
CS440/ECE448 Lecture 09:
Logistic Regression

Mark Hasegawa-Johnson, 2/2021
License: CC-BY 4.0

Outline

• Advantages and disadvantages of the perceptron
• Probabilistic-boundary classifiers
• How do you maximize a function?
• Learning a logistic regression
• Two-class logistic regression

Linear Classifiers in General
Consider the classifier

!𝑦 = 𝑢 𝑏 +'
!"#

$

𝑤!𝑥!

This is called a “linear classifier” because the boundary
between the two classes is a line.

𝑥#

𝑥%
!𝑦 = 0

!𝑦 = 1

Multi-Class Linear Classifiers
All multi-class linear classifiers have the
form

!𝑦 = argmax!"#$%& 𝑤!'𝑥

The region of x-space associated with each
class label is convex with piece-wise
linear boundaries. Such regions are
called “Voronoi regions.”

𝑥#

!𝒚 = 0

!𝒚 = 1 !𝒚 = 2 !𝒚 = 3

!𝒚 = 4
!𝒚 = 5 !𝒚 = 6

!𝒚 = 8

𝑥%

By Balu Ertl - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=38534275

!𝒚 = 9

!𝒚
= 7

!𝒚 = 10

!𝒚 = 11 !𝒚 = 12 !𝒚 = 13

!𝒚 = 14

!𝒚 = 15 !𝒚 = 16 !𝒚 = 17

!𝒚 = 18
!𝒚 = 19

For each training instance 𝒙 w/ground truth label 𝑦 ∈ {0,1, … , 𝑉 − 1}:
• Classify with current weights: !𝑦 = argmax!"#$%& 𝑤!'𝑥
• Update weights:
• if !𝑦 is correct (𝑦 = !𝑦) then do nothing
• If !𝑦 is incorrect (𝑦 ≠ !𝑦) then:
• Update the correct-class vector as 𝑤& = 𝑤(+ η𝑥
• Update the wrong-class vector as 𝑤)(= 𝑤'& − η𝑥
• Don’t change the vectors of any other class

Training a Multi-Class Perceptron

Multi-class perceptron: advantages and
disadvantages
• ADVANTAGE: If the classes are linearly separable, then multi-class

perceptron algorithm will find a set of linear functions that separate
them
• DISADVANTAGE: If the classes are not linearly separable, then the 𝑤!

converge only if we force η to decay to zero (η = &
*

for the nth training
token). After they’ve converged, we don’t know exactly how good or
how bad the resulting 𝑤! are.

Outline

• Advantages and disadvantages of the perceptron
• Probabilistic-boundary classifiers
• How do you maximize a function?
• Learning a logistic regression
• Two-class logistic regression

Probabilistic boundaries
Instead of trying to find the exact boundaries, logistic regression
models the probability that token x belongs to class y.

𝑥#

𝑥%
In this region,

𝑃 𝑌 = 1 𝑋 = 𝑥 ≈ 1

In this region,
𝑃 𝑌 = 1 𝑋 = 𝑥 ≈ 0

In this region,
0 < 𝑃 𝑌 = 1 𝑋 = 𝑥 < 1

• Perceptron: !𝑦 = argmax!"#$%& 𝑤!'𝑥
• Logistic regression: P(Y = c|𝑋 = 𝑥) = softmax(")*+# 𝑤(,𝑥
where the “softmax” function is defined as

softmax(")*+# 𝑤(,𝑥 =
𝑒-!".

∑/")*+# 𝑒-#".

Logistic regression and the softmax function

P Y = c 𝑋 = 𝑥 = softmax(")*+# 𝑤(,𝑥 =
𝑒-!".

∑/")*+# 𝑒-#".

• The exponential function (𝑒-!"., sometimes written as exp(𝑤(,𝑥))
guarantees that P Y = c 𝑋 = 𝑥 is a positive number.
• The sum, in the denominator, guarantees that

1 = '
(")

*+#

P Y = c 𝑋 = 𝑥

Logistic regression and the softmax function

Learning logistic regression
• Suppose we have some data.
• We want to learn vectors 𝑤! = 𝑤!&, … ,𝑤!+ ' so that
P Y = c 𝑋 = 𝑥 = softmax!"#& 𝑤!'𝑥 .

𝑥0#

𝑥0%

Learning logistic regression: Training data
Data:

𝔇 = 𝑥&, 𝑦& , 𝑥,, 𝑦, , … , 𝑥*, 𝑦*
where each 𝑥- = 𝑥-&, … , 𝑥-+ ' is a vector, and each 𝑦- is an integer class label,
0 ≤ 𝑦- ≤ 𝑉 − 1.

