Lecture 10: Back-
Propagation

Mark Hasegawa-Johnson
March 1, 2021

License: CC-BY 4.0. You may remix or redistribute
if you cite the source.

Outline

* Breaking the constraints of linearity: multi-layer neural nets
* What's inside a multi-layer neural net?

* Forward-propagation example

* Gradient descent

* Finding the derivative: back-propagation

Biological Inspiration: McCulloch-Pitts
Artificial Neuron, 1943

Input e [n 1943, McCulloch & Pitts
Weights proposed that biological neurons
X have a nonlinear activation

function (a step function) whose
input is a weighted linear
combination of the currents

Output: u(w-x)
P generated by other neurons.

* They showed lots of examples of
mathematical and logical
functions that could be computed

Wo using networks of simple neurons

like this.

Afferent neuron
axon (sensory)

* Even the simplest actions Spinalcord ;AN
involve more than one neuron, o (moton
acting in sequence in a neuronal {*@%’ -
circuit. -
* One of the simplest neuronal Action . g
circuits is a reflex arc, which may Muscle effector)
contain just two neurons: Fingertreceiver) ()
* The sensor neuron detects a ' —
stimulus, and communicates an Source

electrical signal to ...
« The motor neuron, which IIIu.stratlon of a reflex arc: sensor neuron sends a voltage splke to the
spinal column, where the resulting current causes a spike in a motor

activates the muscle. neuron, whose spike activates the muscle.
By MartaAguayo - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=39181552

A McCulloch-Pitts Neuron can compute some logical functions...

When the features are binary (x; € Similarly, the function

{0,1}), many (but not all!) binary Y =(x1 Axy)

functions can be re-written as linear ,, pe re-written as

functions. ForAexampIe, the function 9 =u(x; + x, — 1.5)
Yy =(x1Vx3)

can be re-written as
y =u(x; +x, —0.5)

... but not all.

“A linear classifier cannot learn an
XOR function.”

...but a two-layer neural net can
compute an XOR function!

Feature Learning: A way to think about neural nets

For example, consider the XOR problem. in this region 7/

Suppose we create two hidden nodes: |||i é‘?
hy (%) =1d
& hl (.X') = 'LI,(OS — X1 — xz) inlt:fis regionown \
£ xl

% h, (x) = u(x1 + Xy, — 1.5) Here in the middle,
X

both h{(X) and h,(X)
are zero.

Then the XOR function y = (x; @ x,) is

[

given by

O

N

% 5; — U(OS — hl(X) — hz (x)) 4\%@ s

Outline

* What's inside a multi-layer neural net?

* Forward-propagation example

* Gradient descent

* Finding the derivative: back-propagation

Multi-layer neural net

. ej(l) = excitation of the j*" neuron (a.k.a. “node”) in the I*" layer

 Computed by adding together inputs from many other neurons, each

weighted by a corresponding connection strength or connection weight, Wj(,?

. h]@ = activation of the j*" node in the It" layer

* This is computed by just passing the excitation through a scalar nonlinear
activation function, thus h]@ = g(ej(l)). The activation functions in different

layers differ, so to be pedantic, sometimes we’ll write h]@ = g(l) (ej(l)).

Multi-layer neural net

* Given: some training token x = [x4, ..., Xp, 1] and its target label y

* Initialize: h,go) = Xy
* Forward-propagation: do some magic

« Output: P(Y = k|x) = h{"

The magical stuff: layers

* From activation to excitation is a

L l)

matrix multiply: h() h() hy

) _ (1), (1-1)
o= L o
k

l l ()

() () . ey

* From excitation to activation is a scalar
nonlinearity:
h(l) — O (oW (-1 ,0-1 .. 01D
g () h i~ hy,

1

Activation functions

Logistic: g(b)=1/(1+e™®)

2 0 2
ReLU: g(b)=max(0,b)

T O

The “activation function,” g’ (), can be any scalar
nonlinearity. For example: 1

Logistic Sigmoid:

0.5

2 o
o

-0.5
1

1 _
a(B) = T4 o B’ odB)=cB(1-0B) ..

