

Lecture 4: The "animal kingdom" of heuristics: Admissible, Consistent, Zero, Relaxed, Dominant

Mark Hasegawa-Johnson, January 2021

Distributed under CC-BY 3.0

Title image: Peaceable Kingdom by Edward Hicks, National Gallery of Art, Washington, DC

Outline of lecture

- 1. Admissible heuristics
- 2. Consistent heuristics
- 3. The zero heuristic: Uniform Cost Search
- 4. Relaxed heuristics
- 5. Dominant heuristics

A* Search

Definition: A* SEARCH

- If h(n) is admissible $(d(n) \ge h(n))$, and
- if the frontier is a priority queue sorted according to g(n) + h(n), then
- the FIRST path to goal uncovered by the tree search, path $m_{\rm r}$ is guaranteed to be the SHORTEST path to goal

 $(h(n) + g(n) \ge c(m))$ for every node n that is not on path m)

Explored Set:

empty

Frontier

S: g(n)+h(n)=2, parent=none

Expand: S, put its children A and B on the frontier.

Explored Set:

S

Frontier

A: g(n)+h(n)=5, parent=S

B: g(n)+h(n)=2, parent=S

Expand: B, put its child C on the frontier.

Explored Set:

S, B

Frontier

A: g(n)+h(n)=5, parent=S

C: g(n)+h(n)=4, parent=B

Expand: C, put its child G on the frontier.

Explored Set:

S, B, C

Frontier

A: g(n)+h(n)=5, parent=S

G: g(n)+h(n)=6, parent=C

Expand: A. But we can't put its child, C, on the frontier, because C is already in the explored set!

Explored Set:

S, B, C

Frontier

G: g(n)+h(n)=6, parent=C

Expand: G. Return the path SBCG, with cost 6. OOPS!

Why did this happen?

- Well, because we used an <u>explored set</u> instead of an <u>explored dict</u>.
 - explored dict lists the h(n)+g(n) for each explored state
 - If the same state shows up later, with lower h(n)+g(n), then put it back on the frontier.
 - An explored set undermines A*, but an explored dict works just fine.
- But actually, why did the higher-cost path <u>SBC</u> get explored before the lower-cost path <u>SAC</u>?
 - That never happens for goal. An <u>admissible</u> heuristic guarantees that the first time you pop Goal from the frontier, it will have its lowest cost.
 - Can we make the same idea true for every state, not just the goal state?

Outline of lecture

- 1. Admissible heuristics
- 2. Consistent heuristics
- 3. The zero heuristic: Uniform Cost Search
- 4. Relaxed heuristics
- 5. Dominant heuristics

Consistent (monotonic) heuristic

$$g(m) \qquad d(m) - d(p)$$

$$g(n) \qquad p$$

$$d(n) - d(p)$$

$$\geq h(n) - h(p)$$

<u>Definition</u>: A <u>consistent heuristic</u> is one for which, for every pair of nodes in the graph, $d(n) - d(p) \ge h(n) - h(p)$.

In words: the <u>distance between any pair of nodes</u> is <u>greater than or equal</u> to the <u>difference in their heuristics</u>.

A* with an inconsistent heuristic

Explored Set

S, B

Frontier

A: g(n)+h(n)=5, parent=S

C: g(n)+h(n)=4, parent=B

Expand: C

A* with a **consistent** heuristic

Explored Set

S, B

Frontier

A: g(n)+h(n)=2, parent=S

C: g(n)+h(n)=4, parent=B

Expand: A

A* with a **consistent** heuristic

Explored Set

S, B, <u>A</u>

Frontier

C: g(n)+h(n)=3, parent=A

Expand: C

A* with a **consistent** heuristic

Explored Set

S, B, A, C

Frontier

G: g(n)+h(n)=5, parent=C

Expand: G

Admissible heuristic example: Romania

Consistent heuristic example: Romania

Can you use this in the MP?

- Maybe.
- In the MP, every action has a cost of exactly 1!
- ...so a consistent heuristic would be one such that, for every pair of neighboring states n and p, $h(n) h(p) \le 1$.
- Manhattan distance satisfies this condition.
- There are good heuristics for parts 3 and 4 that don't satisfy this condition. If your heuristic is not consistent, just make sure that you use an explored dict, instead of an explored set.

Outline of lecture

- 1. Admissible heuristics
- 2. Consistent heuristics
- 3. The zero heuristic: Uniform Cost Search
- 4. Relaxed heuristics
- 5. Dominant heuristics

The trivial case: h(n)=0

- A heuristic is <u>admissible</u> if and only if $d(n) \ge h(n)$ for every n.
- A heuristic is <u>consistent</u> if and only if $d(n, p) \ge h(n) h(p)$ for every n and p.
- Both criteria are satisfied by h(n) = 0.

$$UCS = A^* \text{ with } h(n)=0$$

- Suppose we choose h(n) = 0
- Then the frontier is a priority queue sorted by g(n) + h(n) = g(n)
- In other words, the first node we pull from the queue is the one that's closest to START!! (The one with minimum g(n)).
- <u>Uniform Cost Search</u> is <u>A* Search</u> with the heuristic h(n) = 0 for all states.

