Lecture 10: Back-Propagation

Mark Hasegawa-Johnson
March 1, 2021
License: CC-BY 4.0. You may remix or redistribute if you cite the source.
Outline

• Breaking the constraints of linearity: multi-layer neural nets
• What’s inside a multi-layer neural net?
• Forward-propagation example
• Gradient descent
• Finding the derivative: back-propagation
Biological Inspiration: McCulloch-Pitts Artificial Neuron, 1943

- In 1943, McCulloch & Pitts proposed that biological neurons have a nonlinear activation function (a step function) whose input is a weighted linear combination of the currents generated by other neurons.
- They showed lots of examples of mathematical and logical functions that could be computed using networks of simple neurons like this.
Biological Inspiration: Neuronal Circuits

- Even the simplest actions involve more than one neuron, acting in sequence in a neuronal circuit.

- One of the simplest neuronal circuits is a reflex arc, which may contain just two neurons:
 - The **sensor neuron** detects a stimulus, and communicates an electrical signal to ...
 - The **motor neuron**, which activates the muscle.

Illustration of a reflex arc: sensor neuron sends a voltage spike to the spinal column, where the resulting current causes a spike in a motor neuron, whose spike activates the muscle.

By MartaAguayo - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=39181552
A McCulloch-Pitts Neuron can compute some logical functions...

When the features are binary \((x_j \in \{0,1\})\), many (but not all!) binary functions can be re-written as linear functions. For example, the function \(\hat{y} = (x_1 \lor x_2)\) can be re-written as \(\hat{y} = u(x_1 + x_2 - 0.5)\).

Similarly, the function \(\hat{y} = (x_1 \land x_2)\) can be re-written as \(\hat{y} = u(x_1 + x_2 - 1.5)\).
... but not all.

“A linear classifier cannot learn an XOR function.”

• ...but a two-layer neural net can compute an XOR function!
Feature Learning: A way to think about neural nets

For example, consider the XOR problem. Suppose we create two hidden nodes:

\[h_1(x) = u(0.5 - x_1 - x_2) \]
\[h_2(x) = u(x_1 + x_2 - 1.5) \]

Then the XOR function \(\hat{y} = (x_1 \oplus x_2) \) is given by

\[\hat{y} = u(0.5 - h_1(x) - h_2(x)) \]
Outline

• Breaking the constraints of linearity: multi-layer neural nets
• What’s inside a multi-layer neural net?
• Forward-propagation example
• Gradient descent
• Finding the derivative: back-propagation
Multi-layer neural net

• $e_j^{(l)}$ = **excitation** of the j^{th} neuron (a.k.a. “node”) in the l^{th} layer
 • Computed by adding together inputs from many other neurons, each
 weighted by a corresponding connection strength or connection weight, $w_{jk}^{(l)}$

• $h_j^{(l)}$ = **activation** of the j^{th} node in the l^{th} layer
 • This is computed by just passing the excitation through a scalar nonlinear
 activation function, thus $h_j^{(l)} = g(e_j^{(l)})$. The activation functions in different
 layers differ, so to be pedantic, sometimes we’ll write $h_j^{(l)} = g^{(l)}(e_j^{(l)})$.
Multi-layer neural net

• Given: some training token $x = [x_1, ..., x_D, 1]$ and its target label y
• Initialize: $h_k^{(0)} = x_k$
• Forward-propagation: do some magic
• Output: $P(Y = k | x) = h_k^{(L)}$
The magical stuff: layers

• From activation to excitation is a matrix multiply:
 \[e_j^{(l)} = \sum_k w_{jk}^{(l)} h_k^{(l-1)} \]

• From excitation to activation is a scalar nonlinearity:
 \[h_j^{(l)} = g^{(l)} \left(e_j^{(l)} \right) \]
Activation functions

The “activation function,” $g^{(l)}(\cdot)$, can be any scalar nonlinearity. For example:

Logistic Sigmoid:

$$\sigma(\beta) = \frac{1}{1 + e^{-\beta}}, \quad \sigma'(\beta) = \sigma(\beta)(1 - \sigma(\beta))$$

Hyperbolic Tangent (tanh):

$$\tanh(\beta) = \frac{e^\beta - e^{-\beta}}{e^\beta + e^{-\beta}}, \quad \tanh'(\beta) = 1 - \tanh^2(\beta)$$

Rectified Linear Unit (ReLU):

$$\text{ReLU}(\beta) = \max(0, \beta), \quad \text{ReLU}'(\beta) = u(\beta)$$
Outline

• Breaking the constraints of linearity: multi-layer neural nets
• What’s inside a multi-layer neural net?
• Forward-propagation example
• Gradient descent
• Finding the derivative: back-propagation
Example

• Suppose $x = \text{scalar}$
• $Y \in \{0, 1\}$
Initialize

\[h_1^{(0)} = x, \quad h_2^{(0)} = 1 \]

\[e_j^{(1)} = \sum_k w_{jk} h_k^{(0)} \]
Excitation to Activation: $h_j^{(1)} = \text{ReLU} \left(e_j^{(1)} \right)$
Activation to Excitation:
\[e_j^{(2)} = \sum_k w_{jk} h_k^{(1)} \]
Output: $h_j^{(2)} = \text{softmax}\left(e_j^{(2)}\right)$
\[h_0^{(2)} = P(Y = 0|x) \quad h_1^{(2)} = P(Y = 1|x) \]
Outline

• Breaking the constraints of linearity: multi-layer neural nets
• What’s inside a multi-layer neural net?
• Forward-propagation example
• Gradient descent
• Finding the derivative: back-propagation
Gradient descent: basic idea

• Suppose we have a training token, x.
• Its target label is y.
• The neural net produces output \hat{y}, which is not y.
• The difference between y and \hat{y} is summarized by some loss function, $\mathcal{L}(y, \hat{y})$.
• The output of the neural net is determined by some parameters, $w^{(l)}_{jk}$.
• Then we can improve the network by setting:

$$w^{(l)}_{jk} \leftarrow w^{(l)}_{jk} - \eta \frac{d\mathcal{L}}{dw^{(l)}_{jk}}$$
Visualizing gradient descent

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
Outline

• Breaking the constraints of linearity: multi-layer neural nets
• What’s inside a multi-layer neural net?
• Forward-propagation example
• Gradient descent
• Finding the derivative: back-propagation
Finding the derivative

• OK, how do we find $\frac{d\mathcal{L}}{dw^{(l)}_{jk}}$?

