
Lecture 10: Back-
Propagation

Mark Hasegawa-Johnson
March 1, 2021

License: CC-BY 4.0. You may remix or redistribute
if you cite the source.

ℎ!
(#)

ℎ!
(%) ℎ&

(!) ℎ'
(%) 1…

ℎ&
(#) ℎ(

(#)

1

1

Outline

• Breaking the constraints of linearity: multi-layer neural nets
• What’s inside a multi-layer neural net?
• Forward-propagation example
• Gradient descent
• Finding the derivative: back-propagation

Biological Inspiration: McCulloch-Pitts
Artificial Neuron, 1943

x1

x2

xD

w1

w2

w3

x3

wD

Input

Weights

.

.

.

Output: u(w×x)

• In 1943, McCulloch & Pitts
proposed that biological neurons
have a nonlinear activation
function (a step function) whose
input is a weighted linear
combination of the currents
generated by other neurons.
• They showed lots of examples of

mathematical and logical
functions that could be computed
using networks of simple neurons
like this.

Biological Inspiration: Neuronal Circuits

• Even the simplest actions
involve more than one neuron,
acting in sequence in a neuronal
circuit.
• One of the simplest neuronal

circuits is a reflex arc, which may
contain just two neurons:
• The sensor neuron detects a

stimulus, and communicates an
electrical signal to …

• The motor neuron, which
activates the muscle.

Illustration of a reflex arc: sensor neuron sends a voltage spike to the
spinal column, where the resulting current causes a spike in a motor

neuron, whose spike activates the muscle.
By MartaAguayo - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=39181552

A McCulloch-Pitts Neuron can compute some logical functions…
When the features are binary (𝑥! ∈
{0,1}), many (but not all!) binary
functions can be re-written as linear
functions. For example, the function

(𝑦 = (𝑥" ∨ 𝑥#)
can be re-written as

(𝑦 = 𝑢 𝑥" + 𝑥# − 0.5

𝑥!

𝑥&

Similarly, the function
(𝑦 = (𝑥" ∧ 𝑥#)

can be re-written as
(𝑦 = 𝑢 𝑥" + 𝑥# − 1.5

𝑥!

𝑥&

… but not all.
“A linear classifier cannot learn an

XOR function.”

• …but a two-layer neural net can
compute an XOR function!

𝑥!

𝑥&

Feature Learning: A way to think about neural nets

For example, consider the XOR problem.

Suppose we create two hidden nodes:

ℎ" 𝑥 = 𝑢 0.5 − 𝑥" − 𝑥#
ℎ# 𝑥 = 𝑢 𝑥" + 𝑥# − 1.5

Then the XOR function (𝑦 = (𝑥"⊕𝑥#) is

given by

(𝑦 = 𝑢 0.5 − ℎ" 𝑥 − ℎ# 𝑥

𝑥!

𝑥& ℎ! �⃗� = 1 up
in this region

ℎ" �⃗� = 1 down
in this region

Here in the middle,
both ℎ" �⃗� and ℎ! �⃗�
are zero.

𝑥!

𝑥&

Outline

• Breaking the constraints of linearity: multi-layer neural nets
• What’s inside a multi-layer neural net?
• Forward-propagation example
• Gradient descent
• Finding the derivative: back-propagation

Multi-layer neural net

• 𝑒!
(%) = excitation of the jth neuron (a.k.a. “node”) in the lth layer
• Computed by adding together inputs from many other neurons, each

weighted by a corresponding connection strength or connection weight, 𝑤!"
($)

• ℎ!
(%) = activation of the jth node in the lth layer
• This is computed by just passing the excitation through a scalar nonlinear

activation function, thus ℎ!
($) = 𝑔(𝑒!

$). The activation functions in different
layers differ, so to be pedantic, sometimes we’ll write ℎ!

($) = 𝑔($) 𝑒!
($) .

Multi-layer neural net

• Given: some training token 𝑥 = [𝑥", … , 𝑥', 1] and its target label 𝑦
• Initialize: ℎ(

()) = 𝑥(
• Forward-propagation: do some magic

• Output: 𝑃(𝑌 = 𝑘|𝑥) = ℎ(
(*)

The magical stuff: layers

• From activation to excitation is a
matrix multiply:

𝑒!
(%) =>

(

𝑤!(
(%)ℎ(

(%+")

• From excitation to activation is a scalar
nonlinearity:

ℎ!
(%) = 𝑔(%) 𝑒!

