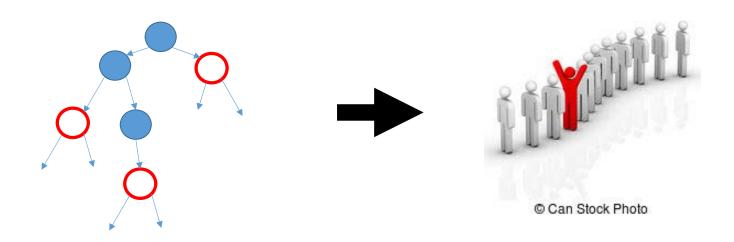
CS440/ECE448 Lecture 5: Search Order

Slides by Svetlana Lazebnik, 9/2016 Revised by Mark Hasegawa-Johnson, 1/2018



Prioritized Search

- Review: Tree Search vs. Dijkstra's Algorithm
- Criteria for evaluating a search algorithm: completeness, optimality, computational cost, storage cost
- Search algorithms without side information: BFS, DFS, IDS, UCS
- Search algorithms with side information: GBFS vs. A*
 - Heuristics to guide search
 - Greedy best-first search
 - A* search
 - Admissible vs. Consistent heuristics
 - Designing heuristics: Relaxed problem, Sub-problem, Dominance, Max

Dijkstra's Shortest Path Algorithm

- Initialize:
 - d_{nl} = distance from n to l
 - $V_n = \infty$ for all vertices n
 - Unvisited = {all nodes but start}
 - k = Start Node
- While Goal ∈ Unvisited
 - For $n \in Neighbor(k)$
 - $V_n = \min(V_n, V_k + d_{nk})$
 - $k \leftarrow \underset{l \in Unvisited}{\operatorname{argmin}} V_l$

Dijkstra Algorithm Complexity

- Suppose there are V nodes, E edges
- Dijkstra's algorithm computational complexity
 - $V_n = \min(V_n, V_n + d_{nk})$: O{E} operations
 - $k \leftarrow \underset{l \in Unvisited}{\operatorname{argmin}} V_l$: O{|V|log|V|) operations
 - Total: O{|E|+|V|log|V|}
- Dijkstra storage space: O{|V|+|E|}

Tree Search Algorithm

- Initialize: Frontier = { startnode }
- While Frontier $\neq \emptyset$
 - Choose a node from the frontier
 - How do you choose a node?
 - Answer: using a search strategy topic of this lecture
 - If it's the end node: terminate
 - If not, expand it: put its neighbors into the frontier
- Visited list: assume there isn't one, for now...

Tree Search Algorithm

- Computational complexity = $O\{MT_E + NT_Q\}$,
 - M = # nodes expanded, T_E =cost of choosing a node to expand
 - N = # nodes placed on frontier, T_Q =cost of doing so
 - If M<<V, N<<E then it's cheaper than Dijkstra's algorithm
 - If M=∞...

Prioritized Search

- Review: Tree Search vs. Dijkstra's Algorithm
- Criteria for evaluating a search algorithm: completeness, optimality, computational cost, storage cost
- Search algorithms without side information: BFS, DFS, IDS, UCS
- Search algorithms with side information: GBFS vs. A*
 - Heuristics to guide search
 - Greedy best-first search
 - A* search
 - Admissible vs. Consistent heuristics
 - Designing heuristics: Relaxed problem, Sub-problem, Dominance, Max