Hyperbolic Tangent (tanh):

tanh(B) = Zﬁ 7 ,tanh’(B) = 1 — tanh?(B) E

2 0 2
b
Tanh Derivative: g'(b)=(1-g%(b))

Logistic Derivative: g'(b)=g(b)(1-g(b))

4

Rectified Linear Unit (ReLU): “

ReLU(B) = max(0,B), ReLU'(B) = u(p))

Outline

* Forward-propagation example

* Gradient descent
* Finding the derivative: back-propagation

Example

e Suppose x =scalar

.Y €{0,1}

Target labels: Class Y =0

Target labels: Class Y =1

1.0 A

0.8 A

0.6 -

0.4

0.2

0.0 A

1.0 A

0.8 A

0.6 -

0.4

0.2

0.0 A

0.2 0.4 0.6
Neural network input, x

0.8

0.4 0.6 0.8 1.0
Neural network input, x

1.0

0.5

0.0

—0.5 A

—1.0

Initialize

Excitation, first node, first layer

e

xcitation, secon

d node, first layer

Excitation, thi§ node, first layer

0.75 4

0.50 4

0.25 4

0.00

-0.25 1

—0.50 1

=0.75

T
0.0

T
0.2

T
0.4

T
0.6

T
0.8

T
1.0

T
0.0

0.2

0.4

0.6

0.8

1.0

1

el(l) eél)

h§0) th)

oD

Excitation to Activation: h}l) ReLLU ((1))

h(l) h(l) h(l) h(l) h(l) h(l)

Activation, first node, first layer Activation ond n d , first layer Activation, third node, first layer
051 0.8
0.81 0.4
0.6
061 0.3
0.4 4
0.4 0.2 1
0.2 0.1 0.2
0.0 4 0.0 0.0 (1 (1)
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Neural network input, x il L, X Neural network input, x
0.4 [1 ’
0.5 0.50

- op oo 5 (2) (2) 5 (1)
Activation to Excitation: e;™" =), w; “hy,

e

Excitation, first node, second layer Excitation, secor% node, second layer

o (()2) (2)

0.0
—0.5
~1.04
~1.54
2.0
) (1) (1)
h h h
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 1 2 3
Activation, first | Neural network input, x Neural network input, x de, first layer
0.8
0.4
0.6
0.3
0.4
0.2
0.1 0.2
(1) (1) (1)
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 e e e
Neural network input, x Neural network input, x Neural network input, x 1 2 3
0.5 0.50
0.25
0.0
0.00
-0.5 -0.25
-0.50 (0) (O)
-1.0
T T T T T T T T T T T T —0.75 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 1 2

Output: h]@ = softmax €;

L@

Activation, first rgie, second layer

(2)
L@

Activation, second]bde, second layer

0.5 4 1.0
0.4 4 0.8 1
0.3 1 0.6 1
0.2 4 0.4 1
0.1 0.2 4
0.0 ======—mm——e—mmmm——————e e TTF 0.0 =======m——m e mmm— e —————— e
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Neural network input, x Neural network input, x
Excitation, first node, second layer Excitation, second node, second layer
0.0
0.5
1.0
~1.54
2.0
Activation, first | —2:57
—3.01 T T T T T T T T T T T T
0.8 1 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Neural network input, x

Neural network input, x

de, first layer

v.s
0.4
0.2
0.1 0.2
0.0 0.0 { =—————————e—eef e m e e e o mm o
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Neural network input, x Neural network input, x Neural network input, x
0.1
-0.5 -0.25
0.0
-0.50
-1.0 -0.1
T T T T T T T T T T T T —0.75 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

h?

o

hgn hgl)

o

X0

(0)
1 h;

h(()Z) h§2)

he? = P(Y = 0]x) h{¥ = P(Y =1|x)

Activation, first node, second layer Ac atlon second node, second layer
0.5 4 1.0
0.4 4 0.8 4
031 0.6 (2) (2)
0.2 4 0.4 e e
0 1
0.0 ======—mm——e—mmmm——————e e TTF 0.0 =======m——m e mmm— e —————— e

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Neural network input, x Neural network input, x
Excitation, first node, second layer Excitation, second node, second layer 1
0.0 1 (1)

-1.01 2
-1.5 ’

—-2.01 .

