UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

CS 440/ECE 448 Artificial Intelligence
Spring 2020

SAMPLE EXAM 2

Actual Exam will be held on Compass, Monday, March 30, 2020

- This is will be an OPEN BOOK exam. You will be allowed to use textbook, notes, and calculator.
- You will NOT be allowed to use internet search, or to consult with any other human being, while taking the exam.
- You will need to install Proctorio. See instructons on the course web page or on piazza.
- There will be 40 points on the exam: 8 problems, with 1 or (usually) 2 parts each.

Name: \qquad
netid: \qquad
\qquad

Problem 1 (5 points)

Consider three binary events, A, B, and C, with probabilities given by $P(A)=0.7, P(B)=$ 0.4 , and $P(C)=0.3$.
(a) What's the smallest possible $P(B \wedge C)$?

Solution: B and C could be mutually exclusive, so

$$
\min P(B \wedge C)=0
$$

(b) If A and B are independent, what's $P((\neg A) \wedge B)$?

Solution:

$$
P(\neg A \wedge B)=P(\neg A) P(B)=(0.3)(0.4)=0.12
$$

\qquad

Problem 2 (5 points)

Consider three binary events, A, B, and C, with probabilities given by $P(A)=0.7, P(B)=$ 0.4 , and $P(C)=0.3$.
(a) If B and C are mutually exclusive, what's $P((\neg B) \wedge(\neg C))$?

Solution: If B and C are mutually exclusive, then $P(B \wedge C)=0$, so

$$
\begin{aligned}
P(B \wedge \neg C) & =P(B) \\
P(\neg B \wedge C) & =P(C) \\
P(\neg B \wedge \neg C) & =1-P(B)-P(C)=0.3
\end{aligned}
$$

(b) What's the largest possible $P(\neg(B \vee C))$?

Solution: $\neg(B \vee C)$ is $(\neg B \wedge \neg C)$:

$$
\max P(\neg B \wedge \neg C))=\min (P(\neg B), P(\neg C))=0.6
$$

\qquad

Problem 3 (5 points)

You're trying to determine whether a particular newspaper article is of class $Y=0$ or $Y=1$. The prior probability of class $Y=1$ is $P(Y=1)=0.4$. The newspaper is written in a language that only has four words, so that the $i^{\text {th }}$ word in the article must be $W_{i} \in\{0,1,2,3\}$, with probabilities given by:

$$
\begin{array}{ll}
P\left(W_{i}=0 \mid Y=0\right)=0.1 & P\left(W_{i}=0 \mid Y=1\right)=0.3 \\
P\left(W_{i}=1 \mid Y=0\right)=0.3 & P\left(W_{i}=1 \mid Y=1\right)=0.2 \\
P\left(W_{i}=2 \mid Y=0\right)=0.3 & P\left(W_{i}=2 \mid Y=1\right)=0.4
\end{array}
$$

The article is only three words long; it contains the words

$$
A=\left(W_{1}=0, W_{2}=0, W_{3}=0\right)
$$

What is $P(Y=1, A)$?

Solution:

$P(Y=1, A)=P(Y=1) P\left(W_{1}=0 \mid Y=1\right) P\left(W_{2}=0 \mid Y=1\right) P\left(W_{3}=0 \mid Y=1\right)=(0.4)(0.3)(0.3)(0.3)$
\qquad

Problem 4 (5 points)

Consider the following Bayes network (all variables are binary):

$P(A)=0.4$			
		A, B	$P(C \mid A, B)$
A	$P(B \mid A)$	False,False	0.9
False	0.1	False,True	0.3
True	0.2	True,False	0.7
		True,True	0.5

(a) What is $P(C)$? Write your answer in numerical form, but you don't need to simplify.

Solution:

$$
\begin{aligned}
P(C) & =P(\neg A, \neg B, C)+P(\neg A, B, C)+P(A, \neg B, C)+P(A, B, C) \\
& =(0.6)(0.9)(0.9)+(0.6)(0.1)(0.3)+(0.4)(0.8)(0.7)+(0.4)(0.2)(0.5)
\end{aligned}
$$

(b) What is $P(A \mid B=$ True, $C=$ True $)$? Write your answer in numerical form, but you don't need to simplify.

Solution:

$$
\begin{aligned}
P(A \mid B, C) & =\frac{P(A, B, C)}{P(A, B, C)+P(\neg A, B, C)} \\
& =\frac{(0.4)(0.2)(0.5)}{(0.4)(0.2)(0.5)+(0.6)(0.1)(0.3)}
\end{aligned}
$$

\qquad

Problem 5 (5 points)

Consider the following Bayes network (all variables are binary):

You've been asked to re-estimate the parameters of the network based on the following observations:

Observation	A	B	C
1	True	True	False
2	False	True	True
3	False	True	False
4	False	False	True

(a) Given the data in the table, what are the maximum likelihood estimates of the model parameters? If there is a model parameter that cannot be estimated from these data, mark it "UNKNOWN."

Solution:

$$
\begin{aligned}
P(A) & =1 / 4 \\
P(B \mid \neg A) & =2 / 3 \\
P(B \mid A) & =1 / 1 \\
P(C \mid \neg A, \neg B) & =1 / 1 \\
P(C \mid \neg A, B) & =1 / 2 \\
P(C \mid A, \neg B) & =U N K \text { NOW N } \\
P(C \mid A, B) & =0 / 1
\end{aligned}
$$

(b) Use the table of data, but this time, estimate the data using Laplace smoothing, with a smoothing parameter of $k=1$.

