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* Advantages and disadvantages of the perceptron
* Probabilistic-boundary classifiers
* How do you maximize a function?

 Learning a logistic regression
* Two-class logistic regression



Linear Classifiers in General

Consider the classifier
D

y=ul|b+ Z W X;
j=1
This is called a “linear classifier” because the boundary
between the two classes is a line.
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Multi-Class Linear Classifiers

All multi-class linear classifiers have the
form
$ = argmaxy_g (w? x)

The region of x-space associated with each
class label is convex with piece-wise
3 linear boundaries. Such regions are
=’ called “Voronoi regions.”

By Balu Ertl - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=38534275
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Training a Multi-Class Perceptron
For each training instance x w/ground truth label y e {0,1,..,V -1}

* Classify with current weights: y = argmaX (WC )
* Update weights:
* if y is correct (y = y) then do nothing
*If yisincorrect (y # y) then:
* Update the correct-class vector as w,, = w,, + nx
* Update the wrong-class vector as wy = W35 —nx
* Don’t change the vectors of any other class



Multi-class perceptron: advantages and

disadvantages

 ADVANTAGE: If the classes are linearly separable, then multi-class
perceptron algorithm will find a set of linear functions that separate

them

* DISADVANTAGE: If the classes are not linearly separable, then the w,
converge only if we force 1 to decay to zero (n = 711 for the nt" training
token). After they’ve converged, we don’t know exactly how good or
how bad the resulting w, are.
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* Probabilistic-boundary classifiers
* How do you maximize a function?
 Learning a logistic regression
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Probabilistic boundaries

Instead of trying to find the exact boundaries, logistic regression
models the probability that token x belongs to class y.
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Logistic regression and the softmax function

* Perceptron: y = argmaX (W )
* Logistic regression: P(Y = c|X = x) = softmax/=3 (wlx)
where the “softmax” function is defined as

oWIx

softmax’_y (wl'x) = —
- ka

k=0 €



Logistic regression and the softmax function

we X

P(Y = c|X = x) = softmax’-y (wl'x) =

Vlex
k=0€ K

. . T . .
* The exponential function (e"¢*, sometimes written as exp(w/ x))
guarantees that P(Y = c|X = x) is a positive number.

* The sum, in the denomlnator guarantees that

1—ZP(Y—CIX—x)



Learning logistic regression

* Suppose we have some data.

 We want to learn vectors w, = [w,4, ..., w.p]! so that
P(Y = c|X = x) = softmax’_,(w}x).
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Learning logistic regression: Training data

Data:

D= {(xl; yl)) (Xz, yZ): ery (.Xn, Yn)}

where each x; = [x;4, ---,XiD]T

OSyl-SV—l.

is a vector, and each y; is an integer class label,
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Learning logistic regression: Model parameters

We want to learn the model parameters
0 ={wy, .., Wwy_1}
so that
P(Y = y;|X = x;) = softmax(w] x;)
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12
‘ o . (x2,y, =1)
o @ @C:s y;=1)
O ® .
- A1
O 0© e
O(x4, ys = 0)



Learning logistic regression: Training criterion

We want to learn the model parameters, 8 = {wy, ..., wy_}, in order to
maximize the probability of the observed data:
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Learning logistic regression

We want to learn the model parameters, 8 = {wy, ..., wy_}, in order to
maximize the probability of the observed data:

n
P(D|6) = 1_[ softmax(w? x; )
i=1
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Learning logistic regression

We want to learn the model parameters, 8 = {wy, ..., wy_}, in order to
maximize the probability of the observed data:
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* How do you maximize a function?
 Learning a logistic regression
* Two-class logistic regression



How do you maximize a function?

Our goal is to find 6 = {wy, ..., W7]{_1} in order to maximize
T
exp(wyixi
V_
i=1 “k=
Here are some things you know:

P(D|6) =

o exp(wi x;)

1. Logarithm turns products into sums.

2. Gradient ascent: if you want to find 0 in order to maximize f(0),
you take a step in the direction +Vgf.



How do you maxtsaize minimize a function?

Our goal is to find 6 = {wy, ..., wy_41}in order to maximize

2 =—-logP(D|6) = —logﬂz exp(wy ! )

eXp(Wk X;)
Here are some things you know:

1. Logarithm turns products into sums.

2. Gradient aseent descent: if you want to find 0 in order to maximize
minimize f(0), you take a step in the direction —Vgf.




How do you maxtsaize minimize a function?

Our goal is to find 6 = {wy, ..., wy_41} in order to maximize
n

V-1
2 =—logP(D|O) = —z <W;ixi — 10gz EXP(WIZXL')>
k=0

i=1
Here are some things you know:

1. Logarithm turns products into sums.

2. Gradient aseent descent: if you want to find 0 in order to maxmize
minimize f(0), you take a step in the direction —Vgf.




