïve Bayes
• Lecture 7: Classifiers
Lecture 2: Search

- Search in general:
 - State: enough info to decide if you’re at the goal state
 - Node: state + information about the path taken to get here (tree search)
 - Frontier
 - Explored Set/Explored Dict

- Breadth-first search (BFS):
 - Frontier is a FIFO queue
 - Time complexity and space complexity are both $O\{b^d\}$.
 - Optimal, if each action has the same cost.

- Depth-first search (DFS):
 - Frontier is a LIFO stack
 - Time complexity is $O\{b^m\}$, but space complexity is only $O\{mb\}$.
 - Not optimal. Not even complete.
Lecture 3: A*

- **Uniform Cost Search**: Like BFS, but for variable-cost actions
 - Frontier is a priority queue, sorted by $g(n)$
 - Finds the optimal path

- **Greedy Search**
 - Frontier is a priority queue, sorted by $h(n)$
 - Not optimal. Not even complete.

- **A* Search**:
 - Frontier is a priority queue, sorted by $f(n)=g(n)+h(n)$
 - Optimal and complete, as long as $h(n)$ is admissible
Lecture 4: Heuristics

- **Consistent**
 - If heuristic is consistent, A* works with an explored set
 - With an inconsistent heuristic, A* works (1) with an explored dict, or (2) with neither an explored set nor an explored dict.

- **Zero = UCS**

- **Dominant**

- Designing a heuristic by simplifying the problem

- Dominant heuristic as the max of many heuristics
Lecture 5: Probability

• Axioms of probability: non-negative, max 1, probability of union
• Events
• Random variables
• Conditional probability
• Marginal probability
• Independence
• Conditional Independence
Lecture 6: Naïve Bayes

• Class labels and observations
• Using Bayes’ rule to estimate the most probable class label
• The naïve Bayes assumption: observations conditionally independent given the class label
• Maximum likelihood estimation of the model parameters
• Laplace smoothing
Lecture 7: Classifiers

• The Bayesian classifier: MAP = MPE
• False alarms, missed detections, and confusion matrix
• Training a classifier, choosing a classifier, evaluating a classifier
• Nearest-neighbor classifier
• Linear classifiers
• Implementation of symbolic logic using a linear classifier
Some sample problems, from the practice exam

• Question 5: BFS, DFS, UCS, A*
• Question 8: Axioms of probability
• Question 6: Naïve Bayes
Question 5: BFS, DFS, UCS and A*

S denotes the start state, G denotes the goal state, step costs are written next to each arc. Assume that ties are broken alphabetically.
5(a): What path does BFS return?

- Frontier starts with \{S\}
- S is popped, A and G are inserted, so it contains \{A,G\}
- A is popped, B and C are inserted, so it contains \{G,B,C\}
- G is popped. It is the goal state.

Answer: S,G
5(b): What path does DFS return?

- Frontier starts with \{S\}
- S is popped, A and G are inserted, so it contains \{A,G\}
- A is popped, B and C are inserted, so it contains \{B,C,G\}
- B is popped, D is inserted, so it contains \{D,C,G\}
- D is popped, G is inserted, so it contains \{G,D,C,G\}
- G is popped. It is the goal state.

Answer: S,A,B,D,G
5(c): What path does UCS return?

- Frontier starts with {0:S}
- S is popped, A and G are inserted, so it contains {1:A,12:G}
- A is popped, B and C are inserted, so it contains {2:C,4:B,12:G}
- C is popped, D and G are inserted, so frontier contains {3:D,4:B,4:G,12:G}
- D is popped, G is inserted, so frontier contains {4:B,4:G,6:G,12:G}
- B is popped, and if there is no explored set, D is inserted, so frontier contains {4:G, 6:G, 7:D, 12:G}
- G is popped. It is the goal.

Answer: S,A,C,G – the optimal path
5(d): Heuristic h_1

Heuristic h_1 has the following values:
$h_1(S)=5$, $h_1(A)=3$, $h_1(B)=6$, $h_1(C)=2$, $h_1(D)=3$, $h_1(G)=0$

• Is it admissible?
No. $h_1(S) = 5$, but $d(S)=4$.

