CS440/ECE448

Lecture 11: Exam 1 Review

3/3/2021

Topics covered

- Lecture 2: Search
- Lecture 3: A*
- Lecture 4: Heuristics
- Lecture 5: Probability
- Lecture 6: Naïve Bayes
- Lecture 7: Classifiers

Lecture 2: Search

- Search in general:
- State: enough info to decide if you're at the goal state
- Node: state + information about the path taken to get here (tree search)
- Frontier
- Explored Set/Explored Dict
- Breadth-first search (BFS):
- Frontier is a FIFO queue
- Time complexity and space complexity are both $O\left\{b^{d}\right\}$.
- Optimal, if each action has the same cost.
- Depth-first search (DFS):
- Frontier is a LIFO stack
- Time complexity is $O\left\{b^{m}\right\}$, but space complexity is only $O\{m b\}$.
- Not optimal. Not even complete.

Lecture 3: A^{*}

- Uniform Cost Search: Like BFS, but for variable-cost actions
- Frontier is a priority queue, sorted by $\mathrm{g}(\mathrm{n})$
- Finds the optimal path
- Greedy Search
- Frontier is a priority queue, sorted by $h(n)$
- Not optimal. Not even complete.
- A* Search:
- Frontier is a priority queue, sorted by $\mathrm{f}(\mathrm{n})=\mathrm{g}(\mathrm{n})+\mathrm{h}(\mathrm{n})$
- Optimal and complete, as long as $h(n)$ is admissible

Lecture 4: Heuristics

- Consistent
- If heuristic is consistent, A^{*} works with an explored set
- With an inconsistent heuristic, A^{*} works (1) with an explored dict, or (2) with neither an explored set nor an explored dict.
- Zero = UCS
- Dominant
- Designing a heuristic by simplifying the problem
- Dominant heuristic as the max of many heuristics

Lecture 5: Probability

- Axioms of probability: non-negative, max 1, probability of union
- Events
- Random variables
- Conditional probability
- Marginal probability
- Independence
- Conditional Independence

Lecture 6: Naïve Bayes

- Class labels and observations
- Using Bayes' rule to estimate the most probable class label
- The naïve Bayes assumption: observations conditionally independent given the class label
- Maximum likelihood estimation of the model parameters
- Laplace smoothing

Lecture 7: Classifiers

- The Bayesian classifier: MAP = MPE
- False alarms, missed detections, and confusion matrix
- Training a classifier, choosing a classifier, evaluating a classifier
- Nearest-neighbor classifier
- Linear classifiers
- Implementation of symbolic logic using a linear classifier

Some sample problems, from the practice exam

- Question 5: BFS, DFS, UCS, A*
- Question 8: Axioms of probability
- Question 6: Naïve Bayes

Question 5: BFS, DFS, UCS and A*

S denotes the start state, G denotes the goal state, step costs are written next to each arc. Assume that ties are broken alphabetically.

5(a): What path does BFS return?

- Frontier starts with $\{\mathrm{S}\}$
- S is popped, A and G are inserted, so it contains $\{A, G\}$
- A is popped, B and C are inserted, so it contains $\{G, B, C\}$
- G is popped. It is the goal state.

Answer: S,G

5(b): What path does DFS return?

- Frontier starts with $\{\mathrm{S}\}$
- S is popped, A and G are inserted, so it contains $\{A, G\}$
- A is popped, B and C are inserted, so it contains $\{B, C, G\}$
- B is popped, D is inserted, so it contains $\{D, C, G\}$
- D is popped, G is inserted, so it contains $\{G, D, C, G\}$
- G is popped. It is the goal state.

Answer: $\mathrm{S}, \mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{G}$

5(c): What path does UCS return?

- Frontier starts with $\{0: \mathrm{S}\}$
- S is popped, A and G are inserted, so it contains $\{1: \mathrm{A}, 12: \mathrm{G}\}$
- A is popped, B and C are inserted, so it contains $\{2: C, 4: B, 12: G\}$
- C is popped, D and G are inserted, so frontier contains \{3:D,4:B,4:G,12:G\}
- D is popped, G is inserted, so frontier contains $\{4: B, 4: G, 6: G, 12: G\}$
- B is popped, and if there is no explored set, D is inserted, so frontier contains \{4:G, 6:G, 7:D, 12:G \}
- G is popped. It is the goal.