Outline of lecture

- 1. Admissible heuristics
- 2. Consistent heuristics
- 3. The zero heuristic: Uniform Cost Search
- 4. Relaxed heuristics
- 5. Dominant heuristics

Heuristics from relaxed problems

- A problem with fewer restrictions on the actions is called a relaxed problem
- In most problems, having fewer restrictions on your action means that you can reach the goal faster.
- So designing a heuristic is usually the same as finding a relaxed problem that makes it easy to calculate the distance to goal.

Relaxed heuristic example: Manhattan distance

If there were no walls in the maze, then the number of steps from position (x_n, y_n) to the goal position (x_G, y_G) would be

$$h(n) = |x_n - x_G| + |y_n - y_G|$$

Relaxed heuristic example: Euclidean distance

If there were no walls in the maze, and we could move diagonally, then the number of steps from position (x_n, y_n) to the goal youition (x_G, y_G) would be

$$h(n) = \sqrt{|x_n - x_G|^2 + |y_n - y_G|^2}$$

Relaxed heuristic example: Corner dots

Suppose that, instead of touching ALL of the waypoints, you only had to touch the most extreme waypoints?

Relaxed heuristic example: Many dots

Suppose that, after you reached a waypoint, you could magically fly back to the nearest branch in the minimum spanning tree?

In other words, you only have to go one-way from where you are to the waypoint – you don't have to come back again.

Outline of lecture

- 1. Admissible heuristics
- 2. Consistent heuristics
- 3. The zero heuristic: Uniform Cost Search
- 4. Relaxed heuristics
- 5. Dominant heuristics

Which heuristic is better

- If Euclidean distance and Manhattan distance are both admissible heuristics for the single-waypoint maze problem, which one is better?
- Computational complexity of A*: If c(G) is true cost of the best path to goal, then A* evaluates every n for which $g(n) + h(n) \le c(G)$
- How to minimize computational complexity: make h(n) as large as possible, subject to the constraint that $h(n) \leq d(n)$.

Euclidean distance

$$h_2(n) = \sqrt{|x_n - x_G|^2 + |y_n - y_G|^2}$$

Manhattan distance

$$h_1(n) = |x_n - x_G| + |y_n - y_G|$$

 $h_1(n) \ge h_2(n)$

Using $h_1(n)$, there will be fewer nodes with $g(n) + h(n) \le c(G)$. Therefore, computational complexity is lower. Therefore $h_1(n)$ is better.

Dominance

- If h_1 and h_2 are both admissible heuristics and $h_2(n) \ge h_1(n)$ for all n, (both admissible) then h_2 dominates h_1
- As long as they're both admissible, they will both find the optimum path.
- But $h_2(n)$ will require less computation to find it.

Example: the 8-puzzle

- Problem statement: given a shuffled set of numbers (left), re-arrange them in order (right).
- State: ordering of the numbers and of the space.
- Possible actions: swap the space with any of its neighbors.
- Like traveling salesman, this is an NP-complete problem.

8-puzzle: Heuristic $h_1(n)$

- Suppose that, on each step, we could move any tile, anywhere on the board, regardless of where other tiles were.
- Then $h_1(n) = \#$ tiles that need to be moved.
- Example below: $h_1(n) = 8$

8-puzzle: Heuristic $h_2(n)$

- Suppose that, on each step, we could move any tile by just one step horizontally or vertically, regardless of whether there are other tiles in the way.
- Then $h_2(n) = \text{sum of Manhattan distances from the current positions of each tile to their target positions (notice: <math>h_2(n) \ge h_1(n)$)
- Example below: $h_2(n) = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18$

Dominance

Experiment results reported by Svetlana Lazebnik

Typical search costs for the 8-puzzle (average number of nodes expanded for different solution depths):

- d=12 BFS expands 3,644,035 nodes $A^*(h_1)$ expands 227 nodes $A^*(h_2)$ expands 73 nodes
- d=24 BFS expands 54,000,000,000 nodes $A^*(h_1)$ expands 39,135 nodes $A^*(h_2)$ expands 1,641 nodes

Combining heuristics

- Suppose we have a collection of admissible heuristics $h_1(n)$, $h_2(n)$, ..., $h_m(n)$, but none of them dominates the others
- How can we combine them?

```
h(n) = \max\{h_1(n), h_2(n), ..., h_m(n)\}
```

Outline of lecture

- 1. Admissible heuristics: $h(n) \le d(n)$
- 2. Consistent heuristics: $h(n) h(p) \le d(n) d(p)$
- 3. The zero heuristic: Uniform Cost Search: h(n) = 0
- 4. Relaxed heuristics: h(n) is the d(n) from a problem with fewer rules.
- 5. Dominant heuristics: if $h_2(n) \le h_1(n)$ and both are admissible, then $h_1(n)$ has lower computational complexity

Five search strategies

Algorithm	Complete?	Optimal?	Time complexity	Space complexity	Implement the Frontier as a
BFS	Yes	If all step costs equal	$O\{b^d\}$	$O\{b^d\}$	Queue
DFS	No	No	$O\{b^m\}$	$O\{bm\}$	Stack
UCS	Yes	Yes	#nodes s.t. $g(n) \leq c(G)$	#nodes s.t. $g(n) \leq c(G)$	Priority Queue: $g(n)$
Greedy	No	No	$O\{b^m\}$	$O\{b^m\}$	Priority Queue: $h(n)$
A *	Yes	Yes	#nodes s.t. $g(n) + h(n)$ $\leq c(G)$	#nodes s.t. $g(n) + h(n)$ $\leq c(G)$	Priority Queue: $h(n) + g(n)$