
Lecture 38 – tf/idf and 
information retrieval

Mark Hasegawa-Johnson
5/1/2020

CC-BY 4.0: you may remix or redistribute if you cite the source



Outline

• similarity vs. semantic field: word2vec at different scales
• term frequency (tf): the term-document matrix
• cosine similarity
• document classification: tf on a log scale
• document classification: inverse document frequency (idf) 
• relatedness again: the word co-occurrence matrix



Similarity: The Internet is the database
Similarity = words can be used interchangeably in most contexts
How do we measure that in practice?
Answer: extract examples of word 𝑤!, +/- k words (2 ≤ 𝑘 ≤ 5, for example):

…hot, although iced coffee is a popular…
…indicate that moderate coffee consumption is benign…

…and of 𝑤":

…consumed as iced tea.  Sweet tea is…
…national average of tea consumption in Ireland…

The words “iced” and “consumption” appear in both contexts, so we can conclude that 
𝑠(coffea, tea) > 0.  No other words are shared, so we can conclude 𝑠(coffee, tea) < 1.



Similarity vs. 
Relatedness

Levy & Goldberg (2014) trained 
word2vec in three different ways:
• k=2 
• k=5
• Context determined by first parsing 

the sentence to get syntactic 
dependency structure (Deps)

They tested all three method for the 
similarity vs. relatedness of the 
nearest-neighbor of each word.

Precision vs. Recall on the 
WordSim-353 database, 
in which word pairs may 
be either related or 
similar (Fig. 2(a), Levy & 
Goldberg 2014)

Precision vs. Recall on the 
Chiarello et al. database, 
in which word pairs are 
only similar (Fig. 2(b), 
Levy & Goldberg 2014)



Similarity vs. 
Relatedness
• Apparently, the smaller context 

window (k=2) produces vectors 
whose nearest neighbors are more 
similar (they can be used 
identically in a sentence).  
• The larger context (k=5) produces 

vectors whose nearest neighbors 
are related, not just similar.
• More specifically, the latter words 

pairs are said to inhabit the same 
semantic field.
• A semantic field is a group of 

words that refers to the same 
subject.

Precision vs. Recall on the 
WordSim-353 database, 
in which word pairs may 
be either related or 
similar (Fig. 2(a), Levy & 
Goldberg 2014)

Precision vs. Recall on the 
Chiarello et al. database, 
in which word pairs are 
only similar (Fig. 2(b), 
Levy & Goldberg 2014)



Similarity vs. Relatedness
…studied at hogwarts, a castle… w=hogwarts … harry potter studied at 

hogwarts…
vector nearest 

neighbors, context 
k=2

vector nearest 
neighbors, context 

k=5

…studied at evernight, a castle… evernight dumbledore …harry potter learned from 
dumbledore…

…studied at sunnydale… sunnydale hallows …harry potter and the deathly 
hallows..

…a castle garderobe… garderobe half-blood …harry potter and the half-blood…

…lives at blandings, a castle… blandings malfoy …harry potter said to malfoy…

…lives at collinwood, a castle… collinwood snape …harry potter said to snape…

Examples of k=2 and k=5 nearest-neighbors, from (Levy & Goldberg, 2014)



What if you wanted semantic field, not 
similarity?

• What if you wanted your vector 
embedding to capture semantic 
field, as in the second column 
(not similar usage, like the first 
column)?
• If you want that, it seems that 

larger contexts are better.
• Why not just set context window 

= the whole document?

w=hogwarts
vector nearest 

neighbors, context 
k=2

vector nearest 
neighbors, context 

k=5

evernight dumbledore
sunnydale hallows
garderobe half-blood
blandings malfoy

collinwood snape
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the term-document matrix

Hogwarts School of Witchcraft and Wizardry, 
commonly shortened to Hogwarts, is a fictional 
British school of magic for students aged eleven to 
eighteen, and is the primary setting for the first six 
books in J. K. Rowling's Harry Potter series…