(%)

1
ℎ"
(%+") ℎ#

(%+") ℎ,
(%+")…

𝑒"
(%) 𝑒#

(%) 𝑒-
(%)…

ℎ"
(%) ℎ#

(%) ℎ-
(%)…

𝑔(%) 𝑔(%) 𝑔(%)

Activation functions

The “activation function,” 𝑔(') " , can be any scalar
nonlinearity. For example:
Logistic Sigmoid:

𝜎 𝛽 =
1

1 + 𝑒)*
, 𝜎+ 𝛽 = 𝜎 𝛽 1 − 𝜎 𝛽

Hyperbolic Tangent (tanh):

tanh 𝛽 =
𝑒* − 𝑒)*

𝑒* + 𝑒)*
, tanh+ 𝛽 = 1 − tanh, 𝛽

Rectified Linear Unit (ReLU):

ReLU 𝛽 = max 0, 𝛽 , ReLU+ 𝛽 = u 𝛽

Outline

• Breaking the constraints of linearity: multi-layer neural nets
• What’s inside a multi-layer neural net?
• Forward-propagation example
• Gradient descent
• Finding the derivative: back-propagation

Example

• Suppose 𝑥 =scalar
• 𝑌 ∈ {0,1}

Initialize
ℎ"
()) = 𝑥, ℎ#

()) = 1

𝑒!
(") =>

(

𝑤!(
(")ℎ(

())

ℎ"
()) ℎ#

())

𝑒"
(") 𝑒#

(") 𝑒.
(")𝑒"

(")
𝑒#
(") 𝑒.

(")

Excitation to Activation: ℎA
(B) = ReLU 𝑒A

(B)

ℎ"
()) ℎ#

())

𝑒"
(") 𝑒#

(") 𝑒.
(")

ℎ"
(") ℎ#

(") ℎ.
(")

𝑔(") 𝑔(") 𝑔(")

ℎ"
(") ℎ#

(") ℎ.
(")

Activation to Excitation: 𝑒A
(C) = ∑D𝑤AD

(C)ℎD
(B)

ℎ"
()) ℎ#

())

𝑒"
(") 𝑒#

(") 𝑒.
(")

ℎ"
(") ℎ#

(") ℎ.
(")

𝑔(") 𝑔(") 𝑔(")

𝑒)
(#) 𝑒"

(#)𝑒)
(#) 𝑒"

(#)

Output: ℎA
(C) = softmax 𝑒A

(C)

ℎ"
()) ℎ#

())

𝑒"
(") 𝑒#

(") 𝑒.
(")

ℎ"
(") ℎ#

(") ℎ.
(")

𝑔(") 𝑔(") 𝑔(")

𝑒)
(#) 𝑒"

(#)

ℎ)
(#) ℎ"

(#)

𝑔(#) 𝑔(#)ℎ)
(#) ℎ"

(#)

ℎ"
()) ℎ#

())

𝑒"
(") 𝑒#

(") 𝑒.
(")

ℎ"
(") ℎ#

(") ℎ.
(")

𝑔(") 𝑔(") 𝑔(")

𝑒)
(#) 𝑒"

(#)

ℎ)
(#) ℎ"

(#)

𝑔(#) 𝑔(#)ℎ)
(#) = 𝑃(𝑌 = 0|𝑥) ℎ"

(#) = 𝑃(𝑌 = 1|𝑥)

Outline

• Breaking the constraints of linearity: multi-layer neural nets
• What’s inside a multi-layer neural net?
• Forward-propagation example
• Gradient descent
• Finding the derivative: back-propagation

Gradient descent: basic idea
• Suppose we have a training token, 𝑥.
• Its target label is 𝑦.
• The neural net produces output (𝑦, which is not 𝑦.
• The difference between 𝑦 and (𝑦 is summarized by some loss function,
ℒ(𝑦, (𝑦).
• The output of the neural net is determined by some parameters, 𝑤!(

(%).
• Then we can improve the network by setting:

𝑤!(
(%) ← 𝑤!(

(%) − 𝜂
𝑑ℒ
𝑑𝑤!(

(%)

Visualizing gradient descent

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Outline

• Breaking the constraints of linearity: multi-layer neural nets
• What’s inside a multi-layer neural net?
• Forward-propagation example
• Gradient descent
• Finding the derivative: back-propagation

Finding the derivative
• OK, how do we find /ℒ

/1&'
(()?

• Well, the only way in which ℒ depends on 𝑤!(
(%) is by way of 𝑒!