Analysis of search strategies

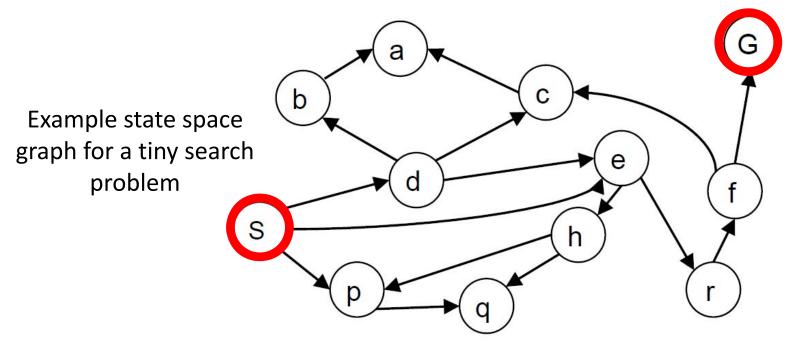
- Strategies are evaluated along the following criteria:
 - Completeness: does it always find a solution if one exists?
 - Optimality: does it always find a least-cost solution?
 - Time complexity: number of nodes generated
 - Space complexity: maximum number of nodes in memory
- Time and space complexity are measured in terms of
 - b: maximum branching factor of the search tree
 - d: depth of the optimal solution
 - m: maximum length of any path in the state space (may be infinite)

Prioritized Search

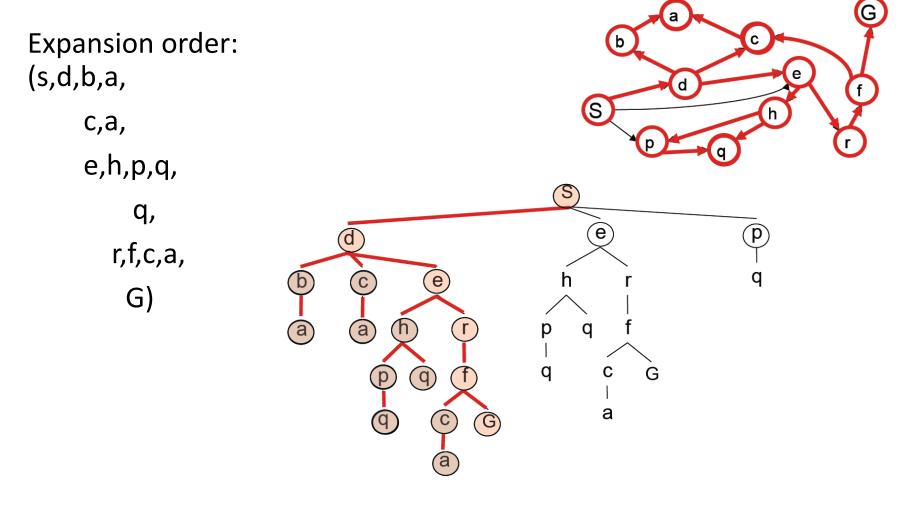
- Review: Tree Search vs. Dijkstra's Algorithm
- Criteria for evaluating a search algorithm: completeness, optimality, computational cost, storage cost
- Search algorithms without side information: BFS, DFS, IDS, UCS
- Search algorithms with side information: GBFS vs. A*
 - Heuristics to guide search
 - Greedy best-first search
 - A* search
 - Admissible vs. Consistent heuristics
 - Designing heuristics: Relaxed problem, Sub-problem, Dominance, Max

Depth-first search

- Expand deepest unexpanded node
- Implementation: *frontier* is a LIFO stack



Depth-first search



Properties of depth-first search

Complete? (always finds a solution if one exists?)

Fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path → complete in finite spaces

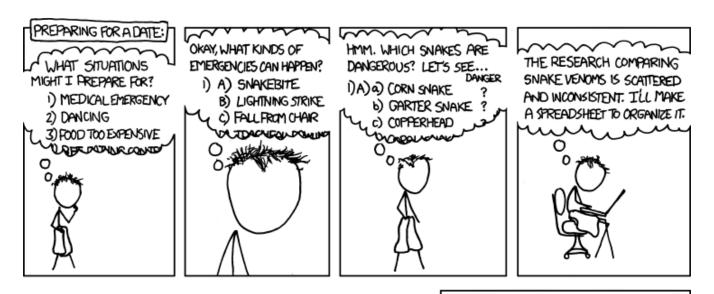
Optimal? (always finds an optimal solution?)

