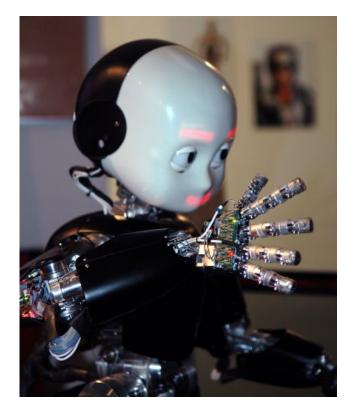
CS440/ECE448 Lecture 20: Markov Decision Processes

Slides by Svetlana Lazebnik, 11/2016 Modified by Mark Hasegawa-Johnson, 11/2017



Markov Decision Processes

- In HMMs, we see a sequence of observations and try to reason about the underlying state sequence
 - There are no actions involved
- But what if we have to take an action at each step that, in turn, will affect the state of the world?

Markov Decision Processes

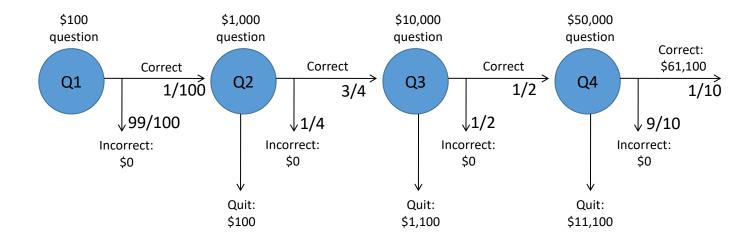
- Components that define the MDP. Depending on the problem statement, you either know these, or you learn them from data:
 - States s, beginning with initial state s₀
 - Actions a
 - Each state s has actions A(s) available from it
 - Transition model P(s' | s, a)
 - Markov assumption: the probability of going to s' from s depends only on s and a and not on any other past actions or states
 - Reward function R(s)
- Policy the "solution" to the MDP:
 - $\pi(s) \in A(s)$: the action that an agent takes in any given state

Overview

- First, we will look at how to "solve" MDPs, or find the optimal policy when the transition model and the reward function are known
- Second, we will consider reinforcement learning, where we don't know the rules of the environment or the consequences of our actions

Game show

- A series of questions with increasing level of difficulty and increasing payoff
- Decision: at each step, take your earnings and quit, or go for the next question
 - If you answer wrong, you lose everything

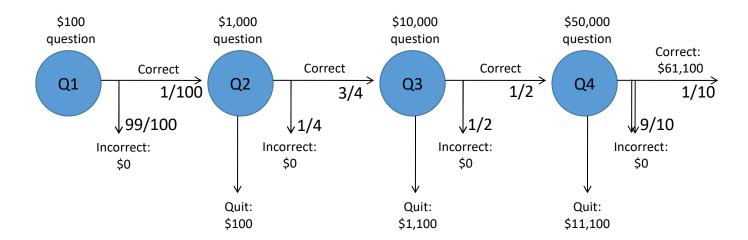


Game show

- Consider \$50,000 question
 - Probability of guessing correctly: 1/10
 - Quit or go for the question?
- What is the expected payoff for continuing?

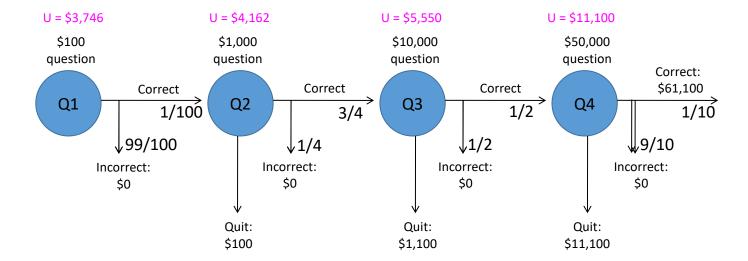
$$0.1 * 61,100 + 0.9 * 0 = 6,110$$

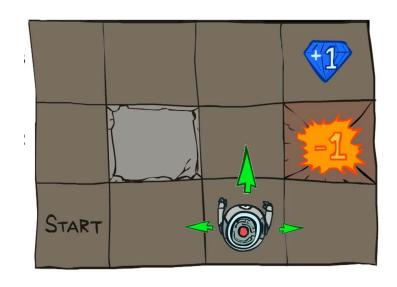
What is the optimal decision?



Game show

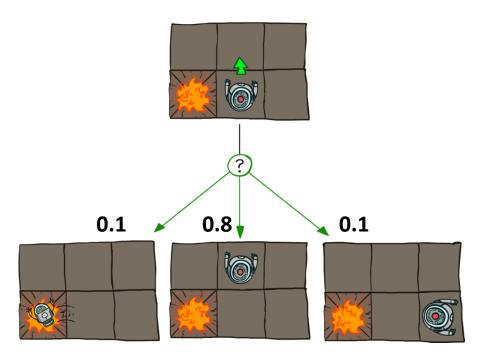
- What should we do in Q3?
 - Payoff for quitting: \$1,100
 - Payoff for continuing: 0.5 * \$11,100 = \$5,550
- What about Q2?
 - \$100 for quitting vs. \$4,162 for continuing
- What about Q1?