• Well, the only way in which \mathcal{L} depends on $w^{(l)}_{jk}$ is by way of $e^{(l)}_j$: $e^{(l)}_j = \sum_k w^{(l)}_{jk} h^{(l-1)}_k$. So we could use the chain rule of calculus:

$$\frac{d\mathcal{L}}{dw^{(l)}_{jk}} = \frac{d\mathcal{L}}{de^{(l)}_j} \times \frac{de^{(l)}_j}{dw^{(l)}_{jk}} = \frac{d\mathcal{L}}{de^{(l)}_j} h^{(l-1)}_k$$

• So we need to forward-propagate from x, to find $h^{(l-1)}_k$

• Then we back-propagate, from y, to find $\frac{d\mathcal{L}}{de^{(l)}_j}$

• Then we multiply those two things.
Finding the derivative

• Well... how do we find $\frac{d\mathcal{L}}{de_j^{(l)}}$?

• Well, the only way in which \mathcal{L} depends on $e_j^{(l)}$ is by way of $h_j^{(l)} : h_j^{(l)} = g(e_j^{(l)})$. So we could use the chain rule of calculus:

$$\frac{d\mathcal{L}}{de_j^{(l)}} = \frac{d\mathcal{L}}{dh_j^{(l)}} \times \frac{dh_j^{(l)}}{de_j^{(l)}} = \frac{d\mathcal{L}}{dh_j^{(l)}} g'(e_j^{(l)})$$

• So we need to forward-propagate from x, to find $g(e_j^{(l)})$, and then we look up its derivative in a table, to find $g'(e_j^{(l)})$.

• Then we back-propagate, from y, to find $\frac{d\mathcal{L}}{dh_j^{(l)}}$.

• Then we multiply those two things.
Finding the derivative

• OK, great! Then how do we find $\frac{d\mathcal{L}}{dh_j^{(l)}}$?

• Well, the only way in which \mathcal{L} depends on $h_i^{(l)}$ is by way of all of the different nodes in layer l+1: $e_k^{(l+1)} = \sum_j w_{kj}^{(l+1)} h_j^{(l)}$. So we could use the chain rule of calculus:

$$
\frac{d\mathcal{L}}{dh_j^{(l)}} = \sum_k \frac{d\mathcal{L}}{de_k^{(l+1)}} \times \frac{de_k^{(l+1)}}{dh_j^{(l)}} = \sum_k \frac{d\mathcal{L}}{de_k^{(l+1)}} w_{kj}^{(l+1)}
$$

• So we back-propagate, from y, to find $\frac{d\mathcal{L}}{de_k^{(l+1)}}$.

• Then we multiply each of those by the corresponding weight, $w_{kj}^{(l+1)}$, and add them up.
Finding the derivative

- Forward propagate, from x, to find $h_k^{(l-1)}$ in each layer
- Back-propagate, from y, to find $\frac{dL}{de_j^{(l)}}$ in each layer
- Multiply them to get $\frac{dL}{dw_{jk}^{(l)}}$, then

$$w_{jk}^{(l)} \leftarrow w_{jk}^{(l)} - \eta \frac{dL}{dw_{jk}^{(l)}}$$
Gradient descent

For example, suppose $\mathcal{L} = -\ln P(Y = y|x) = -\ln h_y^{(L)}$, and the nonlinearity is $h_j^{(L)} = \text{softmax}(e_j^{(L)})$. Then we have this derivative, from last time:

$$
\frac{d \left(-\ln h_y^{(L)} \right)}{de_j^{(L)}} = \begin{cases}
\left(\frac{\exp (e_j^{(L)})}{\Sigma_{k=0}^{V-1} \exp (e_k^{(L)})} - 1 \right) & j = y \\
\left(\frac{\exp (e_j^{(L)})}{\Sigma_{k=0}^{V-1} \exp (e_k^{(L)})} - 0 \right) & j \neq y
\end{cases}
$$
Back-propagation

• Back-propagating excitation back to activation:

\[
\frac{d\mathcal{L}}{dh_k^{(l)}} = \sum_j w_{jk}^{(l+1)} \frac{d\mathcal{L}}{de_j^{(l+1)}}
\]

• Back-propagating activation back to excitation:

\[
\frac{d\mathcal{L}}{de_k^{(l)}} = \frac{d\mathcal{L}}{dh_k^{(l)}} g^{(l)'} \left(e_k^{(l)} \right)
\]
Gradient descent to minimize loss

\[w_{jk}^{(l)} \leftarrow w_{jk}^{(l)} - \eta \frac{dL}{dw_{jk}^{(l)}} = w_{jk}^{(l)} - \eta \frac{dL}{de_j^{(l)}} h_k^{(l-1)} \]
Outline

• Breaking the constraints of linearity: multi-layer neural nets
• What’s inside a multi-layer neural net?
• Forward-propagation example
• Gradient descent
• Finding the derivative: back-propagation