Lecture 10: BackPropagation

Mark Hasegawa-Johnson
March 1, 2021
License: CC-BY 4.0. You may remix or redistribute if you cite the source.

Outline

- Breaking the constraints of linearity: multi-layer neural nets
- What's inside a multi-layer neural net?
- Forward-propagation example
- Gradient descent
- Finding the derivative: back-propagation

Biological Inspiration: McCulloch-Pitts Artificial Neuron, 1943

Input

- In 1943, McCulloch \& Pitts proposed that biological neurons have a nonlinear activation function (a step function) whose input is a weighted linear combination of the currents generated by other neurons.
- They showed lots of examples of mathematical and logical functions that could be computed using networks of simple neurons like this.

Biological Inspiration: Neuronal Circuits

- Even the simplest actions involve more than one neuron, acting in sequence in a neuronal circuit.
- One of the simplest neuronal circuits is a reflex arc, which may contain just two neurons:
- The sensor neuron detects a stimulus, and communicates an electrical signal to ...
- The motor neuron, which activates the muscle.

Illustration of a reflex arc: sensor neuron sends a voltage spike to the spinal column, where the resulting current causes a spike in a motor neuron, whose spike activates the muscle.
By MartaAguayo - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=39181552

A McCulloch-Pitts Neuron can compute some logical functions...

When the features are binary ($x_{j} \in$ $\{0,1\}$), many (but not all!) binary functions can be re-written as linear functions. For example, the function

$$
\hat{y}=\left(x_{1} \vee x_{2}\right)
$$

can be re-written as

$$
\hat{y}=u\left(x_{1}+x_{2}-0.5\right)
$$

... but not all.
"A linear classifier cannot learn an XOR function."

- ...but a two-layer neural net can compute an XOR function!

Feature Learning: A way to think about neural nets

For example, consider the XOR problem.
Suppose we create two hidden nodes:

$$
\begin{aligned}
& h_{1}(x)=u\left(0.5-x_{1}-x_{2}\right) \\
& h_{2}(x)=u\left(x_{1}+x_{2}-1.5\right)
\end{aligned}
$$

Then the XOR function $\hat{y}=\left(x_{1} \oplus x_{2}\right)$ is given by

$$
\nRightarrow \hat{y}=u\left(0.5-h_{1}(x)-h_{2}(x)\right)
$$

Outline

- Breaking the constraints of linearity: multi-layer neural nets
- What's inside a multi-layer neural net?
- Forward-propagation example
- Gradient descent
- Finding the derivative: back-propagation

Multi-layer neural net

- $e_{j}^{(l)}=\underline{\text { excitation }}$ of the $j^{\text {th }}$ neuron (a.k.a. "node") in the $\mathrm{t}^{\text {th }}$ layer
- Computed by adding together inputs from many other neurons, each weighted by a corresponding connection strength or connection weight, $w_{j k}^{(l)}$
- $h_{j}^{(l)}=$ activation of the $\mathrm{j}^{\text {th }}$ node in the $\mathrm{I}^{\text {th }}$ layer
- This is computed by just passing the excitation through a scalar nonlinear activation function, thus $h_{j}^{(l)}=g\left(e_{j}^{(l)}\right)$. The activation functions in different layers differ, so to be pedantic, sometimes we'll write $h_{j}^{(l)}=g^{(l)}\left(e_{j}^{(l)}\right)$.

Multi-layer neural net

- Given: some training token $x=\left[x_{1}, \ldots, x_{D}, 1\right]$ and its target label y
- Initialize: $h_{k}^{(0)}=x_{k}$
- Forward-propagation: do some magic
- Output: $P(Y=k \mid x)=h_{k}^{(L)}$

The magical stuff: layers

- From activation to excitation is a matrix multiply:

$$
e_{j}^{(l)}=\sum_{k} w_{j k}^{(l)} h_{k}^{(l-1)}
$$

- From excitation to activation is a scalar nonlinearity:

$$
h_{j}^{(l)}=g^{(l)}\left(e_{j}^{(l)}\right)
$$

Activation functions

The "activation function," $g^{(l)}(\cdot)$, can be any scalar nonlinearity. For example:
Logistic Sigmoid:

$$
\sigma(\beta)=\frac{1}{1+e^{-\beta}}, \quad \sigma^{\prime}(\beta)=\sigma(\beta)(1-\sigma(\beta))
$$

