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* Breaking the constraints of linearity: multi-layer neural nets
* What's inside a multi-layer neural net?

* Forward-propagation example

* Gradient descent

* Finding the derivative: back-propagation



Biological Inspiration: McCulloch-Pitts
Artificial Neuron, 1943

Input e [n 1943, McCulloch & Pitts
Weights proposed that biological neurons
X have a nonlinear activation

function (a step function) whose
input is a weighted linear
combination of the currents

Output: u(w-x)
P generated by other neurons.

* They showed lots of examples of
mathematical and logical
functions that could be computed

Wo using networks of simple neurons

like this.



Afferent neuron
axon (sensory)

* Even the simplest actions Spinalcord ;AN
involve more than one neuron, o (moton
acting in sequence in a neuronal {*@%’ -
circuit. -
* One of the simplest neuronal Action . g
circuits is a reflex arc, which may Muscle effector)
contain just two neurons: Fingertreceiver) ()
* The sensor neuron detects a ' —
stimulus, and communicates an Source

electrical signal to ...
« The motor neuron, which IIIu.stratlon of a reflex arc: sensor neuron sends a voltage splke to the
spinal column, where the resulting current causes a spike in a motor

activates the muscle. neuron, whose spike activates the muscle.
By MartaAguayo - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=39181552




A McCulloch-Pitts Neuron can compute some logical functions...

When the features are binary (x; € Similarly, the function

{0,1}), many (but not all!) binary Y =(x1 Axy)

functions can be re-written as linear  ,, pe re-written as

functions. ForAexampIe, the function 9 =u(x; + x, — 1.5)
Yy =(x1Vx3)

can be re-written as
y =u(x; +x, —0.5)




... but not all.

“A linear classifier cannot learn an
XOR function.”

...but a two-layer neural net can
compute an XOR function!




Feature Learning: A way to think about neural nets

For example, consider the XOR problem. in this region 7/

Suppose we create two hidden nodes: |||i é‘?
hy (%) =1d
& hl (.X') = 'LI,(OS — X1 — xz) inlt:fis regionown \
£ xl

% h, (x) = u(x1 + Xy, — 1.5) Here in the middle,
X

both h{(X) and h,(X)
are zero.

Then the XOR function y = (x; @ x,) is

[

given by

O

N

% 5; — U(OS — hl(X) — hz (x)) 4\%@ s
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Multi-layer neural net

. ej(l) = excitation of the j*" neuron (a.k.a. “node”) in the I*" layer

 Computed by adding together inputs from many other neurons, each

weighted by a corresponding connection strength or connection weight, Wj(,?

. h]@ = activation of the j*" node in the It" layer

* This is computed by just passing the excitation through a scalar nonlinear
activation function, thus h]@ = g(ej(l)). The activation functions in different

layers differ, so to be pedantic, sometimes we’ll write h]@ = g(l) (ej(l)).



Multi-layer neural net

* Given: some training token x = [x4, ..., Xp, 1] and its target label y

* Initialize: h,go) = Xy
* Forward-propagation: do some magic

« Output: P(Y = k|x) = h{"



The magical stuff: layers

* From activation to excitation is a

L l )

matrix multiply: h( ) h( ) hy

) _ (1), (1-1)
o= L o
k

l l ()

( ) ( ) . ey

* From excitation to activation is a scalar
nonlinearity:
h(l) — O (oW (-1 ,0-1 .. 01D
g ( ) h i~ hy,

1



Activation functions

Logistic: g(b)=1/(1+e™®)

2 0 2
ReLU: g(b)=max(0,b)

T O

The “activation function,” g’ (), can be any scalar
nonlinearity. For example: 1

Logistic Sigmoid:

0.5

2 o
o

-0.5
1

1 _
a(B) = T4 o B’ odB)=cB(1-0B) ..

Hyperbolic Tangent (tanh):

tanh(B) = Zﬁ 7 ,tanh’(B) = 1 — tanh?(B) E

2 0 2
b
Tanh Derivative: g'(b)=(1-g%(b))

Logistic Derivative: g'(b)=g(b)(1-g(b))

4

Rectified Linear Unit (ReLU): “

ReLU(B) = max(0,B), ReLU'(B) = u(p) )
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Example

e Suppose x =scalar

.Y €{0,1}

Target labels: Class Y =0

Target labels: Class Y =1
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Excitation to Activation: h}l) ReLLU ( (1))
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Output: h]@ = softmax €;
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h(()Z) h§2)

he? = P(Y = 0]x) h{¥ = P(Y =1|x)
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Gradient descent: basic idea

* Suppose we have a training token, x.

* |ts target label is y.

* The neural net produces output y, which is not y.

* The difference between y and y is summarized by some loss function,
Ly, Y).

* The output of the neural net is determined by some parameters, Wj(,?.

* Then we can improve the network by setting:

ar
(D )
W, — W, —N——x
jk Jk )
dek



Visualizing gradient descent

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html



https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
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Finding the derivative

ar

?
N
duqk

* OK, how do we find

* Well, the only way in which L depends on Wj(,? is by way of ej(l) ;

ej(l) =Y v%%)h,((l_l). So we could u(.?)e the chain rule of calculus:
d.  dL de dl -
J ]l(l 1)

= X =
(1) () (D) 0k
dek dej dek dej

* So we need to forward-propagate from x, to find h,((l_l)

* Then we back-propagate, fromy, to find dd—fl)
e

J

* Then we multiply those two things.



Finding the derivative

* Well... how do we find "2

®j
* Well, the only way in which £ depends on e is by way of h( ). h(l)

g(e( ). So we could use the chain rule of c]alculus
AL dr dh(” ir o
(z> 5w w9
de dh de dh

* So we need to forward -propagate from x to flnd g(e( )) and then we look
up its derivative in a table, to find g (e )

* Then we back-propagate, from y, to find —=

* Then we multiply those two things.



Finding the derivative

* OK, great! Then how do we find — (z)
dh;
* Well, the only way in which L depends on h( ) is b\g way of all of the
different nodes in layer |+1: elg D = Z] ( +1)h( So we could use the

chain rule of calculus:
dr z e del™V AL qan

@ -
dh;

X = W, .
(1+1) 0 (1+1) "kj
dek dhj 7 dek

* So we back-propagate, from vy, to find g Ugil)
e

* Then we multiply each of those by the corresponding weight, W,EJ 1), and
add them up.



Finding the derivative

. Folrward propagate, from x, to find
hy ~1'in each layer

* Back-propagate, from vy, to find % 2) L
dej hk de®
in each layer '
* Multiply them to get dlél), then
dek
o, o__ 4dL
W, < W’ —1n
jk Jk )
dek




Gradient descent

For example, suppose L = —InP(Y = y|x) = —1In h§,L), and the nonlinearity

is h( ) — softmax( (L )) Then we have this derivative, from last time:

( eXp( (L)) B N
d(—mhg”)_< t—3exp () 1=
de;"” &P ( i )) -0 j#y
\ T g exp (e,i ))




Back-propagation

* Back-propagating excitation back to activation:

dLl _ z W.(l+1) dLl
dhl((l) Jk dej(l+1)

J

* Back-propagating activation back to excitation:

ar dr

_ OL (1))
ORB (l)g (ek
dek dhk



Gradient descent to minimize loss

0] ) O] (1-1)
Wi W, —N——x = W; —n—h
Tk Tk dVV](I? Tk dej(l) &



Outline

* Breaking the constraints of linearity: multi-layer neural nets
* What's inside a multi-layer neural net?

* Forward-propagation example

* Gradient descent

* Finding the derivative: back-propagation



