CS440/ECE448 Lecture 15: Bayesian Networks

By Mark Hasegawa-Johnson, 2/2020
With some slides by Svetlana Lazebnik, 9/2017
License: CC-BY 4.0
You may redistribute or remix if you cite the source.

Review: Bayesian inference

- A general scenario:

Query variables: X
Evidence (observed) variables and their values: E=e

- Inference problem: answer questions about the query variables given the evidence variables
- This can be done using the posterior distribution $P(\mathbf{X} \mid \mathbf{E}=\mathbf{e})$
- Example of a useful question: Which \mathbf{X} is true?
- More formally: what value of \mathbf{X} has the least probability of being wrong?
- Answer: MPE = MAP (argmin P(error) = argmax $P(X=x \mid E=e))$

Today: What if $\mathrm{P}(\mathrm{X}, \mathrm{E})$ is complicated?

- Very, very common problem: $\mathrm{P}(\mathrm{X}, \mathrm{E})$ is complicated because both X and E depend on some hidden variable Y
- SOLUTION:
- Draw a bunch of circles and arrows that represent the dependence
- When your algorithm performs inference, make sure it does so in the order of the graph
- FORMALISM: Bayesian Network

Hidden Variables

- A general scenario:

Query variables: X
Evidence (observed) variables and their values: $\mathbf{E}=\mathbf{e}$
Unobserved variables: Y

- Inference problem: answer questions about the query variables given the evidence variables
- This can be done using the posterior distribution $P(\mathbf{X} \mid E=\mathbf{e})$

In turn, the posterior needs to be derived from the full joint $P(\mathbf{X}, \mathbf{E}, \mathbf{Y})$

$$
P(\boldsymbol{X} \mid \boldsymbol{E}=\boldsymbol{e})=\frac{P(\boldsymbol{X}, \boldsymbol{e})}{P(\boldsymbol{e})} \propto \sum_{y} P(\boldsymbol{X}, \boldsymbol{e}, \boldsymbol{y})
$$

- Bayesian networks are a tool for representing joint probability distributions efficiently

Bayesian networks

- More commonly called graphical models
- A way to depict conditional independence relationships between random variables
- A compact specification of full joint distributions

Outline

- Review: Bayesian inference
- Bayesian network: graph semantics
- The Los Angeles burglar alarm example
- Inference in a Bayes network
- Conditional independence \neq Independence

Bayesian networks: Structure

- Nodes: random variables

- Arcs: interactions
- An arrow from one variable to another indicates direct influence
- Must form a directed, acyclic graph

Example: N independent coin flips

- Complete independence: no interactions

Example: Naïve Bayes document model

- Random variables:
- X: document class
- W_{1}, \ldots, W_{n} : words in the document

Outline

- Review: Bayesian inference
- Bayesian network: graph semantics
- The Los Angeles burglar alarm example
- Inference in a Bayes network
- Conditional independence \neq Independence

Example: Los Angeles Burglar Alarm

- I have a burglar alarm that is sometimes set off by minor earthquakes. My two neighbors, John and Mary, promised to call me at work if they hear the alarm
- Example inference task: suppose Mary calls and John doesn't call. What is the probability of a burglary?
- What are the random variables?
- Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- What are the direct influence relationships?
- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

Example: Burglar Alarm

Conditional independence and the joint distribution

- Key property: each node is conditionally independent of its non-descendants given its parents
- Suppose the nodes X_{1}, \ldots, X_{n} are sorted in topological order
- To get the joint distribution $P\left(X_{1}, \ldots, X_{n}\right)$, use chain rule:

$$
\begin{aligned}
P\left(X_{1}, \ldots, X_{n}\right) & =\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right) \\
& =\prod_{i=1}^{n} P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)
\end{aligned}
$$

Conditional probability distributions

- To specify the full joint distribution, we need to specify a conditional distribution for each node given its parents: P (X | Parents(X))

Example: Burglar Alarm

Outline

- Review: Bayesian inference
- Bavesian network: graph semantics
- The Los Angeles burglar alarm example
- Inference in a Bayes network
- Conditional independence \neq Independence

Classification using probabilities

- Suppose Mary has called to tell you that you had a burglar alarm. Should you call the police?
- Make a decision that maximizes the probability of being correct. This is called a MAP (maximum a posteriori) decision. You decide that you have a burglar in your house if and only if

$$
P(\text { Burglary } \mid \text { Mary })>P(\neg \text { Burglary } \mid \text { Mary })
$$

Using a Bayes network to estimate a posteriori probabilities

- Notice: we don't know P(Burglary|Mary)! We have to figure out what it is.
- This is called "inference".
- First step: find the joint probability of B (and $\neg B$), M (and $\neg M$), and any other variables that are necessary in order to link these two together.

$$
P(B, E, A, M)=P(B) P(E) P(A \mid B, E) P(M \mid A)
$$

$P(B E A M)$	$\neg M, \neg A$	$\neg M, A$	$M, \neg A$	M, A
$\neg B, \neg E$	0.986045	2.99×10^{-4}	9.96×10^{-3}	6.98×10^{-4}
$\neg B, E$	1.4×10^{-3}	1.7×10^{-4}	1.4×10^{-5}	4.06×10^{-4}
$B, \neg E$	5.93×10^{-5}	2.81×10^{-4}	5.99×10^{-7}	6.57×10^{-4}
B, E	9.9×10^{-8}	5.7×10^{-7}	10^{-9}	1.33×10^{-6}

Using a Bayes network to estimate a posteriori probabilities

- Second step: marginalize (add) to get rid of the variables you don't care about.

$$
P(B, M)=\sum_{E, \neg E} \sum_{A, \neg A} P(B, E, A, M)
$$

$P(B, M)$	$\neg M$	M
$\neg B$	0.987922	0.011078
B	0.000341	0.000659

Using a Bayes network to estimate a posteriori probabilities

- Third step: ignore (delete) the column that didn't happen.