Hyperbolic Tangent (tanh):

$$
\tanh (\beta)=\frac{e^{\beta}-e^{-\beta}}{e^{\beta}+e^{-\beta}}, \tanh ^{\prime}(\beta)=1-\tanh ^{2}(\beta)
$$

Rectified Linear Unit (ReLU):

$$
\operatorname{ReLU}(\beta)=\max (0, \beta), \quad \operatorname{ReLU}^{\prime}(\beta)=\mathrm{u}(\beta)
$$

Outline

- Breaking the constraints of linearity: multi-layer neural nets
-What's inside a multi-layer neural net?
- Forward-propagation example
- Gradient descent
- Finding the derivative: back-propagation

Example

- Suppose $x=$ scalar
- $Y \in\{0,1\}$

Initialize

$$
\begin{gathered}
h_{1}^{(0)}=x, \quad h_{2}^{(0)}=1 \\
e_{j}^{(1)}=\sum_{k} w_{j k}^{(1)} h_{k}^{(0)}
\end{gathered}
$$

Excitation to Activation: $h_{j}^{(1)}=\operatorname{ReLU}\left(e_{j}^{(1)}\right)$

Activation to Excitation: $e_{j}^{(2)}=\sum_{k} w_{j k}^{(2)} h_{k}^{(1)}$

Outline

- Breaking the constraints of linearity: multi-layer neural nets
- What's inside a multi-layer neural net?
- Forward-propagation example
- Gradient descent
- Finding the derivative: back-propagation

Gradient descent: basic idea

- Suppose we have a training token, x.
- Its target label is y.
- The neural net produces output \hat{y}, which is not y.
- The difference between y and \hat{y} is summarized by some loss function, $\mathcal{L}(y, \hat{y})$.
- The output of the neural net is determined by some parameters, $w_{j k}^{(l)}$.
- Then we can improve the network by setting:

$$
w_{j k}^{(l)} \leftarrow w_{j k}^{(l)}-\eta \frac{d \mathcal{L}}{d w_{j k}^{(l)}}
$$

Visualizing gradient descent

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Outline

- Breaking the constraints of linearity: multi-layer neural nets
-What's inside a multi-layer neural net?
- Forward-propagation example
- Gradient descent
- Finding the derivative: back-propagation

Finding the derivative

- OK, how do we find $\frac{d \mathcal{L}}{d w_{j k}^{(l)}}$?
- Well, the only way in which \mathcal{L} depends on $w_{j k}^{(l)}$ is by way of $e_{j}^{(l)}$: $e_{j}^{(l)}=\sum_{k} w_{j k}^{(l)} h_{k}^{(l-1)}$. So we could use the chain rule of calculus:

$$
\frac{d \mathcal{L}}{d w_{j k}^{(l)}}=\frac{d \mathcal{L}}{d e_{j}^{(l)}} \times \frac{d e_{j}^{(l)}}{d w_{j k}^{(l)}}=\frac{d \mathcal{L}}{d e_{j}^{(l)}} h_{k}^{(l-1)}
$$

- So we need to forward-propagate from x, to find $h_{k}^{(l-1)}$
- Then we back-propagate, from y , to find $\frac{d \mathcal{L}}{d e_{j}^{(l)}}$
- Then we multiply those two things.

