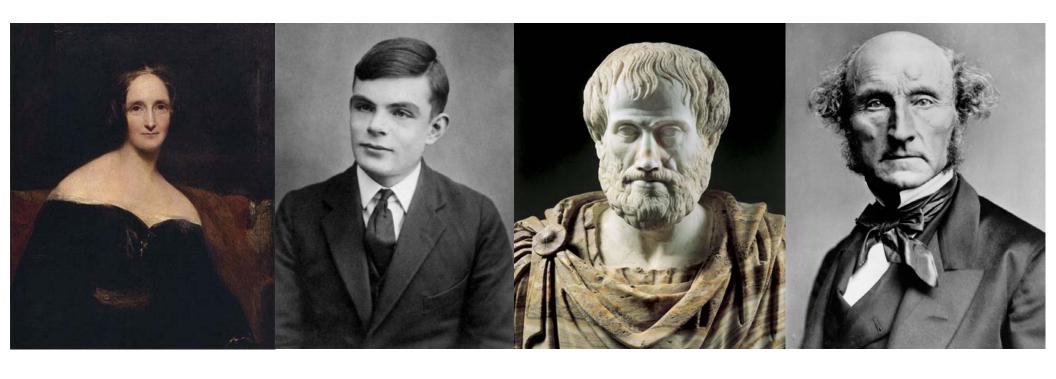
CS 440/ECE 448 Lecture 11: Exam 1 Review

Spring 2018

CS440/ECE448: Artificial Intelligence Lecture 1: What is AI?



What is Artificial Intelligence?

• Candidate definitions from the textbook:

1. Thinking humanly	2. Acting humanly
3. Thinking rationally	4. Acting rationally

CS440/ECE 448 Lecture 3: Agents and Rationality

Specifying the task environment

- PEAS: Performance, Environment, Actions, Sensors
- P: a function the agent is maximizing (or minimizing)
 - Assumed given
- E: a formal representation for world states
 - For concreteness, a tuple $(var_1=val_1, var_2=val_2, ..., var_n=val_n)$
- A: actions that change the state according to a transition model
 - Given a state and action, what is the successor state (or distribution over successor states)?
- S: observations that allow the agent to infer the world state
 - Often come in very different form than the state itself
 - E.g., in tracking, observations may be pixels and state variables 3D coordinates

Types of Agents

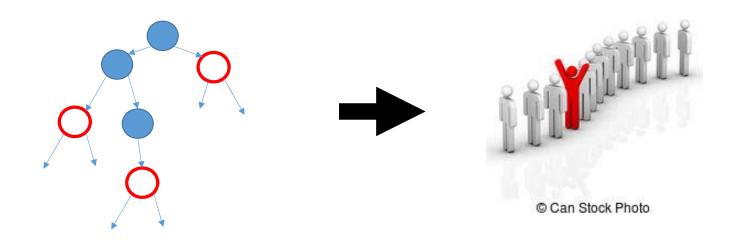
- Reflex agent: no concept of past, future, or value
 - Might still be Rational, if the environment is known to the designer with sufficient detail
- Internal-State agent: knows about the past
- Goal-Directed agent: knows about the past and future
- Utility-Directed agent: knows about past, future, and value

Properties of Environments

- Fully observable vs. partially observable
- Deterministic vs. stochastic
- Episodic vs. sequential
- Static vs. dynamic
- Discrete vs. continuous
- Single agent vs. multi-agent
- Known vs. unknown

CS440/ECE448 Lectures 4-5: Search

Slides by Svetlana Lazebnik, 9/2016 Revised by Mark Hasegawa-Johnson, 1/2018



Tree Search Algorithm

- Initialize: Frontier = { startnode }
- While Frontier $\neq \emptyset$
 - Choose a node from the frontier, (add it to the visited list)
 - If it's the end node: terminate
 - If not, expand it: put its (non-visited) neighbors into the frontier

