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Parameter and Structure Learning for
Bayesian Networks

* Parameter Learning
e from Fully Observed data: Maximum Likelihood
e from Partially Observed data: Expectation Maximization

* Structure Learning
* The usual method: knowledge engineering
* An interesting recent method: causal analysis



Outline

* Parameter Learning



Flying cows
The scenario:

Central lllinois has recently had a
problem with flying cows.

—
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Farmers have called the university
to complain that their cows flew
away.




Flying cows

The university dispatched a team
of expert vaccavolatologists. They
determined that almost all flying
cows were explained by one or
both of the following causes:

* Smart cows. The cows learned
how to fly, on their own, without
help.

 Alien intervention. UFOs taught
the cows how to fly.




Flying cows

The vaccavolatologists created a
Bayes net, to help them predict
any future instances of cow flying:

* P(A) = Probability that aliens
teach the cow.

* P(S) = Probability that a cow is
smart enough to figure out how
to fly on its own.

* P(F|S,A) = Probability that a cow
learns to fly.




Flying cows

They went out to watch a nearby
pasture for ten days.

* They reported the number of
days on which A, S, and/or F
occurred.

 Their results are shown in the
table at left (True is marked as

“T”; False is shown with a blank).
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Flying cows

The vaccavolatologists now wish to
estimate the parameters of their
Bayes net

* P(A)
* P(S)
* P(F|S,A)

...50 that they will be better able to
testify before Congress about the
relative dangers of aliens versus
smart cows.
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Outline

* Parameter Learning
e from Fully Observed data: Maximum Likelihood



Maximum Likelihood

Estimation s T
Suppose we have n training 1 -4, 51 -F;
examples, 1 < i < n, with known 2 -4, S, F,
valges for each of the random 3 A, 5. _F,
variables: . y S 7
i Ai or —IAi * * *
i Si or _'Si
i Fi or —IFl'
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Maximum Likelihood gy /\ﬂ -

Estimation s
We can estimate model parameters 1 —44 —151 !
to be the values that maximize the 2 -4, S, F,
likelihood of the observations, 3 4 15 F

. . 1413 ~ 193 1403

subject to the constraints that

4 A, S, F,

P(A) +P(=4) =1 > As s

P(S) + P(—IS) =1 6 _'A6 _'56 _'F6
P(FlS,A)+P(—|F|S,A) =1 7 A7 —|S7 F,
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Maximum Likelihood gy A8 ™
-stimation s
—|A1 —|51 —|F1

The maximum likelihood parameters 1

are 2 . S, F,

# d h h A 3 _IA3 _ISB _IF3
ays on which 4;

P(4) = ;’ - - 4 A S, R
P(S) = # days on which §; £ —4e —56 ke

~ #days total 7 A7 —157 F

8 _|A8 _ISS _IF8

# days (A=a,S=s, F _ _

P(F|s,a) = ys ( ) 9 As So Fy

# days (A=a,5=s) 10 A0 —Sio  —Fip



Maximum Likelihood qy /‘ﬂ -

-stimatior s L f
The maximum likelihood parameters 1 —4, =51 —Fy
are ; , 2 -4, S, F,
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Conclusions: maximum likelihood estimation

* Smart cows are far more dangerous than aliens.

* Maximum likelihood estimation is very easy to use, IF you have
training data in which the values of ALL variables are observed.

e ...but what if some of the variables can’t be observed?

* For example: the cows decide to stop responding to written surveys.
Therefore, it’s impossible to observe, on any given day, how smart the
cows are. We don’tknow ifs; =T ors; = F...




Outline

* Parameter Learning
e from Fully Observed data: Maximum Likelihood
e from Partially Observed data: Expectation Maximization



Partially observed data

Suppose that we have the
following observations:

e We know whether A=True or
False.

e We know whether F=True or
False.

