
CS440/ECE448 Lecture 8:
Perceptron

Mark Hasegawa-Johnson, 2/2021

License: CC-BY 4.0; redistribute at
will, as long as you cite the source.

Outline

• A little history: perceptron as a model of a biological neuron
• The perceptron learning algorithm
• Linear separability, 𝑦𝑥, and convergence

• It converges to the right answer, even with 𝜂 = 1, if data are linearly
separable

• If data are not linearly separable, it’s necessary to use 𝜂 = 1/𝑛.

• Multi-class perceptron

The Giant Squid Axon • 1909: Williams describes the
giant squid axon (III: 1mm
thick)
• 1939: Young describes the

synapse.
• 1952: Hodgkin & Huxley

publish an electrical current
model for the generation of
binary action potentials from
real-valued inputs.

Image released to the public domain by lkkisan, 2007.
Modified from Llinás, Rodolfo R. (1999). The squid Giant Synapse.

Perceptron • 1959: Rosenblatt is granted a
patent for the “perceptron,”
an electrical circuit model of
a neuron.

Perceptron

1

x1

xD

b

w1

w2

x2

wD

Input

Weights

.

.

.

Output: sgn(wTx)

Can incorporate bias as
component of the weight
vector by always including a
feature with value set to 1

Perceptron model: action potential
= signum(affine function of the
features)

#𝑦 = sgn(𝑤1𝑥1+ … +𝑤𝐷𝑥𝐷 + 𝑏)
= sgn(𝑤!𝑥)

Where 𝑤 = [𝑤", … ,𝑤#, 𝑏]!,
𝑥 = [𝑥", … , 𝑥#, 1]!, and

sgn(𝑥) = 2 1 𝑥 ≥ 0
−1 𝑥 < 0

Outline

• A little history: perceptron as a model of a biological neuron
• The perceptron learning algorithm
• Linear separability, 𝑦𝑥, and convergence

• It converges to the right answer, even with 𝜂 = 1, if data are linearly
separable

• If data are not linearly separable, it’s necessary to use 𝜂 = 1/𝑛.

• Multi-class perceptron

Perceptron
Rosenblatt’s big innovation: the
perceptron learns from
examples.
• Initialize weights randomly
• Cycle through training

examples in multiple passes
(epochs)
• For each training example:
• If classified correctly, do

nothing
• If classified incorrectly,

update weights
By Elizabeth Goodspeed - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=40188333

Perceptron
For each training instance 𝒙 with ground truth label 𝑦 ∈ {−1,1}:
• Classify with current weights: !𝑦 = sgn(𝑤&𝑥)
• Update weights:
• if 𝑦 = ,𝑦 then do nothing
• If 𝑦 ≠ ,𝑦 then 𝑤 = 𝑤 + ηy𝑥
• η (eta) is a “learning rate.” For now, let’s assume η=1.

Perceptron example: dogs versus cats
Can you write a program that can tell which ones are dogs, and which ones are cats?

𝑥! = # times the animal comes when called (out of 40).
𝑥" = weight of the animal, in pounds.
𝑥 = [𝑥!, 𝑥", 1]#.
𝑦 = 1 means “dog”
𝑦 = −1 means “cat”

-𝑦 = sgn 𝑤#𝑥

Perceptron training example: dogs vs. cats
• Let’s start with the rule “if it comes when called (by at least 20 different people

out of 40), it’s a dog.”
• Write that as an equation: -𝑦 = sgn(𝑥! − 20)
• Write that as a vector equation: -𝑦 = sgn(𝑤#𝑥), where 𝑤# = 1,0, −20

𝑥!

𝑥"

𝑤# = 1,0,−20

sgn 𝑤#𝑥 = 1

sgn 𝑤#𝑥 = −1

Perceptron training example: dogs vs. cats
• The Presa Canario gets misclassified as a cat (𝑦 = 1, but -𝑦 = −1) because it only

obeys its trainer, and nobody else (𝑥! = 1).
• Though it rarely comes when called, is very large (𝑥" = 100 pounds).
• �⃗�# = 𝑥!, 𝑥", 1 = [1,100,1].

𝑥"

𝑥!

𝑤# = 1,0,−20

sgn 𝑤#𝑥 = 1

sgn 𝑤#𝑥 = −1

Perceptron training example: dogs vs. cats
• The Presa Canario gets misclassified. 𝑥# = 𝑥!, 𝑥", 1 = [1,100,1].
• Perceptron learning rule: update the weights as:

𝑤 = 𝑤 + 𝑦𝑥 =
1
0

−20
+ 1×

1
100
1

=
2
100
−19

𝑥"

𝑥!

New 𝑤 =
2
100
−19

sgn 𝑤#𝑥 = 1

sgn 𝑤#𝑥 = −1

Old 𝑤 =
1
0
−20

Perceptron training example: dogs vs. cats
• The Maltese is small (𝑥" = 10 pounds) and very tame (𝑥! = 40): 𝑥 =

40
10
1

.