Answer: S,A,C,G - the optimal path

5(d): Heuristic h1

Heuristic $h 1$ has the following values: $h 1(S)=5, h 1(A)=3, h 1(B)=6, h 1(C)=2, h 1(D)=3, h 1(G)=0$

- Is it admissible?

No. $h 1(S)=5$, but $d(S)=4$.

- Is it consistent?

No. An inadmissible heuristic is never consistent.

5(d): Heuristic h2

Heuristic h 2 has the following values: $h 2(S)=4, h 2(A)=2, h 2(B)=6, h 2(C)=1, h 2(D)=3, h 2(G)=0$

- Is it admissible?

Yes. $h 2(n)<=d(n)$ for all nodes n.

- Is it consistent?

No. $d(S)-d(A)=1$, but h2(S)-h2(A)=2.

Question 8: Axioms of probability

Use the axioms of probability to prove that $P(\neg A)=1-P(A)$.

Question 8: Axioms of probability

The axioms of probability are:

1. Non-negative: $P(A) \geq 0$ for any event A , with zero probability for impossible events.
2. Max 1: If Ω is the union of all possible events, $P(\Omega)=1$.
3. Probability of union: $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$

Use the axioms of probability to prove that $\mathrm{P}(\neg \mathrm{A})=1-\mathrm{P}(\mathrm{A})$.

Question 8: Axioms of probability

The axioms of probability are:

1. Non-negative: $P(A) \geq 0$ for any event A , with zero probability for impossible events.
2. Max 1: If Ω is the union of all possible events, $P(\Omega)=1$.
3. Probability of union: $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$

Use the axioms of probability to prove that $\mathrm{P}(\neg \mathrm{A})=1-\mathrm{P}(\mathrm{A})$.
Step 1: Either A occurs, or $\neg \mathrm{A}$ occurs. Therefore the union $A \vee \neg A$ is the union of all possible events, therefore $\mathrm{P}(A \vee \neg A)=1$.

Question 8: Axioms of probability

The axioms of probability are:

1. Non-negative: $P(A) \geq 0$ for any event A , with zero probability for impossible events.
2. Max 1: If Ω is the union of all possible events, $P(\Omega)=1$.
3. Probability of union: $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$

Use the axioms of probability to prove that $\mathrm{P}(\neg \mathrm{A})=1-\mathrm{P}(\mathrm{A})$.
Step 1: Either A occurs, or $\neg \mathrm{A}$ occurs. Therefore the union $A \vee \neg A$ is the union of all possible events, therefore $\mathrm{P}(A \vee \neg A)=1$.
Step 2: $\mathrm{P}(A \vee \neg A)=P(A)+P(\neg A)-P(A \wedge \neg A)$.

Question 8: Axioms of probability

The axioms of probability are:

1. Non-negative: $P(A) \geq 0$ for any event A , with zero probability for impossible events.
2. Max 1: If Ω is the union of all possible events, $P(\Omega)=1$.
3. Probability of union: $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$

Use the axioms of probability to prove that $\mathrm{P}(-\mathrm{A})=1-\mathrm{P}(\mathrm{A})$.
Step 1: Either A occurs, or $\neg \mathrm{A}$ occurs. Therefore the union $A \vee \neg A$ is the union of all possible events, therefore $\mathrm{P}(A \vee \neg A)=1$.
Step 2: $\mathrm{P}(A \vee \neg A)=P(A)+P(\neg A)-P(A \wedge \neg A)$.
Step 3: A and $\neg \mathrm{A}$ is impossible, so $P(A \wedge \neg A)=0$, therefore

$$
\mathrm{P}(A \vee \neg A)=P(A)+P(\neg A)
$$

Question 8: Axioms of probability

The axioms of probability are:

1. Non-negative: $P(A) \geq 0$ for any event A , with zero probability for impossible events.
2. Max 1: If Ω is the union of all possible events, $P(\Omega)=1$.
3. Probability of union: $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$

Use the axioms of probability to prove that $\mathrm{P}(\neg \mathrm{A})=1-\mathrm{P}(\mathrm{A})$.
Step 1: Either A occurs, or \neg A occurs. Therefore the union $A \vee \neg A$ is the union of all possible events, therefore $\mathrm{P}(A \vee \neg A)=1$.
Step 2: $\mathrm{P}(A \vee \neg A)=P(A)+P(\neg A)-P(A \wedge \neg A)$.
Step 3: A and $\neg \mathrm{A}$ is impossible, so $P(A \wedge \neg A)=0$.
Step 4: $1=P(A)+P(\neg A)$, i.e., $\mathrm{P}(\neg \mathrm{A})=1-\mathrm{P}(\mathrm{A})$.