No – returns the first solution it finds

Time? (how long does it take, in terms of b, d, m?)

Could be the time to reach a solution at maximum depth $m: O(b^m)$ Terrible if m is much larger than dBut if there are lots of solutions, may be much faster than BFS

• Space? (how much storage space, in terms of b, d, m?) O(bm), i.e., linear space!

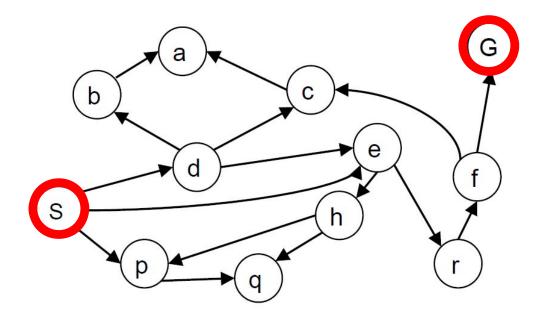


http://xkcd.com/761/

I REALLY NEED TO STOP USING DEPTH-FIRST SEARCHES.

Breadth-first search

- Expand shallowest unexpanded node
- Implementation: frontier is a FIFO queue

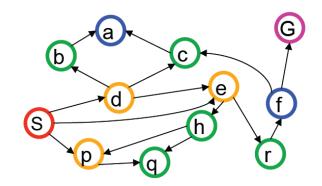


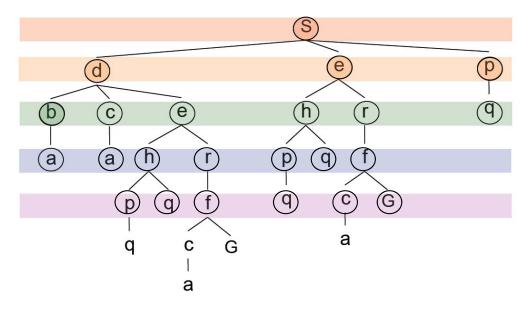
Example from P. Abbeel and D. Klein

Breadth-first search

Expansion order:

(s, d,e,p, b,c,e,h,r,q, a,a,h,r,p,q,f, p,q,f,q,c,G)





Properties of breadth-first search

Complete?

Yes (if branching factor b is finite). Even w/o repeated-state checking, it still works.

Optimal?

Yes – if cost = 1 per step (uniform cost search will fix this)

• Time?

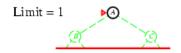
Number of nodes in a b-ary tree of depth d: $O(b^d)$ (d is the depth of the optimal solution)

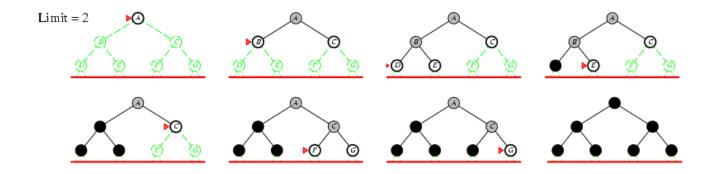
Space?

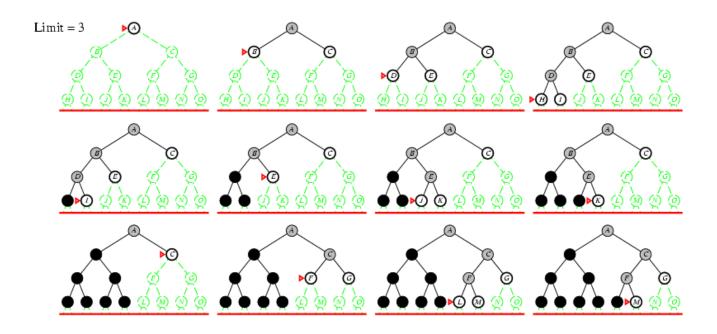
 $O(b^d)$

• Space is the bigger problem (more than time)

- Use DFS as a subroutine
 - 1. Check the root
 - 2. Do a DFS searching for a path of length 1
 - 3. If there is no path of length 1, do a DFS searching for a path of length 2
 - 4. If there is no path of length 2, do a DFS searching for a path of length 3...







