CS 440/ECE 448 Lecture 5: Probability

Mark Hasegawa-Johnson, 2/2021
All content CC-BY-4.0 unless otherwise noted

CC-BY-3.0 Image by Diacritica, 2010
https://commons.wikimedia.org/wiki/File:6sided_dice.jpg

Outline

- Motivation: Why use probability?
- The axioms of probability
- Random variables
- Conditional probability
- Mutually exclusive vs. Independent vs. Conditionally Independent

Why use probability?

- Stochastic environment: outcome of an action might be truly random.
- Multi-agent environment:
- If other players are rational and their goals are known, then you don't need probability; you just work out what their rational actions will be.
- If other players have unknown goals, then model them as random.
- Unknown environment: outcome of an action is not truly random, but you don't know what the outcome will be.
- In this case, "probability" measures your belief: $\mathrm{P}(\mathrm{Q} \mid \mathrm{A})=$ the degree to which you believe that action A will produce outcome Q .
- Computational complexity:
- Instead of searching 1b paths using A*, you could randomly choose 1k paths to try, and then choose the best of those.

Why NOT use probability?

- Multi-agent environment:
- Maybe it's better to find out what the other players really want?
- Unknown environment:
- Maybe it's better to learn the rules of the game?
- Computational complexity:
- Maybe it's better to do a complete search, instead of just a partial search?

Notice: these are quantitative questions. "Better" requires some metric: how much better, and with what probability?

What is probability?

- Latin probabilis = probable, commendable, believable, from probare = to test something
- If tested, it will (probably) turn out to be true

Outline

- Motivation: Why use probability?
- The axioms of probability
- Random variables
- Conditional probability
- Mutually exclusive vs. Independent vs. Conditionally Independent

The axioms of probability

A = some future event, e.g., "it will rain tomorrow."
$P(A)=$ the degree to which we believe that event A , if tested, will turn out to be true.

The axioms of probability

Axiom 1: every event has a non-negative probability.

$$
P(A) \geq 0
$$

Axiom 2: a certain event has probability 1.

$$
P(\text { True })=1
$$

Axiom 3: probability measures behave like set measures.

$$
P(A \bigvee B)=P(A)+P(B)-P(A \wedge B)
$$

Axiom 3: probability measures behave like set measures.

Area of the whole rectangle is $P($ True $)=1$.

Area of this circle is $P(A)$.

Area of this circle is $P(B)$.

Area of their intersection is $P(A \wedge B)$.
Area of their union is $P(A \bigvee B)=P(A)+P(B)-P(A \wedge B)$

Example

- $\mathrm{A}=$ "it will rain tomorrow." Suppose $P(A)=0.4$.
- $\mathrm{B}=$ "it will snow tomorrow." Suppose $P(B)=0.2$.
- $A \wedge B=$ "it will both rain and snow tomorrow." Suppose

$$
P(A \wedge B)=0.1
$$

Then the probability that it will either rain or snow tomorrow is

$$
P(A \bigvee B)=P(A)+P(B)-P(A \wedge B)=0.4+0.2-0.1=0.5
$$

Outline

- Motivation: Why use probability?
- The axioms of probability
- Random variables
- Conditional probability
- Mutually exclusive vs. Independent vs. Conditionally Independent

Random variables

- A random variable is a function that maps from the outcomes of an experiment to a set of values
- Example: throw four dice, all different colors. $X=$ number of pips showing on the green die.
- Then run the experiment...
- In this particular outcome, $\mathrm{X}=3$.
- In some other outcome, X would have taken a different value.

Notation: $P(X=x)$

- Capital letters are random variables. Small letters are values that the random variable might take.
- " $X=x$ " is an event. As such, it has a probability. For example, we can talk about the probability $P(X=x)$:

$$
P(X=x)=\frac{1}{6} \quad \forall x \in\{1,2,3,4,5,6\}
$$

- \forall means "for all." The equation above is shorthand for these six equations:

$$
\begin{array}{lll}
P(X=1)=\frac{1}{6}, & P(X=2)=\frac{1}{6}, & P(X=3)=\frac{1}{6}, \\
P(X=4)=\frac{1}{6}, & P(X=5)=\frac{1}{6}, & P(X=6)=\frac{1}{6}
\end{array}
$$

Notation: $P(X)$

X is not an event, and it's not a value; it's a function. So $P(X)$ is NOT a number. Instead, $P(X)$ is a table, showing all of the values X might take, and the probabilities of each. For example:

x	1	2	3	4	5	6
$P(X=x)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

Abuse of Notation: Events and Binary Random Variables

- There's one confusing thing. A capital letter might be either an event ($\mathrm{A}=$ "it will rain tomorrow"), or a random variable ($\mathrm{X}=$ "number of pips showing").
- $P(A)$ is a number, but $P(X)$ is a table.
- You have to pay attention to whether the capital letter is an event, or a random variable.

Outline

- Motivation: Why use probability?
- The axioms of probability
- Random variables
- Conditional probability
- Mutually exclusive vs. Independent vs. Conditionally Independent

Joint and Conditional probabilities: definitions

- $P(A \wedge B)$ is the probability that both event A and event B happen. This is called their joint probability.
- $P(B \mid A)$ is the probability that event B happens, given that event A happens. This is called the conditional probability of B given A.
- Example:
- $A=$ "it will rain tomorrow"
- $\mathrm{B}=$ "it will snow tomorrow"
- $P(A \wedge B)=$ probability that it will both snow and rain
- $P(B \mid A)=$ probability that it will snow, given that it rains

Joint probabilities are usually given in the problem statement

Conditioning events change our knowledge! For example, given that A is true...