Albus Percival Wulfric Brian Dumbledore is a fictional 
character in J. K. Rowling's Harry Potter series. For 
most of the series, he is the headmaster of the 
wizarding school Hogwarts. As part of his backstory, it 
is revealed that he is the founder and leader of …

Collinwood Mansion is a fictional house featured in 
the Gothic horror soap opera Dark Shadows (1966–
1971). Built in 1795 by Joshua Collins, Collinwood has 
been home to the Collins family—and other 
sometimes unwelcome supernatural visitors…

document
term Hogwarts Dumbledore Collinwood

a 1 1 1
of 1 2
in 1 1 2
is 2 4 1

fictional 1 1 1
school 1

rowling’s 1 1
harry 1 1
potter 1 1
series 1 1
house 1

featured 1
gothic 1



the term-document matrix
document

term Hogwarts Dumbledore Collinwood
a 1 1 1
of 1 2
in 1 1 2
is 2 4 1

fictional 1 1 1
school 1

rowling’s 1 1
harry 1 1
potter 1 1
series 1 1
house 1

featured 1
gothic 1

From the term-document matrix, we can 
define each term vector to be just the vector 
of term frequencies:

�⃗�(𝑖) = [𝑡𝑓(𝑖, 1), … , 𝑡𝑓(𝑖, 𝐷)]

…where we now define the term frequency
(of term 𝑖 in document 𝑗) to be the number 
of times the term occurs in the document:
𝑡𝑓(𝑖, 𝑗) = Count word 𝑖 in document 𝑗

For example, 
�⃗� a = 1,1,1
�⃗�(of) = [1,2,1]

�⃗�(potter) = [1,1,0]
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cosine similarity
document

term Hogwarts Dumbledore Collinwood
a 1 1 1
of 1 2
in 1 1 2
is 2 4 1

fictional 1 1 1
school 1

rowling’s 1 1
harry 1 1
potter 1 1
series 1 1
house 1

featured 1
gothic 1

The relatedness of two words can now be measured 
using their cosine similarity.  For example,

𝑠(rowling!s, harry) = cos ∡ rowling!s, harry

=
�⃗�(rowling!s) 5 �⃗�(harry)
�⃗�(rowling!s) �⃗�(harry)

=
1×1 + 1×1 + 0×0

2× 2
= 1

𝑠(harry, gothic) = cos ∡ harry, gothic

=
�⃗�(harry) 5 �⃗�(gothic)
�⃗�(harry) �⃗�(gothic)

=
1×0 + 1×0 + 0×1

2×1
= 0



document vectors
document

term Hogwarts Dumbledore Collinwood
a 1 1 1
of 1 2
in 1 1 2
is 2 4 1

fictional 1 1 1
school 1

rowling’s 1 1
harry 1 1
potter 1 1
series 1 1
house 1

featured 1
gothic 1

Now let’s try something different.  Let’s 
define a vector for each document, 
rather than for each term:

𝑑(𝑗) = [𝑡𝑓(1, 𝑗), … , 𝑡𝑓(𝑉, 𝑗)]

Thus, 

𝑑 H = 1,1,1,2,1,1,1,1,1,0,0,0

𝑑(D) = [1,2,1,4,1,0,1,1,1,1,0,0,0]

𝑑(C) = [1,0,2,1,1,0,0,0,0,0,1,1,1]



information retrieval
document

term Hogwarts Dumbledore Collinwood
a 1 1 1
of 1 2
in 1 1 2
is 2 4 1

fictional 1 1 1
school 1

rowling’s 1 1
harry 1 1
potter 1 1
series 1 1
house 1

featured 1
gothic 1

Document vectors are useful because they allow us 
to retrieve a document, based on the degree to 
which it matches a query. For example, the query:

“What school did Harry Potter attend?”
…can be written as a query vector: 