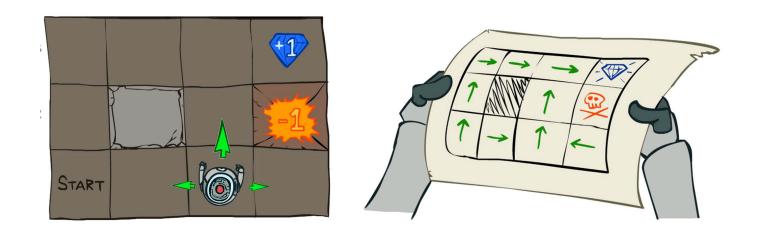
R(s) = -0.04 for every non-terminal state

Transition model:

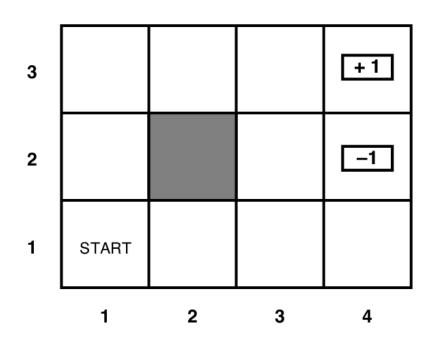


Source: P. Abbeel and D. Klein

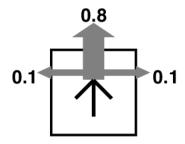
Goal: Policy



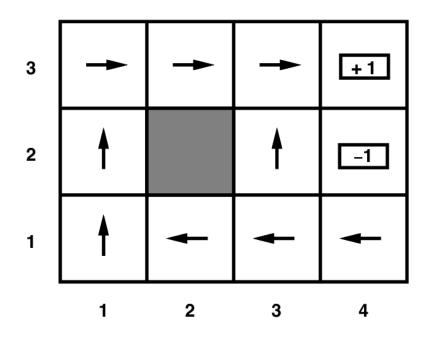
Source: P. Abbeel and D. Klein



Transition model:

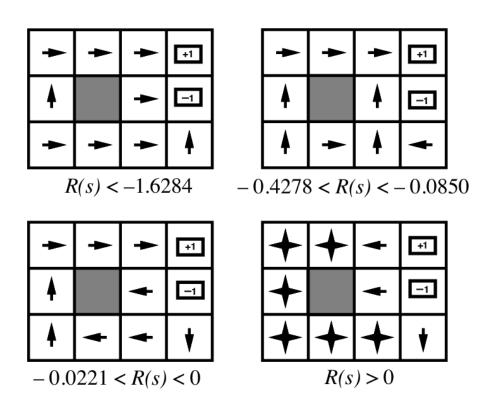


R(s) = -0.04 for every non-terminal state



Optimal policy when R(s) = -0.04 for every non-terminal state

• Optimal policies for other values of R(s):



Solving MDPs

- MDP components:
 - States s
 - Actions a
 - Transition model P(s' | s, a)
 - Reward function R(s)
- The solution:
 - **Policy** $\pi(s)$: mapping from states to actions
 - How to find the optimal policy?

Maximizing expected utility

• The optimal policy $\pi(s)$ should maximize the *expected utility* over all possible state sequences produced by following that policy:

$$\sum_{\substack{\text{state sequences} \\ \text{starting from } s_0}} P(\text{sequence} | s_0, a = \pi(s_0)) U(\text{sequence})$$

- How to define the utility of a state sequence?
 - Sum of rewards of individual states
 - Problem: infinite state sequences

Utilities of state sequences

- Normally, we would define the utility of a state sequence as the sum of the rewards of the individual states
- **Problem:** infinite state sequences
- **Solution:** discount the individual state rewards by a factor γ between 0 and 1:

$$U([s_0, s_1, s_2, \dots]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots$$

$$= \sum_{t=0}^{\infty} \gamma^t R(s_t) \le \frac{R_{\text{max}}}{1 - \gamma} \qquad (0 < \gamma < 1)$$

- Sooner rewards count more than later rewards
- · Makes sure the total utility stays bounded
- Helps algorithms converge

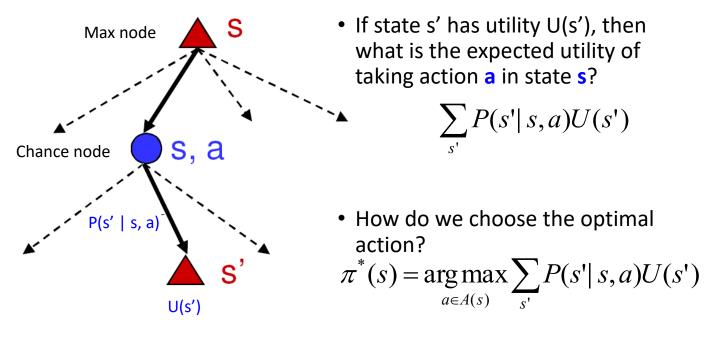
Utilities of states

• Expected utility obtained by policy π starting in state s:

$$U^{\pi}(s) = \sum_{\substack{\text{state sequences} \\ \text{starting from s}}} P(\text{sequence}|s, a = \pi(s))U(\text{sequence})$$

- The "true" utility of a state, denoted U(s), is the *best possible* expected sum of discounted rewards
 - if the agent executes the best possible policy starting in state s
- Reminiscent of minimax values of states...