All search strategies

Algorithm	Complete?	Optimal?	Time complexity	Space complexity	Implement the Frontier as a
BFS	Yes	If all step costs are equal	O(b^d)	O(b^d)	Queue
DFS	No	No	O(b^m)	O(bm)	Stack
IDS	Yes	If all step costs are equal	O(b^d)	O(bd)	Stack
UCS	Yes	Yes	Number of nodes w/ g(n) ≤ C*	Number of nodes w/ g(n) ≤ C*	Priority Queue sorted by g(n)
Greedy	No	No	Worst case: O(b^m) Best case: O(bd)	Worse case: O(b^m) Best case: O(bd)	Priority Queue sorted by h(n)
A *	Yes	Yes	Number of nodes w/ $g(n)+h(n) \le C^*$	Number of nodes w/ $g(n)+h(n) \le C^*$	Priority Queue sorted by h(n)+g(n)

CS440/ECE 448, Lecture 6: Constraint Satisfaction Problems

8

8

Slides by Svetlana Lazebnik, 9/2016 Modified by Mark Hasegawa-Johnson, 1/2018

3			4		6	Г		7
						4		
	1					6	5	
5		9	Г	3		7	8	
				7				
	4	8		2		1		3
	5	2	Г			Г	9	
		1						

Backtracking search

- In CSP's, variable assignments are commutative
 - For example, [WA = red then NT = green] is the same as [NT = green then WA = red]
- We only need to consider assignments to a single variable at each level (i.e., we fix the order of assignments)
 - Then there are only mⁿ leaves
- Depth-first search for CSPs with single-variable assignments is called backtracking search

Heuristics for making backtracking search more efficient

Still DFS, but we use heuristics to decide which child to expand first. You could call it GDFS...

- Heuristics that choose the next variable to assign:
 - Minimum Remaining Values (MRV)
 - Most Constraining Variable (MCV)
- Heuristic that chooses a value for that variable:
 - Least Constraining Assignment (LCA)
- Early detection of failure:
 - Forward Checking
 - Arc Consistency

Planning (Chapter 10)

Slides by Svetlana Lazebnik, 9/2016 with modifications by Mark Hasegawa-Johnson, 1/2018

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=18656684

Planning as Search

Pre-specified set of possible actions

- Example: carry_left(beans), carry_right(goat)
- Action = function of one or more variables
- Result = variables changed in pre-defined way
 - With pre-defined cost
- This is not at all like CSP. Order of the actions is important.
 - Constraints apply not just to the goal state, but also to every intermediate state.

Complexity of planning

- Planning is <u>PSPACE-complete</u>
 - The length of a plan can be exponential in the number of "objects" in the problem!
 - So is game search
- Archetypal PSPACE-complete problem: quantified boolean formula (QBF)
 - Example: is this formula true? $\exists x_1 \forall x_2 \exists x_3 \forall x_4 (x_1 \lor \neg x_3 \lor x_4) \land (\neg x_2 \lor x_3 \lor \neg x_4)$
- Compare to SAT:

$$\exists x_1 \exists x_2 \exists x_3 \exists x_4 (x_1 \lor \neg x_3 \lor x_4) \land (\neg x_2 \lor x_3 \lor \neg x_4)$$

 Relationship between SAT and QBF is akin to the relationship between puzzles and games

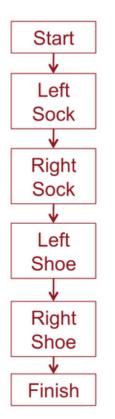
A* Heuristics by Constraint Relaxation

- Heuristics from Constraint Relaxation: The heuristic h(n) is the number of steps it would take to get from n to G, if problem constraints were relaxed --- this guarantees that h(n) is admissible
- $h_1(n)$ dominates $h_2(n)$ ($h_1(n) \ge h_2(n)$) if $h_1(n)$ is computed by relaxing fewer constraints.