Activation, first | —2:57 de, first layer
—3.01 T T T T T T T T T T T T
0.8 1 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Neural network input, x Neural network input, x
' (1) (1) ()

0.1
————————————— 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Neural network input, x Neural network input, x Neural network input, x
0.1
-0.5 -0.25
0.0
-0.50 0 O
-1.0 -0.1
T T T T T T T T T T T T —0.75 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 1 2

Outline

* Gradient descent
* Finding the derivative: back-propagation

Gradient descent: basic idea

* Suppose we have a training token, x.

* |ts target label is y.

* The neural net produces output y, which is not y.

* The difference between y and y is summarized by some loss function,
Ly, Y).

* The output of the neural net is determined by some parameters, Wj(,?.

* Then we can improve the network by setting:

ar
(D)
W, — W, —N——x
jk Jk)
dek

Visualizing gradient descent

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Outline

* Finding the derivative: back-propagation

Finding the derivative

ar

?
N
duqk

* OK, how do we find

* Well, the only way in which L depends on Wj(,? is by way of ej(l) ;

ej(l) =Y v%%)h,((l_l). So we could u(.?)e the chain rule of calculus:
d. dL de dl -
J]l(l 1)

= X =
(1) () (D) 0k
dek dej dek dej

* So we need to forward-propagate from x, to find h,((l_l)

* Then we back-propagate, fromy, to find dd—fl)
e

J

* Then we multiply those two things.

Finding the derivative

* Well... how do we find "2

®j
* Well, the only way in which £ depends on e is by way of h(). h(l)

g(e(). So we could use the chain rule of c]alculus
AL dr dh(” ir o
(z> 5w w9
de dh de dh

* So we need to forward -propagate from x to flnd g(e()) and then we look
up its derivative in a table, to find g (e)

* Then we back-propagate, from y, to find —=

* Then we multiply those two things.

Finding the derivative

* OK, great! Then how do we find — (z)
dh;
* Well, the only way in which L depends on h() is b\g way of all of the
different nodes in layer |+1: elg D = Z] (+1)h(So we could use the

chain rule of calculus:
dr z e del™V AL qan

@ -
dh;

X = W, .
(1+1) 0 (1+1) "kj
dek dhj 7 dek

* So we back-propagate, from vy, to find g Ugil)
e

* Then we multiply each of those by the corresponding weight, W,EJ 1), and
add them up.

Finding the derivative

. Folrward propagate, from x, to find
hy ~1'in each layer

* Back-propagate, from vy, to find % 2) L
dej hk de®
in each layer '
* Multiply them to get dlél), then
dek
o, o__ 4dL
W, < W’ —1n
jk Jk)
dek

Gradient descent

For example, suppose L = —InP(Y = y|x) = —1In h§,L), and the nonlinearity

is h() — softmax((L)) Then we have this derivative, from last time:

(eXp((L)) B N
d(—mhg”)_< t—3exp () 1=
de;"” &P (i)) -0 j#y
\ T g exp (e,i))

Back-propagation

* Back-propagating excitation back to activation:

dLl _ z W.(l+1) dLl
dhl((l) Jk dej(l+1)

J

* Back-propagating activation back to excitation:

ar dr

_ OL (1))
ORB (l)g (ek
dek dhk

Gradient descent to minimize loss

0]) O] (1-1)
Wi W, —N——x = W; —n—h
Tk Tk dVV](I? Tk dej(l) &

Outline

* Breaking the constraints of linearity: multi-layer neural nets
* What's inside a multi-layer neural net?

* Forward-propagation example

* Gradient descent

* Finding the derivative: back-propagation