* We don’t know whether S is True
or False (shown as ”?”).
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Expectation Maximization (EM): Main idea

Remember that maximum likelihood estimation counts examples:

# days S=s,A=a, F
# days s=s,4=a

P(FIS=s,A=a) =

Expectation maximization is similar, but using “expected counts” instead of
actual counts:

El#daysS =s, A=a, F]
El#daysS =s, A=a]

P(F|IS =s,A=qa) =

Where E[X] means “expected value of X”.



Expectation Maximization (EM): overview

INITIALIZE: Make some initial guess what might be the values of P(A), P(S),
and P(FTA,S).

ITERATE until convergence:

1. Partial days: compute P(S;|A;, F;) for each of the days in your training
corpus (1 < i < n).

2. Expected counts:
E[#days S, A; = a,F; = f] = z P(S|a, f)

iaj=a.fi=f

1. Re-estimate the probabilities P(A), P(S), and P(F|A,S):

El#daysS =s, A=a, F]

P(F|IS=s,A=a) =
(F > ) El#daysS =s, A=a]
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Example: Initialize

Marilyn Modigliani is a professional vaccavolatologist. She gives us
these initial guesses about the possible model parameters (her guesses
are probably not quite right, but they are as good a guess as anybody

else’s):
1 1
P(A):Z, P(S)=—

4
a5 | PFlsa)
F F 0
F T 1/2
T F 1/2
T T 1



4 E. A
Partial days  Day | A | P(Slayf) | P(=Slanf)) | F
1/7 6/7

Based on Marilyn’s model, we 1
calculate P(S = s|a,, f;) for each 2 1 0 T
day, as shown in the table at right. 3 1/7 6/7
4 T 2/5 3/5 T
5 T 0) 1
6 1/7 6/7
7 T 2/5 3/5 T
8 1/7 6/7
9 1 0) T
10 1/7 6/7



Expected counts Y A8 ™

The expected counts are

E[#daysS =s,A=a,F = f] = z P(S =sla,f)

Lai=afi=f
l--
1 1 6 6 6 6 6
7+7+7+7+7=7 7+7+7+7+7=7'
F T 1+1=2 0+0=0
T F 0 1
T T 2 2 4 3 3 6
5755 5755



Re-estimated probabilities % M

The re-estimated probabilities are

als | P(FIS=sA=a)_

# days A 3 F F 0

P(A) = = 30 =0

# days total 10 =+ 0
5 4 F T 2 _ 14
E[#daysS] =7t2+0+% 123 5., 19

P(S) = # days total 10 ~ 350 !
y T F 6/5 6
142 11
El#daysS =s, A=a, F] T T 4/5

(F1 > @) E[#daysS =s, A=a] 0+4/5



Expectation Maximization (EM): review

INITIALIZE: Make some initial guess what might be the values of P(A)=0.25,
P(5)=0.25, and P(F|4,5) = (0,5,5,1).

ITERATE until convergence:

1. Partial days: compute P(S]|a;, f;)

2. Expected counts: E[# days S,A = a,F = f].
3. Re-estimate. After the first iteration, we have

3 123 14 6
P(A) ==, P(S) = =, and P(F|4,5) = (0,7, 2,1).

Continue the iteration, shown above, until P(A), P(S), and P(F|A,S) stop
changing.



Properties of the EM algorithm

* It always converges.

* The parameters it converges to (P(A), P(S), and P(F|A,S)):
* are guaranteed to be at least as good as your initial guess, but

* They depend on your initial guess. Different initial guesses may
result in different results, after the algorithm converges.

* For example, Marilyn’s initial guess was P(F|—=S,—A) = 0. Notice
that we ended up with the same value! According to the fully
observed data we saw earlier, that might not be the best possible
parameter for these data.



Outline

* Parameter Learning
e from Fully Observed data: Maximum Likelihood
e from Partially Observed data: Expectation Maximization

* Structure Learning
* The usual method: knowledge engineering



Knowledge engineering

. Find somebody who knows a lot about the problem you're
trying to model (flying cows, or burglars in Los Angeles, or
whatever).

