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Review: Bayesian inference
• A general scenario:

- Query variables: X
- Evidence (observed) variables and their values: E = e

• Inference problem: answer questions about the query 
variables given the evidence variables

• This can be done using the posterior distribution P(X | E = e)
• Example of a useful question: Which X is true?

• More formally: what value of X has the least probability of 
being wrong?

• Answer: MPE = MAP (argmin P(error) = argmax
P(X=x|E=e))



Today: What if P(X,E) is complicated?

• Very, very common problem: P(X,E) is complicated because both X 
and E depend on some hidden variable Y
• SOLUTION:

• Draw a bunch of circles and arrows that represent the dependence
• When your algorithm performs inference, make sure it does so in the order of 

the graph

• FORMALISM: Bayesian Network



Hidden Variables
• A general scenario:

- Query variables: X
- Evidence (observed) variables and their values: E = e
- Unobserved variables: Y

• Inference problem: answer questions about the query 
variables given the evidence variables
- This can be done using the posterior distribution P(X | E = e)
- In turn, the posterior needs to be derived from the full joint P(X, E, Y)

• Bayesian networks are a tool for representing joint 
probability distributions efficiently
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Bayesian networks

• More commonly called graphical models
• A way to depict conditional independence 

relationships between random variables
• A compact specification of full joint distributions



Outline
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• Bayesian network: graph semantics
• The Los Angeles burglar alarm example
• Inference in a Bayes network
• Conditional independence ≠ Independence



Bayesian networks: Structure

• Nodes: random variables

• Arcs: interactions
• An arrow from one variable to another indicates 

direct influence
• Must form a directed, acyclic graph



Example: N independent 
coin flips

• Complete independence: no interactions

X1 X2 Xn
…



Example: Naïve Bayes document model

• Random variables:
• X: document class
• W1, …, Wn: words in the document

W1 W2 Wn
…

X
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Example: Los Angeles Burglar Alarm

• I have a burglar alarm that is sometimes set off by minor earthquakes. My two 
neighbors, John and Mary, promised to call me at work if they hear the alarm

• Example inference task: suppose Mary calls and John doesn’t call. What is the probability of a 
burglary?

• What are the random variables? 
• Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

• What are the direct influence relationships?
• A burglar can set the alarm off
• An earthquake can set the alarm off
• The alarm can cause Mary to call
• The alarm can cause John to call



Example: Burglar Alarm



Conditional independence and the 
joint distribution

• Key property: each node is conditionally independent of its 
non-descendants given its parents
• Suppose the nodes X1, …, Xn are sorted in topological order
• To get the joint distribution P(X1, …, Xn), 

use chain rule:
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Conditional probability distributions
• To specify the full joint distribution, we need to specify a 

conditional distribution for each node given its parents: 
P (X | Parents(X))

Z1 Z2 Zn

X

…

P (X | Z1, …, Zn)



Example: Burglar Alarm

𝑃(𝐵)

𝑃(𝐸)

𝑃(𝐴|𝐵, 𝐸)

𝑃(𝑀|𝐴)
𝑃(𝐽|𝐴)



Example: Burglar Alarm

𝑃(𝐵) 𝑃(𝐸)

𝑃(𝐴|𝐵, 𝐸)

𝑃(𝑀|𝐴)𝑃(𝐽|𝐴)

• A “model” is a complete 
specification of the 
dependencies.

• The conditional 
probability tables are 
the model parameters.
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Classification using probabilities

• Suppose Mary has called to tell you that you had a burglar alarm.  
Should you call the police?

• Make a decision that maximizes the probability of being correct.  This is 
called a MAP (maximum a posteriori) decision.  You decide that you have a 
burglar in your house if and only if

𝑃 𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦 𝑀𝑎𝑟𝑦 > 𝑃(¬𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦|𝑀𝑎𝑟𝑦)



Using a Bayes network to estimate a posteriori probabilities
• Notice: we don’t know 𝑃 𝐵𝑢𝑟𝑔𝑙𝑎𝑟𝑦 𝑀𝑎𝑟𝑦 !  

We have to figure out what it is.
• This is called “inference”.
• First step: find the joint probability of 𝐵 (and 
¬𝐵), 𝑀 (and ¬𝑀), and any other variables 
that are necessary in order to link these two 
together.
𝑃 𝐵, 𝐸, 𝐴,𝑀 = 𝑃 𝐵 𝑃 𝐸 𝑃 𝐴 𝐵, 𝐸 𝑃 𝑀 𝐴

𝑃 𝐵𝐸𝐴𝑀 ¬𝑀,¬𝐴 ¬𝑀, 𝐴 𝑀,¬𝐴 𝑀, 𝐴

¬𝐵,¬𝐸 0.986045 2.99×10!" 9.96×10!# 6.98×10!"

¬𝐵, 𝐸 1.4×10!# 1.7×10!" 1.4×10!$ 4.06×10!"

𝐵,¬𝐸 5.93×10!$ 2.81×10!" 5.99×10!% 6.57×10!"

𝐵, 𝐸 9.9×10!& 5.7×10!% 10!' 1.33×10!(



Using a Bayes network to estimate a posteriori probabilities

• Second step: marginalize (add) to get rid 
of the variables you don’t care about.

𝑃 𝐵,𝑀 = 1
!,¬!

