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Outline

• A little history: perceptron as a model of a biological neuron
• The perceptron learning algorithm
• Linear separability, 𝑦𝑥, and convergence

• It converges to the right answer, even with 𝜂 = 1, if data are linearly 
separable

• If data are not linearly separable, it’s necessary to use 𝜂 = 1/𝑛.

• Multi-class perceptron



The Giant Squid Axon • 1909: Williams describes the 
giant squid axon (III: 1mm 
thick)
• 1939: Young describes the 

synapse.
• 1952: Hodgkin & Huxley 

publish an electrical current 
model for the generation of 
binary action potentials from 
real-valued inputs.

Image released to the public domain by lkkisan, 2007.
Modified from Llinás, Rodolfo R. (1999). The squid Giant Synapse.



Perceptron • 1959: Rosenblatt is granted a 
patent for the “perceptron,” 
an electrical circuit model of 
a neuron.



Perceptron
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Output: sgn(wTx)

Can incorporate bias as 
component of the weight 
vector by always including a 
feature with value set to 1

Perceptron model: action potential 
= signum(affine function of the 
features)

#𝑦 = sgn(𝑤1𝑥1+ … +𝑤𝐷𝑥𝐷 + 𝑏)
= sgn(𝑤!𝑥)

Where 𝑤 = [𝑤", … ,𝑤#, 𝑏]!,
𝑥 = [𝑥", … , 𝑥#, 1]!, and 

sgn(𝑥) = 2 1 𝑥 ≥ 0
−1 𝑥 < 0



Outline

• A little history: perceptron as a model of a biological neuron
• The perceptron learning algorithm
• Linear separability, 𝑦𝑥, and convergence

• It converges to the right answer, even with 𝜂 = 1, if data are linearly 
separable

• If data are not linearly separable, it’s necessary to use 𝜂 = 1/𝑛.

• Multi-class perceptron



Perceptron
Rosenblatt’s big innovation: the 
perceptron learns from 
examples.
• Initialize weights randomly
• Cycle through training 

examples in multiple passes 
(epochs)
• For each training example:
• If classified correctly, do 

nothing
• If classified incorrectly, 

update weights
By Elizabeth Goodspeed - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=40188333



Perceptron
For each training instance 𝒙 with ground truth label 𝑦 ∈ {−1,1}:
• Classify with current weights: !𝑦 = sgn(𝑤&𝑥)
• Update weights:   
• if 𝑦 = ,𝑦 then do nothing
• If 𝑦 ≠ ,𝑦 then 𝑤 = 𝑤 + ηy𝑥
• η (eta) is a “learning rate.”  For now, let’s assume η=1.



Perceptron example: dogs versus cats
Can you write a program that can tell which ones are dogs, and which ones are cats?

𝑥! = # times the animal comes when called (out of 40).
𝑥" = weight of the animal, in pounds.
𝑥 = [𝑥!, 𝑥", 1]#.
𝑦 = 1 means “dog”
𝑦 = −1 means “cat”

-𝑦 = sgn 𝑤#𝑥



Perceptron training example: dogs vs. cats
• Let’s start with the rule “if it comes when called (by at least 20 different people 

out of 40), it’s a dog.”
• Write that as an equation: -𝑦 = sgn(𝑥! − 20)
• Write that as a vector equation: -𝑦 = sgn(𝑤#𝑥), where 𝑤# = 1,0, −20

𝑥!

𝑥"

𝑤# = 1,0,−20

sgn 𝑤#𝑥 = 1

sgn 𝑤#𝑥 = −1



Perceptron training example: dogs vs. cats
• The Presa Canario gets misclassified as a cat (𝑦 = 1, but -𝑦 = −1) because it only 

obeys its trainer, and nobody else (𝑥! = 1).  
• Though it rarely comes when called, is very large (𝑥" = 100 pounds). 
• �⃗�# = 𝑥!, 𝑥", 1 = [1,100,1].

𝑥"

𝑥!

𝑤# = 1,0,−20

sgn 𝑤#𝑥 = 1

sgn 𝑤#𝑥 = −1



Perceptron training example: dogs vs. cats
• The Presa Canario gets misclassified.  𝑥# = 𝑥!, 𝑥", 1 = [1,100,1].
• Perceptron learning rule: update the weights as: 

𝑤 = 𝑤 + 𝑦𝑥 =
1
0

−20
+ 1×

1
100
1

=
2
100
−19

𝑥"

𝑥!

New 𝑤 =
2
100
−19

sgn 𝑤#𝑥 = 1

sgn 𝑤#𝑥 = −1

Old 𝑤 =
1
0
−20



Perceptron training example: dogs vs. cats
• The Maltese is small (𝑥" = 10 pounds) and very tame (𝑥! = 40): 𝑥 =

40
10
1

.

• It’s correctly classified! -𝑦 = sgn 𝑤#𝑥 = sgn 2×40 + 100×10 − 19 = +1,
• so 𝑤 is unchanged.

𝑥"

𝑥!

sgn 𝑤#𝑥 = 1

𝑤# = 2,100,−19

sgn 𝑤#𝑥 = −1



Perceptron training example: dogs vs. cats
• The Maine Coon cat is big (𝑥" = 20 pounds: �⃗� = 0,20,1 ), so it gets misclassified 

as a dog (true label is 𝑦 = −1=“cat,”  but the classifier thinks -𝑦 = 1=“dog”). 