NAME:

Solution:

$$
\begin{aligned}
P(A) & =2 / 6 \\
P(B \mid \neg A) & =3 / 5 \\
P(B \mid A) & =2 / 3 \\
P(C \mid \neg A, \neg B) & =2 / 3 \\
P(C \mid \neg A, B) & =2 / 4 \\
P(C \mid A, \neg B) & =1 / 2 \\
P(C \mid A, B) & =1 / 3
\end{aligned}
$$

\qquad

Problem 6 (5 points)

Consider the following probabilistic context-free grammar:

$\mathrm{S} \rightarrow$	NP VP	$P=1.0$
$\mathrm{NP} \rightarrow \mathrm{N}$	$P=0.9$	
$\mathrm{NP} \rightarrow \mathrm{J} \mathrm{N}$	$P=0.1$	
$\mathrm{VP} \rightarrow \mathrm{V}$	$P=0.3$	
$\mathrm{VP} \rightarrow$ V NP	$P=0.7$	
$\mathrm{~J} \rightarrow$ beautiful	$P=0.4$	
$\mathrm{~J} \rightarrow$ complicated	$P=0.6$	
$\mathrm{~N} \rightarrow$ birds	$P=0.8$	
$\mathrm{~N} \rightarrow$ flowers	$P=0.2$	
$\mathrm{~V} \rightarrow$ enjoy	$P=0.5$	
$\mathrm{~V} \rightarrow$ grow	$P=0.5$	

Consider the sentence
"Complicated flowers enjoy."
What is the probability that this sentence would be generated by the grammar shown above? (Ignore capitalization and punctuation.)

Solution:The rules that fire are

$$
\begin{array}{rll}
\mathrm{S} \rightarrow & \mathrm{NP} \text { VP } & P=1.0 \\
\mathrm{NP} \rightarrow & \mathrm{~J} ~ \mathrm{~N} & P=0.1 \\
\mathrm{~J} \rightarrow & \text { complicated } & P=0.6 \\
\mathrm{~N} \rightarrow & \text { flowers } & P=0.2 \\
\mathrm{VP} \rightarrow & \mathrm{~V} & P=0.3 \\
\mathrm{~V} \rightarrow & \text { enjoy } & P=0.5
\end{array}
$$

The product of these probabilities is

$$
P=(1.0)(0.1)(0.6)(0.2)(0.3)(0.5)
$$

\qquad

Problem 7 (5 points)

A particular hidden Markov model (HMM) has state variable X_{t}, and observation variables E_{t}, where t denotes time. Suppose that this HMM has two states, $X_{t} \in\{0,1\}$, and three possible observations, $E_{t} \in\{0,1,2\}$. The initial state probability is $P\left(X_{1}=1\right)=0.3$. The transition and observation probability matrices are

X_{t-1}	$P\left(X_{t}=1 \mid X_{t-1}\right)$	X_{t}	$P\left(E_{t}=0 \mid X_{t}\right)$	$P\left(E_{t}=1 \mid X_{t}\right)$
0	0.6	0	0.4	0.1
1	0.4	1	0.1	0.6

Suppose that, in a particular test of the HMM, the observation sequence is

$$
\left\{E_{1}, E_{2}\right\}=\{2,1\}
$$

(a) What is the total probability $P\left(E_{1}=2, E_{2}=1\right)$?

Solution:

$$
\begin{aligned}
P\left(E_{1}=2, E_{2}=1\right) & =\sum_{X_{1}, X_{2}} P\left(X_{1}\right) P\left(E_{1}=2 \mid X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(E_{2}=1 \mid X_{2}\right) \\
& =(0.7)(0.5)(0.4)(0.1)+(0.7)(0.5)(0.6)(0.6)+(0.3)(0.3)(0.6)(0.1)+(0.3)(0.3)(0.4)(0.6)
\end{aligned}
$$

(b) If it is observed that $X_{2}=1$, what is the most likely value of X_{1} ? In other words, what is $\arg \max _{X_{1}} P\left(X_{1}, E_{1}=2, X_{2}=1, E_{2}=1\right)$?

$$
\begin{aligned}
\underset{X_{1}}{\arg \max } P\left(X_{1}, E_{1}=2, X_{2}=1, E_{2}=1\right) & =\underset{X_{1}}{\arg \max } P\left(X_{1}\right) P\left(E_{1}=2 \mid X_{1}\right) P\left(X_{2}=1 \mid X_{1}\right) \\
& =\underset{0,1}{\arg \max }((0.7)(0.5)(0.6),(0.3)(0.3)(0.4)) \\
& =0
\end{aligned}
$$

Problem 8 (5 points)

Your camera is 6.3 m above the ground, i.e., the ground is at $y=-6.3$. There are a pair of railroad tracks in front of you, at positions in the (x, z) plane given by

$$
\begin{aligned}
& 2.3 x-4.5 z=1.2 \\
& 2.3 x-4.5 z=2.6
\end{aligned}
$$

The focal length of your camera is $f=0.05$. Find the coordinates $\left(x^{\prime}, y^{\prime}\right)$ of the vanishing point.

Solution:The pinhole camera equations are

$$
\frac{x^{\prime}}{x}=\frac{y^{\prime}}{y}=\frac{-0.05}{z}
$$

Combining this with the equations in the problem statement gives

$$
\begin{aligned}
-\frac{2.3 x^{\prime} z}{0.05}-4.5 z & =1.2 \\
-\frac{2.3 x^{\prime} z}{0.05}-4.5 z & =2.6 \\
-\frac{y^{\prime} z}{0.05} & =-6.3
\end{aligned}
$$

Dividing through by z, and taking the limit as $z \rightarrow \infty$, we get

$$
\begin{aligned}
-\frac{2.3 x^{\prime}}{0.05}-4.5 & =0 \\
-\frac{y^{\prime}}{0.05} & =0
\end{aligned}
$$

Or $\left(x^{\prime}, y^{\prime}\right)=(-(4.5)(0.05) /(2.3), 0)$