�⃗� = [0,0,0,0,0,1,0,1,1,0,0,0,0]

We can sometimes find the most relevant document 
using cosine distance: 

�⃗� 5 𝑑 H
�⃗� 𝑑 H

=
3
3 13

= 0.48

�⃗� 5 𝑑 D
�⃗� 𝑑 D

=
2
3 27

= 0.22

�⃗� 5 𝑑 C
�⃗� 𝑑 C

=
0
3 10

= 0.00
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document classification
document

term Hogwarts Dumbledore Collinwood
a 1 1 1
of 1 2
in 1 1 2
is 2 4 1

fictional 1 1 1
school 1

rowling’s 1 1
harry 1 1
potter 1 1
series 1 1
house 1

featured 1
gothic 1

Suppose that we find a new document 
on the web:

Dark Shadows is an American Gothic 
soap opera that originally aired 

weekdays on the ABC television network, 
from June 27, 1966, to April 2, 1971. The 
show depicted the lives, loves, trials, and 

tribulations of …

Now we want to determine whether this 
document is about the Dark Shadows 
soap opera, or about the Harry Potter 
series.
How?



document classification
document class

term Harry Potter Dark Shadows
a 2 1
of 3
in 2 2
is 6 1

fictional 2 1
school 1

rowling’s 2
harry 2
potter 2
series 2
house 1

featured 1
gothic 1

To start with, let’s create a single 
merged document class vector, for 
each class, by just adding together all 
of the document vectors in the class:

�⃗� Harry Potter = 𝑑 H + 𝑑 D

�⃗� Dark Shadows = 𝑑 C



document classification
Now we turn the new document into 
a vector with the same dimensions:

Dark Shadows is an American Gothic 
soap opera that originally aired 
weekdays on the ABC television 

network, from June 27, 1966, to April 
2, 1971. The show depicted the lives, 

loves, trials, and tribulations of …

�⃗� = [0,1,0,1,0,0,0,0,0,0,0,0,1]

document class
term Harry Potter Dark Shadows

a 2 1
of 3
in 2 2
is 6 1

fictional 2 1
school 1

rowling’s 2
harry 2
potter 2
series 2
house 1

featured 1
gothic 1



document classification
Now let’s just compute the cosine similarity with 
each document class:
Dark Shadows is an American Gothic soap opera 

that originally aired weekdays on the ABC 
television network, from June 27, 1966, to April 

2, 1971. The show depicted the lives, loves, 
trials, and tribulations of …

�⃗� = [0,1,0,1,0,0,0,0,0,0,0,0,1]

�⃗� 9 �⃗� HP
�⃗� 𝑑 HP

=
1×3 + 1×6 + 1×0

3 74
= 0.60

�⃗� 9 �⃗� DS
�⃗� 𝑑 DS

=
1×0 + 1×1 + 1×1

3 10
= 0.37

…oops…

document class
term Harry Potter Dark Shadows

a 2 1
of 3
in 2 2
is 6 1

fictional 2 1
school 1

rowling’s 2
harry 2
potter 2
series 2
house 1

featured 1
gothic 1



document classification: tf on a log scale
• We need some way to point out that 

the difference between 
𝑡𝑓(HP, gothic) = 0 and 
𝑡𝑓(DS, gothic) = 1 is much more 
important than the difference 
between 𝑡𝑓(HP, is) = 6 and 
𝑡𝑓(DS, is) = 1.
• One way to think about it: it’s not 

the difference between term 
frequencies that matters, it’s their 
ratio that matters.  