1
$,¬$

𝑃(𝐵, 𝐸, 𝐴,𝑀)

𝑃 𝐵,𝑀 ¬𝑀 𝑴

¬𝐵 0.987922 0.011078

𝐵 0.000341 0.000659



Using a Bayes network to estimate a posteriori probabilities

• Third step: ignore (delete) the column 
that didn’t happen.

𝑃 𝐵,𝑀 𝑴

¬𝐵 0.011078

𝐵 0.000659



Using a Bayes network to estimate a posteriori probabilities

• Fourth step: use the definition of 
conditional probability.

𝑃 𝐵 𝑀 =
𝑃(𝐵,𝑀)

𝑃 𝐵,𝑀 + 𝑃(𝐵,¬𝑀)

𝑃 𝐵|𝑀 𝑴

¬𝐵 0.943883

𝐵 0.056117



Some unexpected conclusions

• Burglary is so unlikely that, if only Mary calls or only John calls, the 
probability of a burglary is still only about 5%.
• If both Mary and John call, the probability is ~50%.  
unless …



Some unexpected conclusions

• Burglary is so unlikely that, if only Mary calls or only John calls, the 
probability of a burglary is still only about 5%.
• If both Mary and John call, the probability is ~50%.  
unless …
• If you know that there was an earthquake, then the probability is, the 

alarm was caused by the earthquake.  In that case, the probability you 
had a burglary is vanishingly small, even if twenty of your neighbors 
call you.
• This is called the “explaining away” effect.  The earthquake “explains 

away” the burglar alarm.
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The joint probability distribution

For example, 

P(j, m, a, ¬b,¬e) = P(¬b) P(¬e) P(a|¬b,¬e) P(j|a) P(m|a)
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Independence
• By saying that 𝑋! and 𝑋" are independent, we mean that 

P(𝑋" , 𝑋!) = P(𝑋!)P(𝑋")
• 𝑋! and 𝑋" are independent if and only if they have no common 

ancestors
• Example: independent coin flips

• Another example: Weather is independent of all other variables in this 
model.

X1 X2 Xn
…



Conditional independence
• By saying that 𝑊! and 𝑊" are conditionally independent given 𝑋, we 

mean that 
P 𝑊! ,𝑊" 𝑋 = P(𝑊!|𝑋)P(𝑊"|𝑋)

• 𝑊! and 𝑊" are conditionally independent given 𝑋 if and only if they 
have no common ancestors other than the ancestors of 𝑋. 
• Example: naïve Bayes model:

W1 W2 Wn
…

X



Common cause: Conditionally 
Independent

Common effect: Independent

Are X and Z independent? No

𝑃 𝑍, 𝑋 =(
!

𝑃 𝑍 𝑌 𝑃 𝑋 𝑌 𝑃(𝑌)

𝑃 𝑍 𝑃 𝑋 = (
!

𝑃 𝑍 𝑌 𝑃(𝑌) (
!

𝑃 𝑋 𝑌 𝑃(𝑌)

Are they conditionally independent given Y? Yes
𝑃 𝑍, 𝑋 𝑌 = 𝑃(𝑍|𝑌)𝑃(𝑋|𝑌)

Are X and Z independent? Yes
𝑃(𝑋, 𝑍) = 𝑃(𝑋)𝑃(𝑍)

Are they conditionally independent given Y? No

𝑃 𝑍, 𝑋 𝑌 =
𝑃 𝑌 𝑋, 𝑍 𝑃 𝑋 𝑃(𝑍)

𝑃(𝑌)
≠ 𝑃 𝑍|𝑌 𝑃 𝑋|𝑌

Conditional independence ≠ Independence



Common cause: Conditionally 
Independent

Common effect: Independent

Are X and Z independent? No

Knowing X tells you about Y, which tells you about Z.

Are they conditionally independent given Y? Yes
If you already know Y, then X gives you no useful 
information about Z.

Are X and Z independent? Yes

Knowing X tells you nothing about Z.

Are they conditionally independent given Y? No
If Y is true, then either X or Z must be true.
Knowing that X is false means Z must be true.
We say that X “explains away” Z.

Conditional independence ≠ Independence



Conditional independence ≠ Independence

Being conditionally independent given X does NOT mean that 𝑊! and 𝑊" are 
independent.  Quite the opposite.  For example:
• The document topic, X, can be either “sports” or “pets”, equally probable.
• W1=1 if the document contains the word “food,” otherwise W1=0.
• W2=1 if the document contains the word “dog,” otherwise W2=0.
• Suppose you don’t know X, but you know that W2=1 (the document has the 

word “dog”).  Does that change your estimate of p(W1=1)?

W1 W2 Wn
…

X



Conditional independence
Another example: causal chain

• X and Z are conditionally independent given Y, because they have 
no common ancestors other than the ancestors of Y.  

• Being conditionally independent given Y does NOT mean that X 
and Z are independent.  Quite the opposite.  For example, 
suppose P(𝑋) = 0.5, P 𝑌 𝑋 = 0.8, P 𝑌 ¬𝑋 = 0.1, P 𝑍 𝑌 =
0.7, and P 𝑍 ¬𝑌 = 0.4. Then we can calculate that P 𝑍 𝑋 =
0.64, but P(𝑍) = 0.535
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