• Is it consistent?
No. An inadmissible heuristic is never consistent.
5(d): Heuristic h2

Heuristic h2 has the following values:
h2(S)=4, h2(A)=2, h2(B)=6, h2(C)=1, h2(D)=3, h2(G)=0

• Is it admissible?
Yes. h2(n) <= d(n) for all nodes n.

• Is it consistent?
No. d(S)-d(A)=1, but h2(S)-h2(A)=2.
Question 8: Axioms of probability

Use the axioms of probability to prove that $P(\neg A) = 1 - P(A)$.
Question 8: Axioms of probability

The axioms of probability are:

1. Non-negative: \(P(A) \geq 0 \) for any event \(A \), with zero probability for impossible events.
2. Max 1: If \(\Omega \) is the union of all possible events, \(P(\Omega) = 1 \).
3. Probability of union: \(P(A \vee B) = P(A) + P(B) - P(A \wedge B) \)

Use the axioms of probability to prove that \(P(\neg A) = 1 - P(A) \).
Question 8: Axioms of probability

The axioms of probability are:

1. Non-negative: $P(A) \geq 0$ for any event A, with zero probability for impossible events.
2. Max 1: If Ω is the union of all possible events, $P(\Omega) = 1$.
3. Probability of union: $P(A \lor B) = P(A) + P(B) - P(A \land B)$

Use the axioms of probability to prove that $P(\neg A) = 1 - P(A)$.

Step 1: Either A occurs, or $\neg A$ occurs. Therefore the union $A \lor \neg A$ is the union of all possible events, therefore $P(A \lor \neg A) = 1$.
Question 8: Axioms of probability

The axioms of probability are:

1. Non-negative: $P(A) \geq 0$ for any event A, with zero probability for impossible events.
2. Max 1: If Ω is the union of all possible events, $P(\Omega) = 1$.
3. Probability of union: $P(A \lor B) = P(A) + P(B) - P(A \land B)$

Use the axioms of probability to prove that $P(\neg A) = 1 - P(A)$.

Step 1: Either A occurs, or $\neg A$ occurs. Therefore the union $A \lor \neg A$ is the union of all possible events, therefore $P(A \lor \neg A) = 1$.

Step 2: $P(A \lor \neg A) = P(A) + P(\neg A) - P(A \land \neg A)$.
Question 8: Axioms of probability

The axioms of probability are:

1. Non-negative: \(P(A) \geq 0 \) for any event \(A \), with zero probability for impossible events.

2. Max 1: If \(\Omega \) is the union of all possible events, \(P(\Omega) = 1 \).

3. Probability of union: \(P(A \lor B) = P(A) + P(B) - P(A \land B) \)

Use the axioms of probability to prove that \(P(\neg A) = 1 - P(A) \).

Step 1: Either \(A \) occurs, or \(\neg A \) occurs. Therefore the union \(A \lor \neg A \) is the union of all possible events, therefore \(P(A \lor \neg A) = 1 \).

Step 2: \(P(A \lor \neg A) = P(A) + P(\neg A) - P(A \land \neg A) \).

Step 3: \(A \) and \(\neg A \) is impossible, so \(P(A \land \neg A) = 0 \), therefore \(P(A \lor \neg A) = P(A) + P(\neg A) \).
Question 8: Axioms of probability

The axioms of probability are:

1. Non-negative: \(P(A) \geq 0 \) for any event \(A \), with zero probability for impossible events.

2. Max 1: If \(\Omega \) is the union of all possible events, \(P(\Omega) = 1 \).

3. Probability of union: \(P(A \lor B) = P(A) + P(B) - P(A \land B) \)

Use the axioms of probability to prove that \(P(\neg A) = 1 - P(A) \).

Step 1: Either \(A \) occurs, or \(\neg A \) occurs. Therefore the union \(A \lor \neg A \) is the union of all possible events, therefore \(P(A \lor \neg A) = 1 \).

Step 2: \(P(A \lor \neg A) = P(A) + P(\neg A) - P(A \land \neg A) \).