6 − 1 ≫ 1− 0
6
1 ≪

1
0

document class
term Harry Potter Dark Shadows

a 2 1
of 3
in 2 2
is 6 1

fictional 2 1
school 1

rowling’s 2
harry 2
potter 2
series 2
house 1

featured 1
gothic 1



document classification: tf on a log scale
We can emphasize ratios, rather than 
differences, by measuring the log of tf, 
rather than the raw frequencies:

log 6 − log 1 ≪ log 1 − log 0

So let’s redefine term frequency to be

𝑡𝑓(𝑖, 𝑗)
= log!" Count word 𝑖 in document 𝑗

The use of a base-10 logarithm is a sort 
of anachronism; it’s because this 
definition was first published in 1972.  
Really, though, the base of the logarithm 
doesn’t matter much.

document class
term Harry Potter Dark Shadows

a 0.3 0
of 0.5 −∞
in 0.3 0.3
is 0.8 0

fictional 0.3 0
school 0 −∞

rowling’s 0.3 −∞
harry 0.3 −∞
potter 0.3 −∞
series 0.3 −∞
house −∞ 0

featured −∞ 0
gothic −∞ 0



document classification: tf on a log scale
All those −∞ terms are annoying and 
numerically awful.  There are two standard 
ways to deal with them:
• If you’re in the big data regime, where the 

difference between 0 and 1 is 
unimportant, and the difference between 
1 and 10 is about the same as the 
difference between 10 and 100:

𝑡𝑓 𝑖, 𝑗 = 1 + max 0, log!" Count

• If you’re in the small-data regime (as in our 
example), where the difference between 0 
and 1 is about as important as the 
difference between 1 and 3:

𝑡𝑓 𝑖, 𝑗 = log!" 1 + Count

document class
term Harry Potter Dark Shadows

a 0.5 0.3
of 0.6 0
in 0.5 0.5
is 0.8 0.3

fictional 0.5 0.3
school 0.3 0

rowling’s 0.5 0
harry 0.5 0
potter 0.5 0
series 0.5 0
house 0 0.3

featured 0 0.3
gothic 0 0.3



document classification: tf on a log scale
Using this new notation, our query 
vector is:

�⃗� = [0,0.3,0,0.3,0,0,0,0,0,0,0,0,0.3]

�⃗� I �⃗� HP
�⃗� 𝑑 HP

=
0.18 + 0.24 + 0

0.27 2.84
= 0.48

�⃗� I �⃗� DS
�⃗� 𝑑 DS

=
0 + 0.09 + 0.09

0.27 0.79
= 0.39

So, now the “Dark Shadows” class is 
closer to correctly claiming this query.  
But we’re not quite there yet…

document class
term Harry Potter Dark Shadows

a 0.5 0.3
of 0.6 0
in 0.5 0.5
is 0.8 0.3

fictional 0.5 0.3
school 0.3 0

rowling’s 0.5 0
harry 0.5 0
potter 0.5 0
series 0.5 0
house 0 0.3

featured 0 0.3
gothic 0 0.3



Digression: relationship between tf and naïve Bayes
Did you notice that most words occur in a query either once, or zero times?  So every element of the query vector is 
either log!" 1 + 0 = 0 or log!" 1 + 1 = 0.3.  So, for q but not for x, let’s return it to binary, �⃗� = [0,1,0,… ].  Then:

�⃗� 4 �⃗� 𝑗 =7
#$!

%

Count(𝑖, 𝑞) log!" 1 + Count(𝑖, 𝑗)

= log!"?
#$!

%

1 + Count(𝑖, 𝑗) &'()*(#,-)

Just for the heck of it, let’s divide by 𝑉 +N(𝑗) /(-), where 𝑉 is vocabulary size, N(𝑗) is the number of words in class 𝑗, 
and N(𝑞) is the number of words in the query.  That gives us:

�⃗� 4 �⃗� 𝑗 = log!"?
#$!