Properties of iterative deepening search

Complete?

Yes – same completeness properties as BFS

Optimal?

Yes, if step cost = 1 - same as BFS

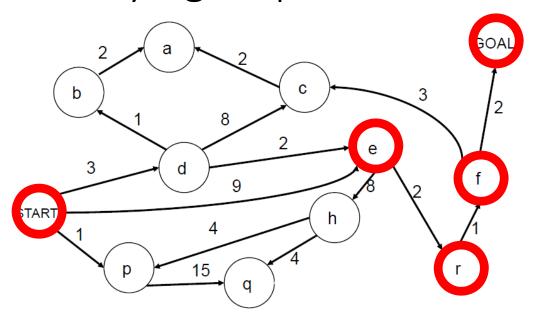
Time?

 $1+b+b^2+\cdots+b^{d-1}+b^d=O\{b^d\}$ – same order as BFS! Increase in complexity is a factor of about (b+1)/b

Space?

O(bd) – same as DFS!

Search with varying step costs

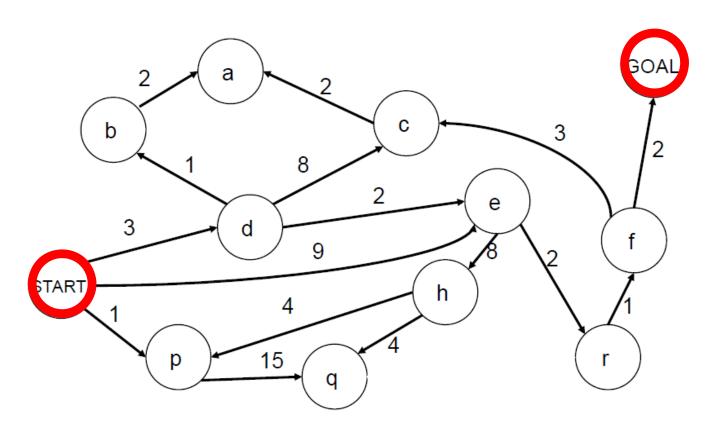


• BFS finds the path with the fewest steps, but does not always find the cheapest path