Step 3: \(A \) and \(\neg A \) is impossible, so \(P(A \land \neg A) = 0 \).

Step 4: \(1 = P(A) + P(\neg A) \), i.e., \(P(\neg A) = 1 - P(A) \).
Question 6: Naïve Bayes

You’re creating a sentiment classifier. Let Y=1 for positive sentiment, Y=0 for negative sentiment. You have a training corpus with four movie reviews:

<table>
<thead>
<tr>
<th>Index</th>
<th>Sentiment</th>
<th>Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>what a great movie</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>I love this film</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>what a horrible movie</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>I hate this film</td>
</tr>
</tbody>
</table>
Question 6(a-b)

(a) What’s the maximum likelihood estimate of $P(Y=1)$?
Solution: $2/4$

(b) What are maximum likelihood estimates of $P(W|Y=0)$ and $P(W|Y=1)$?
Solution: each part of the corpus has 8 words, so ML estimates are:

<table>
<thead>
<tr>
<th>Index</th>
<th>Sentiment</th>
<th>Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>what a great movie</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>I love this film</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>what a horrible movie</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>I hate this film</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y</th>
<th>what</th>
<th>a</th>
<th>movie</th>
<th>l</th>
<th>this</th>
<th>film</th>
<th>great</th>
<th>love</th>
<th>horrible</th>
<th>hate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>1/8</td>
<td>0</td>
<td>0</td>
<td>1/8</td>
<td>1/8</td>
</tr>
</tbody>
</table>
Question 6(c)

Use Laplace smoothing, with k=1.

Solution: add 10 to each denominator, and 1 to each numerator:

<table>
<thead>
<tr>
<th>Index</th>
<th>Sentiment</th>
<th>Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>what a great movie</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>I love this film</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>what a horrible movie</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>I hate this film</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y</th>
<th>what</th>
<th>a</th>
<th>movie</th>
<th>I</th>
<th>this</th>
<th>film</th>
<th>great</th>
<th>love</th>
<th>horrible</th>
<th>hate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2/18</td>
<td>2/18</td>
<td>2/18</td>
<td>2/18</td>
<td>2/18</td>
<td>2/18</td>
<td>2/18</td>
<td>1/18</td>
<td>1/18</td>
<td>1/18</td>
</tr>
<tr>
<td>0</td>
<td>2/18</td>
<td>2/18</td>
<td>2/18</td>
<td>2/18</td>
<td>2/18</td>
<td>2/18</td>
<td>1/18</td>
<td>1/18</td>
<td>2/18</td>
<td>2/18</td>
</tr>
</tbody>
</table>
Question 6(d)

Using methods unknown to your, your professor has come up with the following estimates:

	P(W	Y)		
	great	love	horrible	hate
Y				
1	0.01	0.01	0.005	0.005
0	0.005	0.005	0.01	0.01

...and P(Y=1)=0.5. All other words are “out of vocabulary;” you can treat them as if they had P(W|Y=0)=P(W|Y=1)=1. Under these assumptions, what is the probability that the following review is a positive review:

I’m horrible fond of this movie, and I hate anyone who insults it.
I’m horrible fond of this movie, and I hate anyone who insults it.

Solution:
The only words not “out of vocabulary” are “horrible” and “hate.” We have

\[
P(Y=0, \text{horrible, hate}) = P(Y=0)P(\text{horrible} | Y=0)P(\text{hate} | Y=0) = 0.5(0.01)(0.01)
\]

\[
P(Y=1, \text{horrible, hate}) = P(Y=1)P(\text{horrible} | Y=1)P(\text{hate} | Y=1) = 0.5(0.005)(0.005)
\]

Using Bayes’ rule:

\[
P(Y = 1 | \text{horrible, hate}) = \frac{0.5(0.005)(0.005)}{0.5(0.005)(0.005) + 0.5(0.01)(0.01)}
\]
Topics covered

• Lecture 2: Search
• Lecture 3: A*
• Lecture 4: Heuristics
• Lecture 5: Probability
• Lecture 6: Naïve Bayes
• Lecture 7: Classifiers