%
1 + Count 𝑖, 𝑗
𝑉 +N 𝑗

&'()* #,-

= log!" ?
#:1'23 #

45 4) *678(729

𝑝 word 𝑖 class 𝑗
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document classification: idf
We saw that putting tf on a log scale 
is not quite enough for us to correctly 
classify the test document as being 
part of class “Dark Shadows,” so let’s 
look for more problems to fix.
Here’s a problem: why do the words 
“a,” “of,” “in,” “is” count more than 
“potter” and “gothic”?
Those function words are used by all 
classes, so we shouldn’t really pay so 
much attention to them.

document class
term Harry Potter Dark Shadows

a 0.5 0.3
of 0.6 0
in 0.5 0.5
is 0.8 0.3

fictional 0.5 0.3
school 0.3 0

rowling’s 0.5 0
harry 0.5 0
potter 0.5 0
series 0.5 0
house 0 0.3

featured 0 0.3
gothic 0 0.3



document classification: idf
Inverse document frequency (idf) is a 
discount weight, meant to reduce the 
importance of any word that’s used 
equally across all classes.  A typical 
definition is:

𝑖𝑑𝑓 𝑖 = log!"
𝐷

𝑑𝑓(𝑖)
...where 𝐷 is the number of document 
classes (2, in our example), and 𝑑𝑓(𝑖)
is the number of documents in which 
the ith word appears.

document class
term (idf) Harry Potter Dark Shadows

a(0) 0.5 0.3
of(0.3) 0.6 0
in(0) 0.5 0.5
is(0) 0.8 0.3

fictional(0) 0.5 0.3
school(0.3) 0.3 0

rowling’s(0.3) 0.5 0
harry(0.3) 0.5 0
potter(0.3) 0.5 0
series(0.3) 0.5 0
house(0.3) 0 0.3

featured(0.3) 0 0.3
gothic(0.3) 0 0.3



document classification: tf-idf
With that definition, we get

𝑡𝑓(𝑖, 𝑗)𝑖𝑑𝑓 𝑖
= log!" 1 + Count(𝑖, 𝑗) log!"

𝐷
𝑑𝑓(𝑖)

…and the document class vectors are 
now

�⃗�(𝑗) = [𝑡𝑓 1, 𝑗 𝑖𝑑𝑓(1), … , 𝑡𝑓 𝑉, 𝑗 𝑖𝑑𝑓(𝑉)]

document class
term (idf) Harry Potter Dark Shadows

a(0) 0 0
of(0.3) 0.18 0
in(0) 0 0
is(0) 0 0

fictional(0) 0 0
school(0.3) 0.09 0

rowling’s(0.3) 0.15 0
harry(0.3) 0.15 0
potter(0.3) 0.15 0
series(0.3) 0.15 0
house(0.3) 0 0.09

featured(0.3) 0 0.09
gothic(0.3) 0 0.09



document classification: tf-idf
Remember, the original word counts in 
our query were:

�⃗� = [0,1,0,1,0,0,0,0,0,0,0,0,1]
If we convert those into tf-idf, we get
�⃗� = [0,0.09,0,0,0,0,0,0,0,0,0,0,0.09]

Then

�⃗� I �⃗� HP
�⃗� 𝑑 HP

=
0.0162 + 0 + 0
0.0162 0.1305

= 0.35

�⃗� I �⃗� DS
�⃗� 𝑑 DS

=
0 + 0 + 0.0081
0.0162 0.0243

= 0.41

It worked!  We got the right answer!

document class
term (idf) Harry Potter Dark Shadows

a(0) 0 0
of(0.3) 0.18 0
in(0) 0 0
is(0) 0 0

fictional(0) 0 0
school(0.3) 0.09 0

rowling’s(0.3) 0.15 0
harry(0.3) 0.15 0
potter(0.3) 0.15 0
series(0.3) 0.15 0
house(0.3) 0 0.09

featured(0.3) 0 0.09
gothic(0.3) 0 0.09



tf-idf for information retrieval: key concepts
1. It’s not the difference between 

counts that matters, it’s the ratio. 
So instead of raw counts, use log 
counts:
𝑡𝑓 𝑖, 𝑗 = log!" 1 + Count