How do you minimize a function?

Our goal is to find 6 = {w,, ..., wy_41} by taking a step in the direction:
n

~1
—Vg8 = Vglog P(D]06) = Z Vg (W;ixi — log z exp(w,fo)
i=1 k=0

Here are some things you know:
1. Logarithm turns products into sums.

2. Gradient descent: if you want to find O in order to minimize f(0),
you take a step in the direction —Vpf.




The gradient of the log softmax

Our goal is to find 0 = {wy, ..., wy_1} by taking a step in the direction —VgZ.
The gradient is just the partial derivative w.r.t. each vector:

r<1 _ exp(w; x;) )x c=v,
k=0 exp(wix;) ) ‘

V-1
Vi, (W;.xl- — log Z exp(w,fxﬁ) = 4 exp(wTx,)
k=0 <O — < ) i CFY;
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r—sexp(wix;)
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Logistic regression training

* In each iteration, present a batch of training data, © =
{1, 1), (X2, ¥2), ey (s Y }-

* If the batch contains all the data, this is called “gradient descent”

* If the batch contains a randomly chosen subset of the data, this is called
“stochastic gradient descent”

e Calculate P(Y = c¢|X = x;) = softmax(w/ x;) for each training token
x;, for each class c.

* Update all the weight vectors as w, = w, —nV,, £



Logistic regression training example

Start with the given dataset D (left side), and with randomly initiated
weight vectors (right side).

A A Xi2 I
A 0{ ° O
A A O ® . . 1 .
A o " Xi1 ‘ '
O 0O%e "o
o ©
W2



Logistic regression training example

Calculate the probabilities P(Y = c|X = x;) for every class c, for every
training token x; (shown as transparency and color change, left side)

Xi2 I
A ¢
-
A Wq
® .

A ® .
AO OO xll WO

O




Logistic regression training example

Modify the weight vectors to reduce the loss function, as
we = w, —nV,, &
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Logistic regression training example

Repeat until the loss stops decreasing.
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Some details: Learning Rate

* The learning rate, for logistic regression, is much smaller than for
perceptron. Typicallyn = 0.001.

* It’s very hard to know in advance what learning rate will work for a
particular problem. Usually you need to try some experiments to see
what works.



Some details: Cross entropy

* The loss function is called “cross entropy,” because it is similar in
some ways to the entropy of a thermodynamic system in physics.

e Usually we normalize by the number of training tokens, so that the
scale is easier to understand:

n
1 1
£=——logP(D|6) = —gzlogP(Y = yilX = x)
=1
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Some details: Binary cross entropy

* For two-class problems, it’s wasteful to compute both P(Y = 0|X = x;)
and P(Y = 1|X = x;), so sometimes we don’t.

* Instead, we use binary cross entropy, which is:

Q= —%( z logP(Y =1|X =x;) + z log(l —P(Y=1[X :xi))>

iy;i=1 1:y;=0



Some details: Logistic function

The probability P(Y = 1|X = x) in the two-class case is particularly simple.

It’s
T
eWiX 1

—_— — —_— T = —
P(Y = 1|X = x) = softmax(wj x) = owTx - gwlx 14 e-Wix

where w = w; — wy.



Logistic: g(b)=1/(1+e™®)

Some details: Logistic function -
This function, ) g 0 —
PY=IX =0 =Tnm
is called the “logistic sigmoid function.” R : i

* [t’s called “sigmoid” because it is S-shaped.

* |t was first discovered by Verhulst in the 1830s, as a model of
population growth. The idea was that the population grows

exponentially until it runs up against resource limitations,
and then starts to stagnate.



. . . 1.5
Logistic Regression |
We can frame the basic idea of logistic regression
in this way: replace the non-differentiable decision 3 °
function 05
§ = u(w'x)
with a differentiable decision funclttion: 15
5 _ T\ —
y=ow'x) = 1+ e—w'x 15
...s0 that the classifier can be trained using
gradient descent. 05
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Conclusion: Comparing logistic regression vs. the
perceptron

Logistic regression:

For all training tokens, whether right or wrong,

1
w=w-—nV,L = W+n%leogP(Y=inX = X;)

Perceptron:

*If y; = ¥; then do nothing.
*If y; # y; thenset w =w + ny;x;



Conclusion: Comparing multi-class logistic regression
vs. multi-class perceptron

Logistic regression:

For all training tokens, for all classes, even if ¢ # vy;,

1
We = We — 77Vwc8 =W, + n;lvwc log P(Y = y;|X = x;)

Multi-class Perceptron:

*If y; = ¥; then do nothing.
*If y; # ¥; then
* update the correct class, y;, as wy,, = w,,. + nx;
* update the incorrect class, y;, as wy; = wy;: — 1x;