𝑥0#

𝑥0%
(𝑥!, 𝑦! = 1)

(𝑥", 𝑦" = 1)

(𝑥#, 𝑦# = 0)

(𝑥$, 𝑦$ = 0)

Learning logistic regression: Model parameters
We want to learn the model parameters

θ = 𝑤#, … ,𝑤$%&
so that

P Y = 𝑦- 𝑋 = 𝑥- = softmax 𝑤(!
' 𝑥-

𝑥0#

𝑥0%
(𝑥!, 𝑦! = 1)

(𝑥", 𝑦" = 1)

(𝑥#, 𝑦# = 0)

(𝑥$, 𝑦$ = 0)

Learning logistic regression: Training criterion
We want to learn the model parameters, θ = 𝑤#, … ,𝑤$%& , in order to
maximize the probability of the observed data:

𝑃 𝔇 θ =D
-"&

*

𝑃 𝑌 = 𝑦-|𝑋 = 𝑥-

𝑥0#

𝑥0%
(𝑥!, 𝑦! = 1)

(𝑥", 𝑦" = 1)

(𝑥#, 𝑦# = 0)

Learning logistic regression
We want to learn the model parameters, θ = 𝑤#, … ,𝑤$%& , in order to
maximize the probability of the observed data:

𝑃 𝔇 θ =D
-"&

*

softmax 𝑤(!
' 𝑥-

𝑥0#

𝑥0%
(𝑥!, 𝑦! = 1)

(𝑥", 𝑦" = 1)

(𝑥#, 𝑦# = 0)

Learning logistic regression
We want to learn the model parameters, θ = 𝑤#, … ,𝑤$%& , in order to
maximize the probability of the observed data:

𝑃 𝔇 θ =D
-"&

* exp 𝑤(!
' 𝑥-

∑."#$%& exp 𝑤.'𝑥-

𝑥0#

𝑥0%
(𝑥!, 𝑦! = 1)

(𝑥", 𝑦" = 1)

(𝑥#, 𝑦# = 0)

Outline

• Advantages and disadvantages of the perceptron
• Probabilistic-boundary classifiers
• How do you maximize a function?
• Learning a logistic regression
• Two-class logistic regression

How do you maximize a function?

Our goal is to find θ = 𝑤#, … ,𝑤$%& in order to maximize

𝑃 𝔇 θ =D
-"&

* exp 𝑤(!
' 𝑥-

∑."#$%& exp 𝑤.'𝑥-
Here are some things you know:
1. Logarithm turns products into sums.
2. Gradient ascent: if you want to find θ in order to maximize 𝑓(θ),

you take a step in the direction +∇/𝑓.

How do you maximize minimize a function?

Our goal is to find θ = 𝑤#, … ,𝑤$%& in order to maximize

𝔏 = − log𝑃 𝔇 θ = − logD
-"&

* exp 𝑤(!
' 𝑥-

∑."#$%& exp 𝑤.'𝑥-
Here are some things you know:
1. Logarithm turns products into sums.
2. Gradient ascent descent: if you want to find θ in order to maximize

minimize 𝑓(θ), you take a step in the direction −∇/𝑓.

How do you maximize minimize a function?

Our goal is to find θ = 𝑤#, … ,𝑤$%& in order to maximize

𝔏 = − log𝑃 𝔇 θ = −M
-"&

*

𝑤(!
' 𝑥- − logM

."#

$%&

exp 𝑤.'𝑥-

Here are some things you know:
1. Logarithm turns products into sums.
2. Gradient ascent descent: if you want to find θ in order to maximize

minimize 𝑓(θ), you take a step in the direction −∇/𝑓.

How do you minimize a function?

Our goal is to find θ = 𝑤#, … ,𝑤$%& by taking a step in the direction:

−∇/𝔏 = ∇/ log𝑃 𝔇 θ =M
-"&

*

∇/ 𝑤(!
' 𝑥- − logM

."#

$%&

exp 𝑤.'𝑥-

Here are some things you know:
1. Logarithm turns products into sums.
2. Gradient descent: if you want to find θ in order to minimize 𝑓(θ),

you take a step in the direction −∇/𝑓.

The gradient of the log softmax

Our goal is to find θ = 𝑤#, … ,𝑤$%& by taking a step in the direction −∇/𝔏.
The gradient is just the partial derivative w.r.t. each vector:

∇0" 𝑤(!
' 𝑥- − logM

."#

$%&

exp 𝑤.'𝑥- =
1−

exp 𝑤!'𝑥-
∑."#$%& exp 𝑤.'𝑥-

𝑥- 𝑐 = 𝑦-

0 −
exp 𝑤!'𝑥-

∑."#$%& exp 𝑤.'𝑥-
𝑥- 𝑐 ≠ 𝑦-

Outline

• Advantages and disadvantages of the perceptron
• Probabilistic-boundary classifiers
• How do you maximize a function?
• Learning a logistic regression
• Two-class logistic regression

Logistic regression training

• In each iteration, present a batch of training data, 𝔇 =
𝑥&, 𝑦& , 𝑥,, 𝑦, , … , 𝑥*, 𝑦* .
• If the batch contains all the data, this is called “gradient descent”
• If the batch contains a randomly chosen subset of the data, this is called

“stochastic gradient descent”

• Calculate P Y = 𝑐 𝑋 = 𝑥- = softmax 𝑤!'𝑥- for each training token
𝑥-, for each class 𝑐.
• Update all the weight vectors as 𝑤! = 𝑤! − 𝜂∇0"𝔏

Logistic regression training example
Start with the given dataset 𝔇 (left side), and with randomly initiated
weight vectors (right side).