2. Words that occur in many 
documents are unimportant.  
Discount them by the factor

𝑖𝑑𝑓 𝑖 = log!"
𝐷

𝑑𝑓(𝑖)

document class
term (idf) Harry Potter Dark Shadows

a(0) 0 0
of(0.3) 0.18 0
in(0) 0 0
is(0) 0 0

fictional(0) 0 0
school(0.3) 0.09 0

rowling’s(0.3) 0.15 0
harry(0.3) 0.15 0
potter(0.3) 0.15 0
series(0.3) 0.15 0
house(0.3) 0 0.09

featured(0.3) 0 0.09
gothic(0.3) 0 0.09



Outline

• similarity vs. semantic field: word2vec at different scales
• term frequency (tf): the term-document matrix
• cosine similarity
• document classification: tf on a log scale
• document classification: inverse document frequency (idf) 
• relatedness again: the word co-occurrence matrix



The Word Co-Occurrence Matrix

Now that we understand information retrieval, let’s go back to our 
original question:

How can we determine whether or not two words are related?



The Word Co-Occurrence Matrix
document

term Hogwarts Dumbledore Collinwood
a 1 1 1
of 1 2
in 1 1 2
is 2 4 1

fictional 1 1 1
school 1

rowling’s 1 1
harry 1 1
potter 1 1
series 1 1
house 1

featured 1
gothic 1

Instead of creating a term-document 
matrix, let’s create a matrix that 
shows how often each pair of words 
occurs in the same document.
This will be

𝑊 𝑖, 𝑘 =O
#$!

%

Count 𝑖, 𝑗 Count(𝑘, 𝑗)

For example, for the words 𝑖 =a and 
𝑘 =of,
𝑊 a, of = 1×1 + 1×2 + 0 = 3



The Word Co-Occurrence Matrix
term 2

term 1 a of in school harry potter house gothic
a 3 3 4 1 2 2 1 1
of 3 5 3 1 3 3
in 4 3 6 1 2 2 2 2

school 1 1 1 1 1 1
harry 2 3 2 1 2 2
potter 2 3 2 1 2 2
house 1 2 1 1
gothic 1 2 1 1

Here’s a subset of the 
word co-occurrence 
matrix.

Notice that this seems, 
again, to give too 
much credit to the 
function words.  Let’s 
reduce their 
importance using tf-
idf.



The Word Co-Occurrence Matrix
term 2

term 1 a of in school harry potter house gothic
a
of 0.032 0.018 0.024 0.024
in

school 0.018 0.027 0.018 0.018
harry 0.024 0.018 0.020 0.020
potter 0.024 0.018 0.020 0.020
house 0.027 0.027
gothic 0.027 0.027

𝑊 𝑖, 𝑘 = log!" 1 +T
IJ!

K

Count 𝑖, 𝑗 Count(𝑘, 𝑗) log!"
𝐷

𝑑𝑓(𝑖) log!"
𝐷

𝑑𝑓(𝑘)

In this example, we 
have D=3 documents, 
so the possible values 
of idf are

log!" 3/3 = 0
log!" 3/2 ≈ 0.2
log!" 3/1 ≈ 0.3



Conclusions
• semantic field = a group of words that refers to the same subject

• term frequency (tf): Count(term i appears in document j)

• cosine similarity

𝑠(rowling!s, harry) = cos ∡ rowling!s, harry =
�⃗�(rowling!s) 5 �⃗�(harry)
�⃗�(rowling!s) �⃗�(harry)

• document classification: tf on a log scale
𝑡𝑓 𝑖, 𝑗 = log"# 1 + Count

• document classification: inverse document frequency (idf) 

𝑖𝑑𝑓 𝑖 = log"#
𝐷

𝑑𝑓(𝑖)

• word co-occurrence matrix

𝑊 𝑖, 𝑘 =P
$%"

&

Count 𝑖, 𝑗 Count(𝑘, 𝑗)