. Get her to tell you which variables depend on which others.
. Draw corresponding circles and arrows.
. Done! Proceed to parameter estimation.



Example Bayes Network: Car diagnosis

* |nitial observation: car won’t start
“broken, so fix it” nodes
* Green: testable evidence

“hidden variables” to ensure sparse structure, reduce

parameters fanbelt
broke broke

flat blocked oroke

dead




Example Bayes Network: Cost of Car insurance




Example Bayes Network: speech acoustics and speech
appearance depend on glottis, tongue, and lip positions

.~ phone_index_glottis

phone_name_glottis

phone_index_tongue

phone_name_tongue

~phone_index_lips

phone_name_lips

observations

Audiovisual Speech Recognition with Articulator Positions as Hidden Variables

Mark Hasegawa-Johnson, Karen Livescu, Partha Lal and Kate Saenko

International Congress on Phonetic Sciences 1719:299-302, 2007


http://isle.illinois.edu/sst/pubs/2007/hasegawa-johnson07icphs.pdf
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* Parameter Learning
e from Fully Observed data: Maximum Likelihood
e from Partially Observed data: Expectation Maximization

* Structure Learning
* The usual method: knowledge engineering
* An interesting recent method: causal analysis



Causal analysis

Suppose you know that you have V variables X4, ... ,X,, but you don’t know which variables
depend on which others. You can learn this from the data:

For every possible ordering of the variables (there are V! possible orderings):
1. Create a blank initial network

2. For each variable in this ordering,i=1to V:
a. add variable X, to the network

b. Check your training data. If there is any variable X, ... , X ; that CHANGES the
probability of X;=1, then add that variable to the set Parents(X,) such that
P(X. | Parents(X;)) = P(X; | Xy, ... Xi )

3. Count the number of edges in the graph with this ordering.

Choose the graph with the smallest number of edges.



Example: The Los Angeles burglar alarm

* Suppose we choose the ordering M, J, A, B, E



Example: The Los Angeles burglar alarm

* Suppose we choose the ordering M, J, A, B, E



Example: The Los Angeles burglar alarm

* Suppose we choose the ordering M, J, A, B, E



Example: The Los Angeles burglar alarm

* Suppose we choose the ordering M, J, A, B, E




Example: The Los Angeles burglar alarm

* Suppose we choose the ordering M, J, A, B, E




Example: The Los Angeles burglar alarm

* Suppose we choose the ordering M, J, A, B, E




Example: The Los Angeles burglar alarm

* Suppose we choose the ordering M, J, A, B, E

\ =

Burglary
Earthquake



Example: The Los Angeles burglar alarm

* Suppose we choose the ordering M, J, A, B, E




Example: The Los Angeles burglar alarm

g ®

* Deciding conditional independence is hard in noncausal directions
* The causal direction seems much more natural

Earthquake

Burga

* Network is less compact: 1 +2+4 + 2+ 4 =13 numbers needed (vs.
1+1+4+2+2=10 for the causal ordering)



Why store it in causal order? A: Saves
memory

* Suppose we have a Boolean variable X; with k Boolean parents. How many rows
does its conditional probability table have?
« 2%rows for all the combinations of parent values
* Each row requires one number for P(X; = true | parent values)

* |f each variable has no more than k parents, how many numbers does the
complete network require?
* O(n - 2%) numbers —vs. O(2") for the full joint distribution

* How many nodes for the burglary network?

1+1+4+2+2=10numbers (vs. 2>-1 =31) @

@/@\@



Parameter and Structure Learning for
Bayesian Networks
 Maximum Likelihood (ML):
# days (A=a, S=s, F)

P(F|IS=s,A=a) =
(F > a) # days (A=a, S=s)

* Expectation Maximization (EM):
El#daysA =a,S =s, F]

E|l#daysA =a, S = 5]

* Knowledge Engineering: ask an expert.

P(F|IS=s5,A=a) =

e Causal Analysis: construct all possible graphs, keep the one with
the fewest edges.