(%) :
𝑒!
(%) = ∑(𝑤!(

(%)ℎ(
(%+"). So we could use the chain rule of calculus:
𝑑ℒ
𝑑𝑤!(

(%) =
𝑑ℒ
𝑑𝑒!

(%)×
𝑑𝑒!

(%)

𝑑𝑤!(
(%) =

𝑑ℒ
𝑑𝑒!

(%) ℎ(
(%+")

• So we need to forward-propagate from 𝑥, to find ℎ(
(%+")

• Then we back-propagate, from y, to find /ℒ
/2&

(()

• Then we multiply those two things.

Finding the derivative
• Well… how do we find -ℒ

-/!
(#)?

• Well, the only way in which ℒ depends on 𝑒0
(') is by way of ℎ0

(') : ℎ0
(') =

𝑔(𝑒0
'). So we could use the chain rule of calculus:

𝑑ℒ

𝑑𝑒0
(') =

𝑑ℒ

𝑑ℎ0
(') ×

𝑑ℎ0
(')

𝑑𝑒0
(') =

𝑑ℒ

𝑑ℎ0
(') 𝑔′(𝑒0

')

• So we need to forward-propagate from 𝑥, to find 𝑔(𝑒0
'), and then we look

up its derivative in a table, to find 𝑔′(𝑒0
').

• Then we back-propagate, from 𝑦, to find -ℒ
-1!

(#)

• Then we multiply those two things.

Finding the derivative
• OK, great! Then how do we find -ℒ

-1!
(#)?

• Well, the only way in which ℒ depends on ℎ0
(') is by way of all of the

different nodes in layer l+1: 𝑒2
('34) = ∑0𝑤20

('34)ℎ0
('). So we could use the

chain rule of calculus:
𝑑ℒ

𝑑ℎ0
(') =B

2

𝑑ℒ

𝑑𝑒2
('34) ×

𝑑𝑒2
('34)

𝑑ℎ0
(') =B

2

𝑑ℒ

𝑑𝑒2
('34)𝑤20

('34)

• So we back-propagate, from 𝑦, to find -ℒ

-/%
(#&')

• Then we multiply each of those by the corresponding weight, 𝑤20
('34), and

add them up.

Finding the derivative

• Forward propagate, from 𝑥, to find
ℎ(
(%+") in each layer

• Back-propagate, from 𝑦, to find /ℒ
/2&

(()

in each layer
• Multiply them to get /ℒ

/1&'
((), then

𝑤!(
(%) ← 𝑤!(

(%) − 𝜂
𝑑ℒ
𝑑𝑤!(

(%)
Layer 1

Layer 2

𝑥

ℎ(
(")

Layer 3

ℎ(
(#)

ℎ(
(.)

𝑦

Loss 𝑑ℒ
𝑑𝑒#

(%)

𝑑ℒ
𝑑𝑒#

(!)

𝑑ℒ
𝑑𝑒#

(")

Gradient descent

For example, suppose ℒ = − ln𝑃 𝑌 = 𝑦|𝑥 = − lnℎ3
(*), and the nonlinearity

is ℎ!
(*) = softmax 𝑒!

(*) . Then we have this derivative, from last time:

𝑑 − lnℎ3
(*)

𝑑𝑒!
(*) =

exp 𝑒!
*

∑(4)5+" exp 𝑒(
* − 1 𝑗 = 𝑦

exp 𝑒!
*

∑(4)5+" exp 𝑒(
* − 0 𝑗 ≠ 𝑦

Back-propagation

• Back-propagating excitation back to activation:

𝑑ℒ
𝑑ℎ(

(%) =>
!

𝑤!(
(%6") 𝑑ℒ

𝑑𝑒!
(%6")

• Back-propagating activation back to excitation:

𝑑ℒ
𝑑𝑒(

(%) =
𝑑ℒ
𝑑ℎ(

(%) 𝑔
(%)′ 𝑒(

(%)

Gradient descent to minimize loss

𝑤!(
(%) ← 𝑤!(

(%) − 𝜂
𝑑ℒ
𝑑𝑤!(

% = 𝑤!(
(%) − 𝜂

𝑑ℒ
𝑑𝑒!

(%) ℎ(
(%+")

Outline

• Breaking the constraints of linearity: multi-layer neural nets
• What’s inside a multi-layer neural net?
• Forward-propagation example
• Gradient descent
• Finding the derivative: back-propagation

