CS440/ECE448 Lecture 15: Bayesian Networks

By Mark Hasegawa-Johnson, 2/2020

With some slides by Svetlana Lazebnik, 9/2017

License: CC-BY 4.0

You may redistribute or remix if you cite the source.

Review: Bayesian inference

- A general scenario:
 - Query variables: X
 - *Evidence* (*observed*) variables and their values: **E** = **e**
- Inference problem: answer questions about the query variables given the evidence variables
- This can be done using the posterior distribution P(X | E = e)
- Example of a useful question: Which X is true?
- More formally: what value of X has the least probability of being wrong?
- Answer: MPE = MAP (argmin P(error) = argmax
 P(X=x|E=e))

Today: What if P(X,E) is complicated?

- Very, very common problem: P(X,E) is complicated because both X and E depend on some hidden variable Y
- SOLUTION:
 - Draw a bunch of circles and arrows that represent the dependence
 - When your algorithm performs inference, make sure it does so in the order of the graph
- FORMALISM: Bayesian Network

Hidden Variables

- A general scenario:
 - Query variables: X
 - *Evidence* (*observed*) variables and their values: **E** = **e**
 - Unobserved variables: Y
- Inference problem: answer questions about the query variables given the evidence variables
 - This can be done using the posterior distribution P(X | E = e)
 - In turn, the posterior needs to be derived from the full joint P(X, E, Y)

$$P(X \mid \boldsymbol{E} = \boldsymbol{e}) = \frac{P(X, \boldsymbol{e})}{P(\boldsymbol{e})} \propto \sum_{\boldsymbol{y}} P(X, \boldsymbol{e}, \boldsymbol{y})$$

 Bayesian networks are a tool for representing joint probability distributions efficiently

Bayesian networks

- More commonly called *graphical models*
- A way to depict conditional independence relationships between random variables
- A compact specification of full joint distributions

Outline

- Review: Bayesian inference
- Bayesian network: graph semantics
- The Los Angeles burglar alarm example
- Inference in a Bayes network
- Conditional independence ≠ Independence

Bayesian networks: Structure

- Nodes: random variables
- Arcs: interactions
 - An arrow from one variable to another indicates direct influence
 - Must form a directed, *acyclic* graph

Example: N independent coin flips

• Complete independence: no interactions

Example: Naïve Bayes document model

- Random variables:
 - X: document class
 - W_1 , ..., W_n : words in the document

Outline

- Review: Bayesian inference
- Bayesian network: graph semantics
- The Los Angeles burglar alarm example
- Inference in a Bayes network
- Conditional independence ≠ Independence

Example: Los Angeles Burglar Alarm

- I have a burglar alarm that is sometimes set off by minor earthquakes. My two neighbors, John and Mary, promised to call me at work if they hear the alarm
 - Example inference task: suppose Mary calls and John doesn't call. What is the probability of a burglary?
- What are the random variables?
 - Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- What are the direct influence relationships?
 - A burglar can set the alarm off
 - An earthquake can set the alarm off
 - The alarm can cause Mary to call
 - The alarm can cause John to call

Example: Burglar Alarm

Conditional independence and the joint distribution

- Key property: each node is conditionally independent of its non-descendants given its parents
- Suppose the nodes X_1 , ..., X_n are sorted in topological order
- To get the joint distribution P(X₁, ..., X_n), use chain rule:

$$P(X_1, \dots, X_n) = \prod_{i=1}^n P(X_i \mid X_1, \dots, X_{i-1})$$
$$= \prod_{i=1}^n P(X_i \mid Parents(X_i))$$

Conditional probability distributions

To specify the full joint distribution, we need to specify a conditional distribution for each node given its parents:
 P (X | Parents(X))

Example: Burglar Alarm

Outline

- Review: Bayesian inference
- Bayesian network: graph semantics
- The Los Angeles burglar alarm example
- Inference in a Bayes network
- Conditional independence ≠ Independence

Classification using probabilities

- Suppose Mary has called to tell you that you had a burglar alarm. Should you call the police?
 - Make a decision that <u>maximizes the probability of being correct</u>. This is called a MAP (maximum a posteriori) decision. You decide that you have a burglar in your house if and only if

 $P(Burglary|Mary) > P(\neg Burglary|Mary)$

- Notice: we don't know P(Burglary|Mary)!We have to figure out what it is.
- This is called "inference".
- First step: find the joint probability of B (and ¬B), M (and ¬M), and any other variables that are necessary in order to link these two together.

P(B, E, A, M) = P(B)P(E)P(A|B, E)P(M|A)

<i>P</i> ((BEAM)	$\neg M$, $\neg A$	$\neg M, A$	M , $\neg A$	М, А
-	¬ <i>B</i> , ¬ <i>E</i>	0.986045	2.99×10 ⁻⁴	9.96×10 ⁻³	6.98×10 ⁻⁴
	¬B, E	1.4×10^{-3}	1.7×10^{-4}	1.4×10^{-5}	4.06×10^{-4}
	<i>B</i> , ¬ <i>E</i>	5.93×10 ⁻⁵	2.81×10 ⁻⁴	5.99×10 ⁻⁷	6.57×10^{-4}
	B, E	9.9×10 ⁻⁸	5.7×10^{-7}	10 ⁻⁹	1.33×10^{-6}

$$P(B,M) = \sum_{E,\neg E} \sum_{A,\neg A} P(B,E,A,M)$$

A P(M A)	P(B,M)	$\neg M$	М
MaryCalls T .70 F .01	$\neg B$	0.987922	0.011078
	В	0.000341	0.000659

• Third step: ignore (delete) the column that didn't happen.