Question 6: Naïve Bayes

You're creating a sentiment classifier. Let $Y=1$ for positive sentiment, $Y=0$ for negative sentiment. You have a training corpus with four movie reviews:

Index	Sentiment	Review
1	1	what a great movie
2	1	I love this film
3	0	what a horrible movie
4	0	I hate this film

Question 6(a-b)

Index	Sentiment	Review
1	1	what a great movie
2	1	I love this film
3	0	what a horrible movie
4	0	I hate this film

(a) What's the maximum likelihood estimate of $P(Y=1)$?

Solution: 2/4
(b) What are maximum likelihood estimates of $\mathrm{P}(\mathrm{W} \mid \mathrm{Y}=0)$ and $\mathrm{P}(\mathrm{W} \mid \mathrm{Y}=1)$? Solution: each part of the corpus has 8 words, so ML estimates are:

	P(W)Y)									
Y	what	a	movie	l	this	film	great	love	horrible	hate
1	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	0	0
0	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	0	0	$1 / 8$	$1 / 8$

Question 6(c)

Index	Sentiment	Review
1	1	what a great movie
2	1	I love this film
3	0	what a horrible movie
4	0	I hate this film

Use Laplace smoothing, with $\mathrm{k}=1$.
Solution: add 10 to each denominator, and 1 to each numerator:

	P(W)Y)									
Y	what	a	movie	I	this	film	great	love	horrible	hate
1	$2 / 18$	$2 / 18$	$2 / 18$	$2 / 18$	$2 / 18$	$2 / 18$	$2 / 18$	$2 / 18$	$1 / 18$	$1 / 18$
0	$2 / 18$	$2 / 18$	$2 / 18$	$2 / 18$	$2 / 18$	$2 / 18$	$1 / 18$	$1 / 18$	$2 / 18$	$2 / 18$

Question 6(d)

Using methods unknown to your, your professor has come up with the following estimates:

	P(W)Y			
Y	great	love	horrible	hate
1	0.01	0.01	0.005	0.005
0	0.005	0.005	0.01	0.01

...and $P(Y=1)=0.5$. All other words are "out of vocabulary;" you can treat them as if they had $P(W \mid Y=0)=P(W \mid Y=1)=1$. Under these assumptions, what is the probability that the following review is a positive review:

I'm horrible fond of this movie, and I hate anyone who insults it.

Question 6(d) Solution

P(W)				
Y	great	love	horrible	hate
1	0.01	0.01	0.005	0.005
0	0.005	0.005	0.01	0.01

I'm horrible fond of this movie, and I hate anyone who insults it.
Solution:
The only words not "out of vocabulary" are "horrible" and "hate." We have $\mathrm{P}(\mathrm{Y}=0$, horrible, hate $)=\mathrm{P}(\mathrm{Y}=0) \mathrm{P}($ horrible $\mid \mathrm{Y}=0) \mathrm{P}($ hate $\mid \mathrm{Y}=0)=0.5(0.01)(0.01)$ $P(Y=1$, horrible, hate $)=P(Y=1) P($ horrible $\mid Y=1) P($ hate $\mid Y=1)=0.5(0.005)(0.005)$

Using Bayes' rule:

$$
P(Y=1 \mid \text { horrible, hate })=\frac{0.5(0.005)(0.005)}{0.5(0.005)(0.005)+0.5(0.01)(0.01)}
$$

Topics covered

- Lecture 2: Search
- Lecture 3: A*
- Lecture 4: Heuristics
- Lecture 5: Probability
- Lecture 6: Naïve Bayes
- Lecture 7: Classifiers