𝑥"

𝑥!

sgn 𝑤#𝑥 = 1

sgn 𝑤#𝑥 = −1

𝑤# = 2,100,−19



Perceptron training example: dogs vs. cats
• The Maine Coon cat is big (𝑥" = 20 pounds: �⃗� = 0,20,1 ), so it gets 

misclassified, so we update w:

𝑤 = 𝑤 + 𝑦𝑥 =
2
100
−19

+ (−1)×
0
20
1

=
2
80
−20

𝑥"

𝑥!

sgn 𝑤#𝑥 = 1

sgn 𝑤#𝑥 = −1

𝑤# = 2,80,−20
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converge to an answer?  Will it converge to the correct answer? 
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Does the perceptron find an answer?
Does it find the correct answer?
Suppose we run the perceptron algorithm for a very long time.   Will it 
converge to an answer?  Will it converge to the correct answer? 
That depends on whether or not the data are linearly separable.
”Linearly separable” means it’s possible to find a line (a hyperplane, in D-
dimensional space) that separates the two classes, like this:

𝑥<

𝑥=



Does the perceptron find an answer?
Does it find the correct answer?
Suppose that, instead of plotting 𝑥, we plot 𝑦𝑥.
• If 𝑦 = 1, plot 𝑥
• If 𝑦 = −1, plot −𝑥

𝑥<

𝑥=



Does the perceptron find an answer?
Does it find the correct answer?
Notice that the original data (𝑥) are linearly separable if and only if the 
signed data (𝑦𝑥) are all in the same half-plane.

𝑦𝑥<

𝑦𝑥=



Does the perceptron find an answer?
Does it find the correct answer?
Notice that the original data (𝑥) are linearly separable if and only if the 
signed data (𝑦𝑥) are all in the same half-plane.
That means that there is some vector 𝑤 such that sgn(𝑤!(𝑦𝑥)) = 1 for all 
of the data.

𝑦𝑥<

𝑦𝑥= 𝑤



Does the perceptron find an answer?
Does it find the correct answer?
Suppose we start out with the wrong 𝑤, so that one token is misclassified. 

𝑦𝑥<

𝑦𝑥=
𝑤



Does the perceptron find an answer?
Does it find the correct answer?
Suppose we start out with the wrong 𝑤, so that one token is misclassified.  
Then we update w as

𝑤 = 𝑤 + 𝑦𝑥

𝑦𝑥<

𝑦𝑥=
𝑤

𝑦𝑥

𝑦𝑥New 𝑤



Does the perceptron find an answer?
Does it find the correct answer?
Suppose we start out with the wrong 𝑤, so that one token is misclassified.  
Then we update w as

𝑤 = 𝑤 + 𝑦𝑥
…and the boundary moves so that the misclassified token is on the right 
side.

𝑦𝑥<

𝑦𝑥=New 𝑤



What if the data are not linearly separable?

… well, then in that case, the perceptron algorithm with 𝜂 = 1 never 
converges.  The only solution is to use a learning rate, 𝜂, that gradually 
decays over time, so that the update 𝜂𝑦𝑥 also gradually decays toward zero.

𝑦𝑥<

𝑦𝑥= 𝑤



What about non-separable data?
• If the data are NOT linearly separable, then the perceptron with 

η=1 doesn’t converge.
• In fact, that’s what η is for.  
• Remember that 𝑤 = 𝑤 + ηy𝑥.
•We can force the perceptron to stop wiggling around by forcing η

(and therefore ηy�⃗�) to get gradually smaller and smaller.

• This works: for the 𝑛>? training token, set η= <
@

.

• Notice: ∑@A<B <
@

is infinite.  Nevertheless, η= <
@

works, because the 
y𝑥 tokens are not all in the same direction.
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Multi-Class Perceptron
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Multi-Class Perceptron True class is 𝑦 ∈ {0,1,2, … , 𝑉 − 1}
(i.e., 𝑉=vocabulary size = # of distinct classes).

Classifier output is 

-𝑦 = argmax$%&'(! 𝑤$!𝑥! +⋯+ 𝑤$)𝑥) + 𝑏$

= argmax$%&'(! 𝑤$#𝑥

∈ {0,1, … , 𝑉 − 1}

Where 𝑤$ = [𝑤$!, … , 𝑤$) , 𝑏$]#

and 𝑥 = [𝑥!, … , 𝑥) , 1]#

𝑥<

𝑥=

By Balu Ertl - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=38534275
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Multi-Class Linear Classifiers
All multi-class linear classifiers have the 
form

#𝑦 = argmax$%&'(" 𝑤$!𝑥

The region of x-space associated with each 
class label is convex with piece-wise 
linear boundaries.  Such regions are 
called “Voronoi regions.”

𝑥<
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By Balu Ertl - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=38534275
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For each training instance 𝒙 w/ground truth label 𝑦 ∈ {0,1, … , 𝑉 − 1}:
• Classify with current weights:  ,𝑦 = argmax!"#$%& 𝑤!'𝑥
• Update weights:   
• if ,𝑦 is correct (𝑦 = ,𝑦) then do nothing
• If ,𝑦 is incorrect (𝑦 ≠ ,𝑦) then:
• Update the correct-class vector as 𝑤N = 𝑤) + η𝑥
• Update the wrong-class vector as  𝑤*) = 𝑤ON − η𝑥
• Don’t change the vectors of any other class

Training a Multi-Class Perceptron



Conclusions

• Perceptron as a model of a biological neuron: #𝑦 = sgn(𝑤#𝑥)
• The perceptron learning algorithm: if 𝑦 = #𝑦 then do nothing, else 
𝑤 = 𝑤 + 𝜂y𝑥.
• Linear separability, 𝑦𝑥, and convergence

• It converges to the right answer, even with 𝜂 = 1, if data are linearly 
separable

• If data are not linearly separable, it’s necessary to use 𝜂 = 1/𝑛.

• Multi-class perceptron: if 𝑦 = #𝑦 then do nothing, else 𝑤) = 𝑤) + 𝜂𝑥, 
and 𝑤*) = 𝑤ON − 𝜂𝑥.