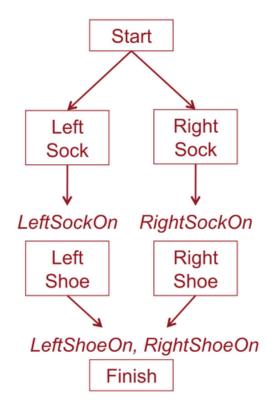
Partial order planning

• Task: put on socks and shoes

Total order (linear) plans

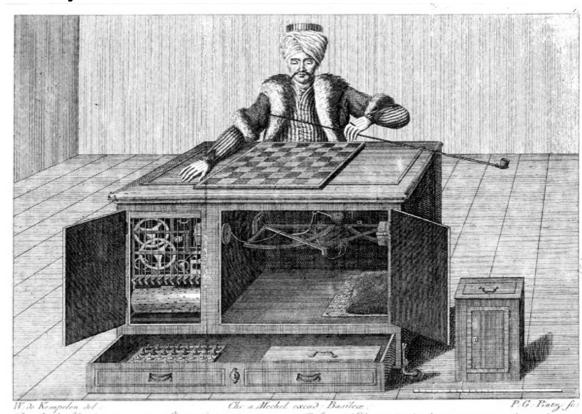


Partial order plan



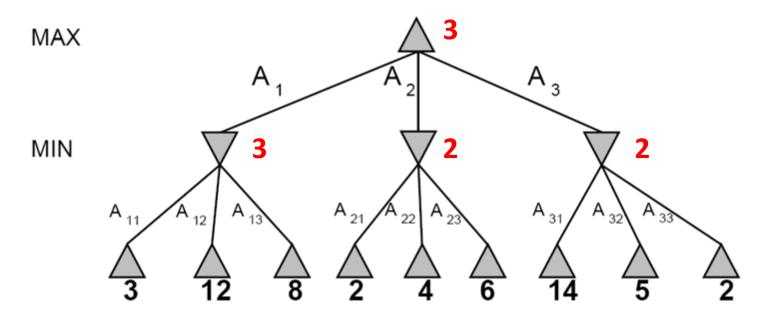
CS440/ECE448 Lecture 8: Two-Player Games

Slides by Svetlana Lazebnik 9/2016 Modified by Mark Hasegawa-Johnson 2/2018



Der Schaebpieler, wie er vor dem Spiele gezeigt wird von verne Le Toueur d'Chees, tel qu'on le montre avant le jeu, par devant

Computing the minimax value of a node



- Minimax(node) =
 - Utility(node) if node is terminal
 - max_{action} Minimax(Succ(node, action)) if player = MAX
 - min_{action} Minimax(Succ(node, action)) if player = MIN

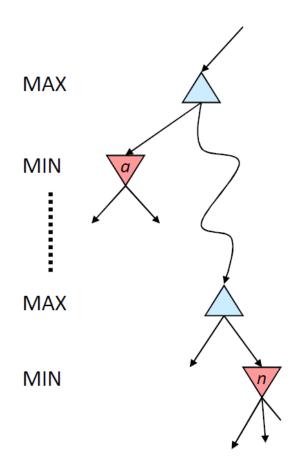
Alpha-Beta Pruning

Key point that I find most counter-intuitive:

- MIN needs to calculate which move MAX will make.
- MAX would never choose a suboptimal move.
- So if MIN discovers that, at a particular node in the tree, she can make a move that's REALLY REALLY GOOD for her...
- She can assume that MAX will never let her reach that node.
- ... and she can prune it away from the search, and never consider it again.

Alpha-beta pruning

- α is the value of the best choice for the MAX player found so far at any choice point above node n
- More precisely: α is the highest number that MAX knows how to force MIN to accept
- We want to compute the MIN-value at n
- As we loop over n's children, the MIN-value decreases
- If it drops below α, MAX will never choose n, so we can ignore n's remaining children
- $\alpha \leq \beta$



Cutting off search

- Cut off search at a certain depth and compute the value of an evaluation function for a state instead of its minimax value
- Horizon effect: you may incorrectly estimate the value of a state by overlooking an event that is just beyond the depth limit
 - For example, a damaging move by the opponent that can be delayed but not avoided
- Possible remedies
 - Quiescence search: do not cut off search at positions that are unstable for example, are you about to lose an important piece?
 - Singular extension: a strong move that should be tried when the normal depth limit is reached

CS440/ECE448 Lecture 10: Stochastic Games, Stochastic Search, and Learned Evaluation Functions

Policy network

Value network

Slides by Svetlana Lazebnik, 9/2016

Modified by Mark Hasegawa-Johnson, 1/2018

Minimax vs. Expectiminimax

Minimax:

- Maximize (over all possible moves I can make) the
- Minimum (over all possible moves Min can make) of the
- Reward

$$Value(node) = \max_{my \ moves} (\min_{Min's \ moves} (Reward))$$

Expectiminimax:

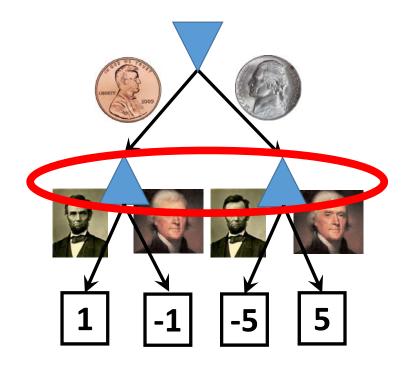
- Maximize (over all possible moves I can make) the
- Minimum (over all possible moves Min can make) of the
- Expected reward

$$Value(node) = \max_{my \ moves} (\min_{Min's \ moves} (\mathbb{E}[Reward]))$$

$$\mathbb{E}[Reward] = \sum_{outcomes} Probability(outcome) \times Reward(outcome)$$

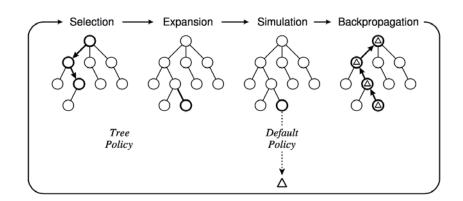
Imperfect information

- The problem: I don't know which state I'm in. I only know it's one of these two.
- This is called an "information set:"
 our information is sufficient to know
 that we're in one of these states,
 but we don't know which one



Monte Carlo Tree Search (Stochastic Search)

- What about <u>deterministic</u> games with deep trees, large branching factor, and no good heuristics – like Go?
- Instead of depth-limited search with an evaluation function, use randomized simulations
- Starting at the current state (root of search tree), iterate:
 - Select a leaf node for expansion using a tree policy (trading off exploration and exploitation)
 - Run a simulation using a default policy (e.g., random moves) until a terminal state is reached
 - Back-propagate the outcome to update the value estimates of internal tree nodes



CS 440/ECE448 Lecture 10: Game Theory

Slides by Svetlana Lazebnik, 9/2016 Modified by Mark Hasegawa-Johnson, 2/2018

Prisoner B Prisoner A	Prisoner B stays silent (cooperates)	Prisoner B betrays (defects)
Prisoner A stays silent (cooperates)	Each serves 1 year	Prisoner A: 3 years Prisoner B: goes free
Prisoner A betrays (<i>defects</i>)	Prisoner A: goes free Prisoner B: 3 years	Each serves 2 years

https://en.wikipedia.org/wiki/Prisoner's_dilemma

Prisoner's dilemma

- Nash equilibrium: A pair of strategies such that no player can get a bigger payoff by switching strategies, provided the other player sticks with the same strategy
 - (Testify, Testify) is a Nash equilibrium
- **Dominant strategy:** A strategy whose outcome is better for the player regardless of the strategy chosen by the other player
 - Testify is dominant for Alice
 - Testify is dominant for Bob
- Pareto optimal outcome: There is no outcome that would make one of the players better off without making another one worse off
 - All outcomes except the Nash equilibrium are Pareto optimal

	Alice: Testify	Alice: Refuse
Bob: Testify	-5,-5	-10,0
Bob: Refuse	0,-10	-1,-1

Mixed strategy equilibrium

	P1: Choose S with prob. <i>p</i>	P1: Choose C with prob. 1-p
P2: Choose S with prob. <i>q</i>	-10 , -10	-1, 1
P2: Choose C with prob. 1-q	1, -1	0, 0

• Expected payoffs for P1 given P2's strategy:

```
P1 chooses S: q(-10) + (1-q)1 = -11q + 1
P1 chooses C: q(-1) + (1-q)0 = -q
```

• In order for P2's strategy to be part of a Nash equilibrium, P1 has to be indifferent between its two actions:

```
-11q + 1 = -q or q = 1/10
Similarly, p = 1/10
```

Repeated Games

If the game is repeated N times, then

- Nash equilibrium = neither player has any reason to change strategies, given knowledge of the other player's strategy.
 - Nash equilibrium for the sequence might not be Nash equilibrium for any individual game, it might even appear "moral," e.g., Ultimatum game
- Dominant strategy = strategy that's optimal regardless of what the other player does
 - Strategy might be different for the 1st, 2nd, 3rd, ..., Nth game
 - Dominant strategy might require random choice, e.g., the monopolist game