Finding the derivative

- Well... how do we find $\frac{d \mathcal{L}}{d e_{j}^{(l)}}$?
- Well, the only way in which \mathcal{L} depends on $e_{j}^{(l)}$ is by way of $h_{j}^{(l)}: h_{j}^{(l)}=$ $g\left(e_{j}^{(l)}\right)$. So we could use the chain rule of calculus:

$$
\frac{d \mathcal{L}}{d e_{j}^{(l)}}=\frac{d \mathcal{L}}{d h_{j}^{(l)}} \times \frac{d h_{j}^{(l)}}{d e_{j}^{(l)}}=\frac{d \mathcal{L}}{d h_{j}^{(l)}} g^{\prime}\left(e_{j}^{(l)}\right)
$$

- So we need to forward-propagate from x, to find $g\left(e_{j}^{(l)}\right)$, and then we look up its derivative in a table, to find $g^{\prime}\left(e_{j}^{(l)}\right)$.
- Then we back-propagate, from y, to find $\frac{d \mathcal{L}}{d h_{j}^{(l)}}$
- Then we multiply those two things.

Finding the derivative

- OK, great! Then how do we find $\frac{d \mathcal{L}}{d h_{j}^{(l)}}$?
- Well, the only way in which \mathcal{L} depends on $h_{j}^{(l)}$ is by way of all of the different nodes in layer l+1: $e_{k}^{(l+1)}=\sum_{j} w_{k j}^{(l+1)} h_{j}^{(l)}$. So we could use the chain rule of calculus:

$$
\frac{d \mathcal{L}}{d h_{j}^{(l)}}=\sum_{k} \frac{d \mathcal{L}}{d e_{k}^{(l+1)}} \times \frac{d e_{k}^{(l+1)}}{d h_{j}^{(l)}}=\sum_{k} \frac{d \mathcal{L}}{d e_{k}^{(l+1)}} w_{k j}^{(l+1)}
$$

- So we back-propagate, from y, to find $\frac{d \mathcal{L}}{d e_{k}^{(l+1)}}$
- Then we multiply each of those by the corresponding weight, $w_{k j}^{(l+1)}$, and add them up.

Finding the derivative

- Forward propagate, from x, to find $h_{k}^{(l-1)}$ in each layer
- Back-propagate, from y, to find $\frac{d \mathcal{L}}{d e_{j}^{(l)}}$ in each layer
- Multiply them to get $\frac{d \mathcal{L}}{d w_{j k}^{(l)}}$, then

$$
w_{j k}^{(l)} \leftarrow w_{j k}^{(l)}-\eta \frac{d \mathcal{L}}{d w_{j k}^{(l)}}
$$

Gradient descent

For example, suppose $\mathcal{L}=-\ln P(Y=y \mid x)=-\ln h_{y}^{(L)}$, and the nonlinearity is $h_{j}^{(L)}=\operatorname{softmax}\left(e_{j}^{(L)}\right)$. Then we have this derivative, from last time:

$$
\frac{d\left(-\ln h_{y}^{(L)}\right)}{d e_{j}^{(L)}}=\left\{\begin{array}{l}
\left(\frac{\exp \left(e_{j}^{(L)}\right)}{\sum_{k=0}^{V-1} \exp \left(e_{k}^{(L)}\right)}-1\right) j=y \\
\left(\frac{\exp \left(e_{j}^{(L)}\right)}{\sum_{k=0}^{V-1} \exp \left(e_{k}^{(L)}\right)}-0\right) j \neq y
\end{array}\right.
$$

Back-propagation

- Back-propagating excitation back to activation:

$$
\frac{d \mathcal{L}}{d h_{k}^{(l)}}=\sum_{j} w_{j k}^{(l+1)} \frac{d \mathcal{L}}{d e_{j}^{(l+1)}}
$$

- Back-propagating activation back to excitation:

$$
\frac{d \mathcal{L}}{d e_{k}^{(l)}}=\frac{d \mathcal{L}}{d h_{k}^{(l)}} g^{(l) \prime}\left(e_{k}^{(l)}\right)
$$

Gradient descent to minimize loss

$$
w_{j k}^{(l)} \leftarrow w_{j k}^{(l)}-\eta \frac{d \mathcal{L}}{d w_{j k}^{(l)}}=w_{j k}^{(l)}-\eta \frac{d \mathcal{L}}{d e_{j}^{(l)}} h_{k}^{(l-1)}
$$

Outline

- Breaking the constraints of linearity: multi-layer neural nets
- What's inside a multi-layer neural net?
- Forward-propagation example
- Gradient descent
- Finding the derivative: back-propagation