P(B,M)	М
$\neg B$	0.011078
В	0.000659

• Fourth step: use the definition of conditional probability.

$$P(B|M) = \frac{P(B,M)}{P(B,M) + P(B,\neg M)}$$

P(B M)	М
$\neg B$	0.943883
В	0.056117

Some unexpected conclusions

- Burglary is so unlikely that, if only Mary calls or only John calls, the probability of a burglary is still only about 5%.
- If both Mary and John call, the probability is ~50%. unless ...

Some unexpected conclusions

- Burglary is so unlikely that, if only Mary calls or only John calls, the probability of a burglary is still only about 5%.
- If both Mary and John call, the probability is ~50%. unless ...
- If you know that there was an earthquake, then the probability is, the alarm was caused by the earthquake. In that case, the probability you had a burglary is vanishingly small, even if twenty of your neighbors call you.
- This is called the "explaining away" effect. The earthquake "explains away" the burglar alarm.

Outline

- Review: Bayesian inference
- Bayesian network: graph semantics
- The Los Angeles burglar alarm example
- Inference in a Bayes network
- Conditional independence ≠ Independence

The joint probability distribution

$$P(X_1,\ldots,X_n) = \prod_{i=1}^n P(X_i \mid Parents(X_i))$$

For example,

 $P(j, m, a, \neg b, \neg e) = P(\neg b) P(\neg e) P(a|\neg b, \neg e) P(j|a) P(m|a)$

Independence

- By saying that X_i and X_j are independent, we mean that $P(X_j, X_i) = P(X_i)P(X_j)$
- X_i and X_j are independent if and only if they have no common ancestors
- Example: independent coin flips

 Another example: Weather is independent of all other variables in this model.

Conditional independence

• By saying that W_i and W_j are conditionally independent given X, we mean that

$$P(W_i, W_j | X) = P(W_i | X) P(W_j | X)$$

- W_i and W_j are conditionally independent given X if and only if they have no common ancestors other than the ancestors of X.
- Example: *naïve Bayes model:*

Conditional independence ≠ Independence

Common cause: Conditionally Independent

Y: Project due X: Newsgroup busy Z: Lab full Common effect: Independent

X: Raining Z: Ballgame

Y: Traffic

Are X and Z independent? **No**

 $P(Z,X) = \sum_{Y} P(Z|Y)P(X|Y)P(Y)$ $P(Z)P(X) = \left(\sum_{Y} P(Z|Y)P(Y)\right)\left(\sum_{Y} P(X|Y)P(Y)\right)$

Are they conditionally independent given Y? Yes P(Z, X|Y) = P(Z|Y)P(X|Y) Are X and Z independent? Yes P(X,Z) = P(X)P(Z)

Are they conditionally independent given Y? No $P(Z, X|Y) = \frac{P(Y|X, Z)P(X)P(Z)}{P(Y)}$ $\neq P(Z|Y)P(X|Y)$

Conditional independence ≠ Independence

Common cause: Conditionally Independent

Y: Project due X: Newsgroup busy Z: Lab full

Are X and Z independent? No

Knowing X tells you about Y, which tells you about Z.

Are they conditionally independent given Y? Yes

If you already know Y, then X gives you no useful information about Z.

Common effect: Independent

X: Raining Z: Ballgame Y: Traffic

Are X and Z independent? Yes

Knowing X tells you nothing about Z.

Are they conditionally independent given Y? No If Y is true, then either X or Z must be true. Knowing that X is false means Z must be true. We say that X "explains away" Z.

Conditional independence ≠ Independence

Being conditionally independent given X does NOT mean that W_i and W_j are independent. Quite the opposite. For example:

- The document topic, X, can be either "sports" or "pets", equally probable.
- $W_1=1$ if the document contains the word "food," otherwise $W_1=0$.
- $W_2=1$ if the document contains the word "dog," otherwise $W_2=0$.
- Suppose you don't know X, but you know that W₂=1 (the document has the word "dog"). Does that change your estimate of p(W₁=1)?

Conditional independence

Another example: *causal chain*

X: Low pressure

Y: Rain

Z: Traffic

• X and Z are conditionally independent given Y, because they have no common ancestors other than the ancestors of Y.

• Being conditionally independent given Y does NOT mean that X and Z are independent. Quite the opposite. For example, suppose P(X) = 0.5, P(Y|X) = 0.8, $P(Y|\neg X) = 0.1$, P(Z|Y) = 0.7, and $P(Z|\neg Y) = 0.4$. Then we can calculate that P(Z|X) = 0.64, but P(Z) = 0.535

Outline

- Review: Bayesian inference
- Bayesian network: graph semantics
- The Los Angeles burglar alarm example
- Inference in a Bayes network
- Conditional independence ≠ Independence