• It’s correctly classified! -𝑦 = sgn 𝑤#𝑥 = sgn 2×40 + 100×10 − 19 = +1,
• so 𝑤 is unchanged.

𝑥"

𝑥!

sgn 𝑤#𝑥 = 1

𝑤# = 2,100,−19

sgn 𝑤#𝑥 = −1

Perceptron training example: dogs vs. cats
• The Maine Coon cat is big (𝑥" = 20 pounds: �⃗� = 0,20,1), so it gets misclassified

as a dog (true label is 𝑦 = −1=“cat,” but the classifier thinks -𝑦 = 1=“dog”).

𝑥"

𝑥!

sgn 𝑤#𝑥 = 1

sgn 𝑤#𝑥 = −1

𝑤# = 2,100,−19

Perceptron training example: dogs vs. cats
• The Maine Coon cat is big (𝑥" = 20 pounds: �⃗� = 0,20,1), so it gets

misclassified, so we update w:

𝑤 = 𝑤 + 𝑦𝑥 =
2
100
−19

+ (−1)×
0
20
1

=
2
80
−20

𝑥"

𝑥!

sgn 𝑤#𝑥 = 1

sgn 𝑤#𝑥 = −1

𝑤# = 2,80,−20

Outline

• A little history: perceptron as a model of a biological neuron
• The perceptron learning algorithm
• Linear separability, 𝑦𝑥, and convergence

• It converges to the right answer, even with 𝜂 = 1, if data are linearly
separable

• If data are not linearly separable, it’s necessary to use 𝜂 = 1/𝑛.

• Multi-class perceptron

Does the perceptron find an answer?
Does it find the correct answer?
Suppose we run the perceptron algorithm for a very long time. Will it
converge to an answer? Will it converge to the correct answer?

Does the perceptron find an answer?
Does it find the correct answer?
Suppose we run the perceptron algorithm for a very long time. Will it
converge to an answer? Will it converge to the correct answer?
That depends on whether or not the data are linearly separable.

Does the perceptron find an answer?
Does it find the correct answer?
Suppose we run the perceptron algorithm for a very long time. Will it
converge to an answer? Will it converge to the correct answer?
That depends on whether or not the data are linearly separable.
”Linearly separable” means it’s possible to find a line (a hyperplane, in D-
dimensional space) that separates the two classes, like this:

𝑥<

𝑥=

Does the perceptron find an answer?
Does it find the correct answer?
Suppose that, instead of plotting 𝑥, we plot 𝑦𝑥.
• If 𝑦 = 1, plot 𝑥
• If 𝑦 = −1, plot −𝑥

𝑥<

𝑥=

Does the perceptron find an answer?
Does it find the correct answer?
Notice that the original data (𝑥) are linearly separable if and only if the
signed data (𝑦𝑥) are all in the same half-plane.

𝑦𝑥<

𝑦𝑥=

Does the perceptron find an answer?
Does it find the correct answer?
Notice that the original data (𝑥) are linearly separable if and only if the
signed data (𝑦𝑥) are all in the same half-plane.
That means that there is some vector 𝑤 such that sgn(𝑤!(𝑦𝑥)) = 1 for all
of the data.

𝑦𝑥<

𝑦𝑥= 𝑤

Does the perceptron find an answer?
Does it find the correct answer?
Suppose we start out with the wrong 𝑤, so that one token is misclassified.

𝑦𝑥<

𝑦𝑥=
𝑤

Does the perceptron find an answer?
Does it find the correct answer?
Suppose we start out with the wrong 𝑤, so that one token is misclassified.
Then we update w as

𝑤 = 𝑤 + 𝑦𝑥

𝑦𝑥<

𝑦𝑥=
𝑤

𝑦𝑥

𝑦𝑥New 𝑤

Does the perceptron find an answer?
Does it find the correct answer?
Suppose we start out with the wrong 𝑤, so that one token is misclassified.
Then we update w as

𝑤 = 𝑤 + 𝑦𝑥
…and the boundary moves so that the misclassified token is on the right
side.

𝑦𝑥<

𝑦𝑥=New 𝑤

What if the data are not linearly separable?

… well, then in that case, the perceptron algorithm with 𝜂 = 1 never
converges. The only solution is to use a learning rate, 𝜂, that gradually
decays over time, so that the update 𝜂𝑦𝑥 also gradually decays toward zero.

𝑦𝑥<

𝑦𝑥= 𝑤

What about non-separable data?
• If the data are NOT linearly separable, then the perceptron with

η=1 doesn’t converge.
• In fact, that’s what η is for.
• Remember that 𝑤 = 𝑤 + ηy𝑥.
•We can force the perceptron to stop wiggling around by forcing η

(and therefore ηy�⃗�) to get gradually smaller and smaller.