Only the events inside this circle are now possible.

Most of the events in this rectangle are no longer possible!

Conditioning events change our knowledge! For example, given that A is true...

Joint and Conditional distributions of random variables

- $P(X, Y)$ is the joint probability distribution over all possible outcomes $P(X=x, Y=y)$.
- $P(X \mid Y)$ is the conditional probability distribution of outcomes $P(X=x \mid Y=y)$.

$$
P(X=x \mid Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)}
$$

Joint and Conditional distributions of random variables

Example:
$\mathrm{X}=$ number of pips on the bone die.
$\mathrm{Y}=\mathrm{X}$ modulo 2.
The joint probability $\boldsymbol{P}(\boldsymbol{X}=5, Y=\mathbf{1})=\frac{\mathbf{1}}{\mathbf{6}}$.
Their joint distribution is:

Bone die found at Cantonment Clinch. CC-BY-3.0, Colby Kirk, 2007.

Joint and Conditional distributions of random variables

Example:
$\mathrm{X}=$ number of pips on the bone die.
$\mathrm{Y}=\mathrm{X}$ modulo 2.
The conditional probability $\boldsymbol{P}(\boldsymbol{X}=\mathbf{5} \mid \boldsymbol{Y}=\mathbf{1})=\frac{1}{3}$.
Their joint distribution is:

Bone die found at Cantonment Clinch. CC-BY-3.0, Colby Kirk, 2007.

Normalization trick

$P(X=x, Y=y)$		x						
		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	
y	$\mathbf{0}$	0	$\frac{1}{6}$	0	$\frac{1}{6}$	0	$\frac{1}{6}$	
	1	$\frac{1}{6}$	0	$\frac{1}{6}$	0	$\frac{1}{6}$	0	
				6		6		

$P(X=x \mid Y=y)$	x								
			$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	
\boldsymbol{y}	$\mathbf{0}$	0	$\frac{1}{3}$	0	$\frac{1}{3}$	0	$\frac{1}{3}$		
			1	0	$\frac{1}{3}$	0	$\frac{1}{3}$		

Outline

- Motivation: Why use probability?
- The axioms of probability
- Random variables
- Conditional probability
- Mutually exclusive vs. Independent vs. Conditionally Independent

Mutually exclusive events

Mutually exclusive events never occur simultaneously:

$$
P(A \bigvee B)=P(A)+P(B)-P(A \wedge B)=P(A)+P(B)
$$

Independent events

Independent events occur with equal probability, regardless of whether or not the other event has occurred:

$$
P(A \mid B)=\frac{P(A \wedge B)}{P(B)}=P(A), \quad P(B \mid A)=\frac{P(A \wedge B)}{P(A)}=P(B)
$$

Independent events: A more useful definition

 Re-arranging terms in the previous slide gives us this more useful definition of independent events:$$
P(A \wedge B)=P(A) P(B)
$$

Independent vs. Mutually Exclusive

- Independent events:

$$
P(A \wedge B)=P(A) P(B)
$$

- Mutually exclusive events:

$$
P(A \bigvee B)=P(A)+P(B)
$$

Don't confuse them! Mutually exclusive events are not independent. Quite the contrary.

Conditionally independent events
Events A and B are conditionally independent, given C, if

$$
P(A \mid B, C)=P(A \mid C)
$$

Conditionally independent events
Events A and B are conditionally independent, given C, if

$$
P(A \mid B, C)=\frac{P(A \wedge B \mid C)}{P(B \mid C)}=P(A \mid C)
$$

Conditionally independent events

Events A and B are conditionally independent, given C, if

$$
P(A, B \mid C)=P(A \mid C) P(B \mid C)
$$

Independence $=$ Conditional Independence

These Events are not Independent

- If the patient has a toothache, then it's likely he has a cavity. Having a cavity makes it more likely that the probe will catch on something.

$$
P(\text { Catch } \mid \text { Toothache })>P(\text { Catch })
$$

- If the probe catches on something, then it's likely that the patient has a cavity. If he has a cavity, then he might also have a toothache.

$$
P(\text { Toothache } \mid \text { Catch })>P(\text { Toothache })
$$

- So Catch and Toothache are not independent

...but they are Conditionally Independent

- Here are some reasons the probe might not catch, despite having a cavity:
- The dentist might be really careless
- The cavity might be really small
- Those reasons have nothing to do with the toothache!

$$
P(\text { Catch } \mid \text { Cavity }, \text { Toothache })=P(\text { Catch } \mid \text { Cavity })
$$

- Catch and Toothache are conditionally independent given knowledge of Cavity

...but they are Conditionally Independent

These statements are all equivalent:
$P($ Catch \mid Cavity, Toothache $)=P($ Catch \mid Cavity $)$
$P($ Toothache \mid Cavity, Catch $)=P($ Toothache \mid Cavity $)$
$P($ Toothache, Catch \mid Cavity $)=P($ Toothache \mid Cavity $) P($ Catch \mid Cavity $)$
...and they all mean that Catch and Toothache are conditionally independent given knowledge of Cavity

Summary

Here's today's most important equation:

$$
P(B \mid A)=\frac{P(A \wedge B)}{P(A)}
$$

If you haven't seen this stuff since high school, read appendix A.3.