Finding the utilities of states



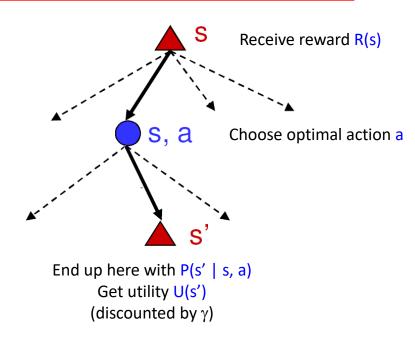
• What is the recursive expression for U(s) in terms of the utilities of its successor states?

$$U(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a)U(s')$$

The Bellman equation

 Recursive relationship between the utilities of successive states:

$$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s,a)U(s')$$



The Bellman equation

 Recursive relationship between the utilities of successive states:

$$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) U(s')$$

- For N states, we get N equations in N unknowns
 - Solving them solves the MDP
 - Nonlinear equations -> no closed-form solution, need to use an iterative solution method (is there a globally optimum solution?)
 - We could try to solve them through expectiminimax search, but that would run into trouble with infinite sequences
 - Instead, we solve them algebraically
 - Two methods: value iteration and policy iteration

Method 1: Value iteration

- Start out with every U(s) = 0
- Iterate until convergence
 - During the *i*th iteration, update the utility of each state according to this rule:

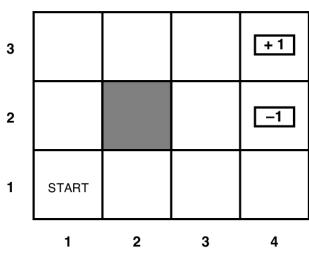
$$U_{i+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s,a) U_i(s')$$

- In the limit of infinitely many iterations, guaranteed to find the correct utility values
 - Error decreases exponentially, so in practice, don't need an infinite number of iterations...

Value iteration

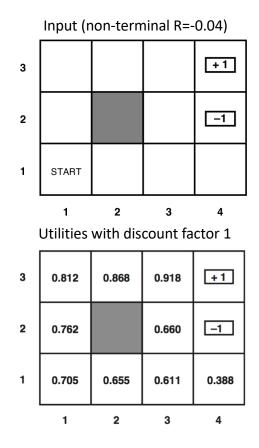
• What effect does the update have?

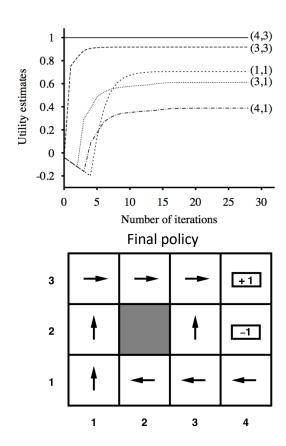
$$U_{i+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s,a) U_i(s')$$



Value iteration demo

Value iteration





Method 2: Policy iteration

- Start with some initial policy π_0 and alternate between the following steps:
 - **Policy evaluation:** calculate $U^{\pi_i}(s)$ for every state s
 - **Policy improvement:** calculate a new policy π_{i+1} based on the updated utilities
- Notice it's kind of like hill-climbing in the N-queens problem.
 - Policy evaluation: Find ways in which the current policy is suboptimal
 - Policy improvement: Fix those problems
- Unlike Value Iteration, this is guaranteed to converge in a finite number of steps, as long as the state space and action set are both finite.

Method 2, Step 1: Policy evaluation

• Given a fixed policy π , calculate $U^{\pi}(s)$ for every state s

$$U^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) U^{\pi}(s')$$

- $\pi(s)$ is fixed, therefore $P(s'|s,\pi(s))$ is an $s'\times s$ matrix, therefore we can solve a linear equation to get $U^{\pi}(s)$!
- Why is this "Policy Evaluation" formula so much easier to solve than the original Bellman equation?

$$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) U(s')$$

Method 2, Step 2: Policy improvement

• Given $U^{\pi}(s)$ for every state s, find an improved $\pi(s)$

$$\pi^{i+1}(s) = \underset{a \in A(s)}{\operatorname{arg\,max}} \sum_{s'} P(s'|s,a) U^{\pi_i}(s')$$

Summary

- MDP defined by states, actions, transition model, reward function
- The "solution" to an MDP is the policy: what do you do when you're in any given state
- The Bellman equation tells the utility of any given state, and incidentally, also tells you the optimum policy. The Bellman equation is N nonlinear equations in N unknowns (the policy), therefore it can't be solved in closed form.
- Value iteration:
 - At the beginning of the (i+1)'st iteration, each state's value is based on looking ahead i steps in time
 - ... so finding the best action = optimize based on (i+1)-step lookahead
- Policy iteration:
 - Find the utilities that result from the current policy,
 - Improve the current policy