• This works: for the 𝑛>? training token, set η= <
@

.

• Notice: ∑@A<B <
@

is infinite. Nevertheless, η= <
@

works, because the
y𝑥 tokens are not all in the same direction.

Outline

• A little history: perceptron as a model of a biological neuron
• The perceptron learning algorithm
• Linear separability, 𝑦𝑥, and convergence

• It converges to the right answer, even with 𝜂 = 1, if data are linearly
separable

• If data are not linearly separable, it’s necessary to use 𝜂 = 1/𝑛.

• Multi-class perceptron

Multi-Class Perceptron

1

x1

xD

x2

Input
Weights

.

.

.

Output:
argmax$%&'(! 𝑤$#�⃗�

True class is 𝑦 ∈ {0,1,2, … , 𝑉 − 1}
(i.e., 𝑉=vocabulary size = # of distinct classes).

Classifier output is

-𝑦 = argmax$%&'(! 𝑤$!𝑥! +⋯+ 𝑤$)𝑥) + 𝑏$

= argmax$%&'(! 𝑤$#𝑥

∈ {0,1, … , 𝑉 − 1}

Where 𝑤$ = [𝑤$!, … , 𝑤$) , 𝑏$]#

and 𝑥 = [𝑥!, … , 𝑥) , 1]#

.

.

.

𝑏&𝑏!

𝑤&)

𝑏'(!

𝑤!)
𝑤'(!,)

argm
ax

.

.

.

Multi-Class Perceptron True class is 𝑦 ∈ {0,1,2, … , 𝑉 − 1}
(i.e., 𝑉=vocabulary size = # of distinct classes).

Classifier output is

-𝑦 = argmax$%&'(! 𝑤$!𝑥! +⋯+ 𝑤$)𝑥) + 𝑏$

= argmax$%&'(! 𝑤$#𝑥

∈ {0,1, … , 𝑉 − 1}

Where 𝑤$ = [𝑤$!, … , 𝑤$) , 𝑏$]#

and 𝑥 = [𝑥!, … , 𝑥) , 1]#

𝑥<

𝑥=

By Balu Ertl - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=38534275

3𝒚 = 0

3𝒚 = 1 3𝒚 = 2 3𝒚 = 3

3𝒚 = 4
3𝒚 = 5 3𝒚 = 6

3𝒚 = 8

3𝒚 = 9

3𝒚
= 7

3𝒚 = 10

3𝒚 = 11 3𝒚 = 12 3𝒚 = 13

3𝒚 = 14

3𝒚 = 15 3𝒚 = 16 3𝒚 = 17

3𝒚 = 18
3𝒚 = 19

Multi-Class Linear Classifiers
All multi-class linear classifiers have the
form

#𝑦 = argmax$%&'(" 𝑤$!𝑥

The region of x-space associated with each
class label is convex with piece-wise
linear boundaries. Such regions are
called “Voronoi regions.”

𝑥<

3𝒚 = 0

3𝒚 = 1 3𝒚 = 2 3𝒚 = 3

3𝒚 = 4
3𝒚 = 5 3𝒚 = 6

3𝒚 = 8

𝑥=

By Balu Ertl - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=38534275

3𝒚 = 9

3𝒚
= 7

3𝒚 = 10

3𝒚 = 11 3𝒚 = 12 3𝒚 = 13

3𝒚 = 14

3𝒚 = 15 3𝒚 = 16 3𝒚 = 17

3𝒚 = 18
3𝒚 = 19

For each training instance 𝒙 w/ground truth label 𝑦 ∈ {0,1, … , 𝑉 − 1}:
• Classify with current weights: ,𝑦 = argmax!"#$%& 𝑤!'𝑥
• Update weights:
• if ,𝑦 is correct (𝑦 = ,𝑦) then do nothing
• If ,𝑦 is incorrect (𝑦 ≠ ,𝑦) then:
• Update the correct-class vector as 𝑤N = 𝑤) + η𝑥
• Update the wrong-class vector as 𝑤*) = 𝑤ON − η𝑥
• Don’t change the vectors of any other class

Training a Multi-Class Perceptron

Conclusions

• Perceptron as a model of a biological neuron: #𝑦 = sgn(𝑤#𝑥)
• The perceptron learning algorithm: if 𝑦 = #𝑦 then do nothing, else
𝑤 = 𝑤 + 𝜂y𝑥.
• Linear separability, 𝑦𝑥, and convergence

• It converges to the right answer, even with 𝜂 = 1, if data are linearly
separable

• If data are not linearly separable, it’s necessary to use 𝜂 = 1/𝑛.

• Multi-class perceptron: if 𝑦 = #𝑦 then do nothing, else 𝑤) = 𝑤) + 𝜂𝑥,
and 𝑤*) = 𝑤ON − 𝜂𝑥.