$P(B, M)$	M
$\neg B$	0.011078
B	0.000659

Using a Bayes network to estimate a posteriori probabilities

- Fourth step: use the definition of conditional probability.

$$
P(B \mid M)=\frac{P(B, M)}{P(B, M)+P(B, \neg M)}
$$

$P(B \mid M)$	M
$\neg B$	0.943883
B	0.056117

Some unexpected conclusions

- Burglary is so unlikely that, if only Mary calls or only John calls, the probability of a burglary is still only about 5%.
- If both Mary and John call, the probability is $\sim 50 \%$.
unless ...

Some unexpected conclusions

- Burglary is so unlikely that, if only Mary calls or only John calls, the probability of a burglary is still only about 5\%.
- If both Mary and John call, the probability is $\sim 50 \%$.
unless ...
- If you know that there was an earthquake, then the probability is, the alarm was caused by the earthquake. In that case, the probability you had a burglary is vanishingly small, even if twenty of your neighbors call you.
- This is called the "explaining away" effect. The earthquake "explains away" the burglar alarm.

Outline

- Review: Bayesian inference
- Bayesian network: graph semantics
- The Los Angeles burglar alarm example
- Inference in a Bayes network
- Conditional independence \neq Independence

The joint probability distribution

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)
$$

For example,

$$
P(j, m, a, \neg b, \neg e)=P(\neg b) P(\neg e) P(a \mid \neg b, \neg e) P(j \mid a) P(m \mid a)
$$

Independence

- By saying that X_{i} and X_{j} are independent, we mean that

$$
\mathrm{P}\left(X_{j}, X_{i}\right)=\mathrm{P}\left(X_{i}\right) \mathrm{P}\left(X_{j}\right)
$$

- X_{i} and X_{j} are independent if and only if they have no common ancestors
- Example: independent coin flips

- Another example: Weather is independent of all other variables in this model.

Conditional independence

- By saying that W_{i} and W_{j} are conditionally independent given X, we mean that

$$
\mathrm{P}\left(W_{i}, W_{j} \mid X\right)=\mathrm{P}\left(W_{i} \mid X\right) \mathrm{P}\left(W_{j} \mid X\right)
$$

- W_{i} and W_{j} are conditionally independent given X if and only if they have no common ancestors other than the ancestors of X.
- Example: naïve Bayes model:

Conditional independence \neq Independence

Common cause: Conditionally Independent

Y: Project due
X: Newsgroup
busy
Z: Lab full

Common effect: Independent

X: Raining
Z: Ballgame
Y: Traffic

Are X and Z independent? Yes

$$
P(X, Z)=P(X) P(Z)
$$

Are they conditionally independent given Y ? No

$$
P(Z, X \mid Y)=\frac{P(Y \mid X, Z) P(X) P(Z)}{P(Y)}
$$

$$
\neq P(Z \mid Y) P(X \mid Y)
$$

Conditional independence \neq Independence

Common cause: Conditionally Independent

Y: Project due
X: Newsgroup
busy
Z: Lab full

Common effect: Independent

X: Raining
Z: Ballgame
Y: Traffic

Are X and Z independent? Yes
Knowing X tells you nothing about Z.
Are they conditionally independent given Y ? No
If Y is true, then either X or Z must be true.
Knowing that X is false means Z must be true.
We say that X "explains away" Z.

Conditional independence \neq Independence

Being conditionally independent given X does NOT mean that W_{i} and W_{j} are independent. Quite the opposite. For example:

- The document topic, X, can be either "sports" or "pets", equally probable.
- $W_{1}=1$ if the document contains the word "food," otherwise $W_{1}=0$.
- $W_{2}=1$ if the document contains the word "dog," otherwise $W_{2}=0$.
- Suppose you don't know X, but you know that $W_{2}=1$ (the document has the word "dog"). Does that change your estimate of $p\left(W_{1}=1\right)$?

Conditional independence

Another example: causal chain

X: Low pressure
Y: Rain
Z: Traffic

- X and Z are conditionally independent given Y, because they have no common ancestors other than the ancestors of Y.
- Being conditionally independent given Y does NOT mean that X and Z are independent. Quite the opposite. For example, suppose $\mathrm{P}(X)=0.5, \mathrm{P}(Y \mid X)=0.8, \mathrm{P}(Y \mid \neg X)=0.1, \mathrm{P}(Z \mid Y)=$ 0.7 , and $\mathrm{P}(Z \mid \neg Y)=0.4$. Then we can calculate that $\mathrm{P}(Z \mid X)=$ 0.64 , but $\mathrm{P}(Z)=0.535$

Outline

- Review: Bayesian inference
- Bayesian network: graph semantics
- The Los Angeles burglar alarm example
- Inference in a Bayes network
- Conditional independence \neq Independence