𝑥0#

𝑥0%

𝑤)

𝑤#

𝑤%

Logistic regression training example
Calculate the probabilities P Y = 𝑐 𝑋 = 𝑥- for every class 𝑐, for every
training token 𝑥- (shown as transparency and color change, left side)

𝑥0#

𝑥0%

𝑤)

𝑤#

𝑤%

Logistic regression training example
Modify the weight vectors to reduce the loss function, as

𝑤! = 𝑤! − 𝜂∇0"𝔏

𝑥0#

𝑥0%

𝑤)

𝑤#
𝑤%

Logistic regression training example
Repeat until the loss stops decreasing.

𝑤)

𝑤#
𝑤%

𝑥0#

𝑥0%

Some details: Learning Rate

• The learning rate, for logistic regression, is much smaller than for
perceptron. Typically 𝜂 ≈ 0.001.
• It’s very hard to know in advance what learning rate will work for a

particular problem. Usually you need to try some experiments to see
what works.

Some details: Cross entropy

• The loss function is called “cross entropy,” because it is similar in
some ways to the entropy of a thermodynamic system in physics.
• Usually we normalize by the number of training tokens, so that the

scale is easier to understand:

𝔏 = −
1
𝑛 log𝑃 𝔇 θ = −

1
𝑛M
-"&

*

log P Y = 𝑦- 𝑋 = 𝑥-

Outline

• Advantages and disadvantages of the perceptron
• Probabilistic-boundary classifiers
• How do you maximize a function?
• Learning a logistic regression
• Two-class logistic regression

Some details: Binary cross entropy

• For two-class problems, it’s wasteful to compute both P Y = 0 𝑋 = 𝑥-
and P Y = 1 𝑋 = 𝑥- , so sometimes we don’t.
• Instead, we use binary cross entropy, which is:

𝔏 = −
1
𝑛 M

-:(!"&

log P Y = 1 𝑋 = 𝑥- + M
-:(!"#

log 1 − P Y = 1 𝑋 = 𝑥-

Some details: Logistic function

The probability P Y = 1 𝑋 = 𝑥 in the two-class case is particularly simple.
It’s

P Y = 1 𝑋 = 𝑥 = softmax 𝑤&'𝑥 =
𝑒0#$2

𝑒0#$2 + 𝑒0%$2
=

1
1 + 𝑒%0$2

where 𝑤 = 𝑤& −𝑤#.

Some details: Logistic function

This function,

P Y = 1 𝑋 = 𝑥 =
1

1 + 𝑒%0$2
is called the “logistic sigmoid function.”
• It’s called “sigmoid” because it is S-shaped.
• It was first discovered by Verhulst in the 1830s, as a model of

population growth. The idea was that the population grows
exponentially until it runs up against resource limitations,
and then starts to stagnate.

Logistic Regression
We can frame the basic idea of logistic regression
in this way: replace the non-differentiable decision
function

!𝑦 = u(𝑤'𝑥)
with a differentiable decision function:

!𝑦 = σ 𝑤'𝑥 =
1

1 + 𝑒%0$2
…so that the classifier can be trained using
gradient descent.

Conclusion: Comparing logistic regression vs. the
perceptron
Logistic regression:
For all training tokens, whether right or wrong,

𝑤 = 𝑤 − 𝜂∇-𝔏 = 𝑤 + 𝜂
1
𝑛 ∇- log P Y = 𝑦0 𝑋 = 𝑥0

Perceptron:
• If 𝑦0 = L𝑦0 then do nothing.
• If 𝑦0 ≠ L𝑦0 then set 𝑤 = 𝑤 + 𝜂𝑦0𝑥0

Conclusion: Comparing multi-class logistic regression
vs. multi-class perceptron
Logistic regression:
For all training tokens, for all classes, even if c ≠ 𝑦0,

𝑤(= 𝑤(− 𝜂∇-!𝔏 = 𝑤(+ 𝜂
1
𝑛 ∇-! log P Y = 𝑦0 𝑋 = 𝑥0

Multi-class Perceptron:
• If 𝑦0 = L𝑦0 then do nothing.
• If 𝑦0 ≠ L𝑦0 then
• update the correct class, 𝑦0, as 𝑤&$ = 𝑤&$ + 𝜂𝑥0
• update the incorrect class, L𝑦0, as 𝑤1&$ = 𝑤1&$ − 𝜂𝑥0