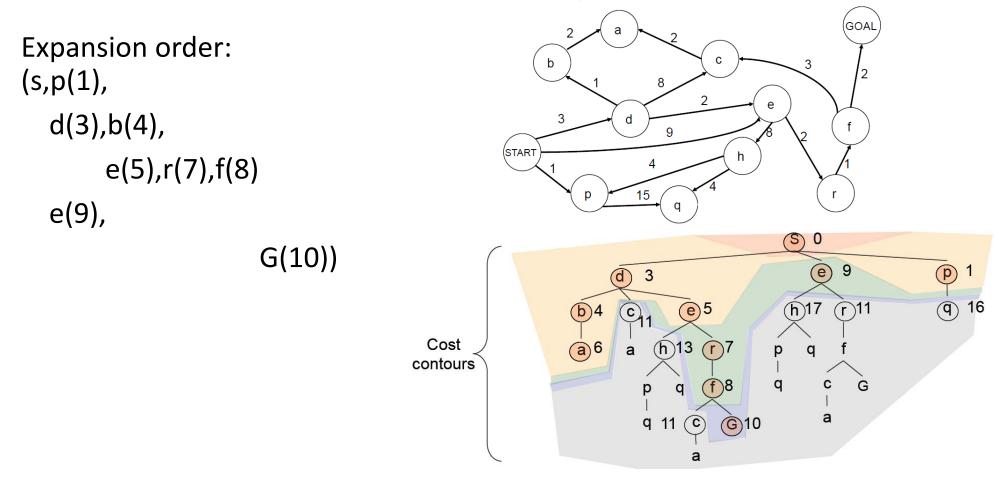
Uniform-cost search

- For each frontier node, save the total cost of the path from the initial state to that node
- Expand the frontier node with the lowest path cost
- Implementation: frontier is a priority queue ordered by path cost
- Equivalent to breadth-first if step costs all equal
- Equivalent to Dijkstra's algorithm, if Dijkstra's algorithm is modified so that a node's value is computed only when it becomes less than infinity

Uniform-cost search example



Uniform-cost search example



Properties of uniform-cost search

Complete?

Yes, if step cost is greater than some positive constant ε (we don't want infinite sequences of steps that have a finite total cost)

Optimal?

Yes

Prioritized Search

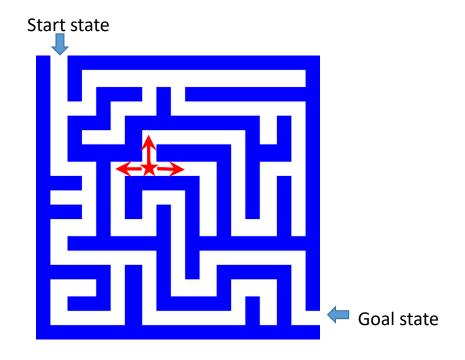
- Review: Tree Search vs. Dijkstra's Algorithm
- Criteria for evaluating a search algorithm: completeness, optimality, computational cost, storage cost
- Search algorithms without side information: BFS, DFS, IDS, UCS
- Search algorithms with side information: GBFS vs. A*
 - Heuristics to guide search
 - Greedy best-first search
 - A* search
 - Admissible vs. Consistent heuristics
 - Designing heuristics: Relaxed problem, Sub-problem, Dominance, Max

Informed search strategies

- Idea: give the algorithm "hints" about the desirability of different states
 - Use an *evaluation function* to rank nodes and select the most promising one for expansion
- Greedy best-first search
- A* search

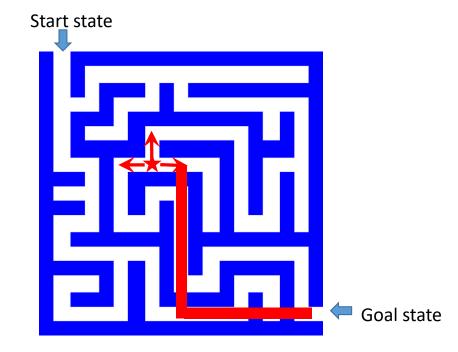
Heuristic function

- ★ = node we're currently expanding
- Most obvious thing to do: go toward the goal, i.e., →

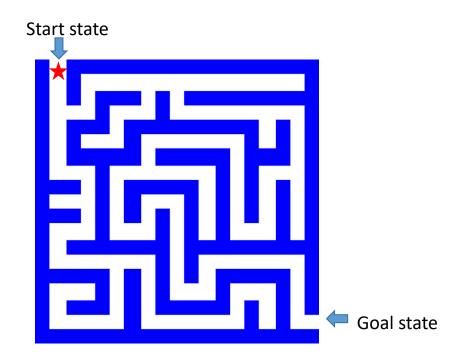


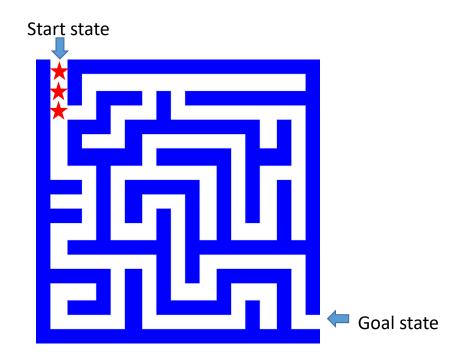
Heuristic function

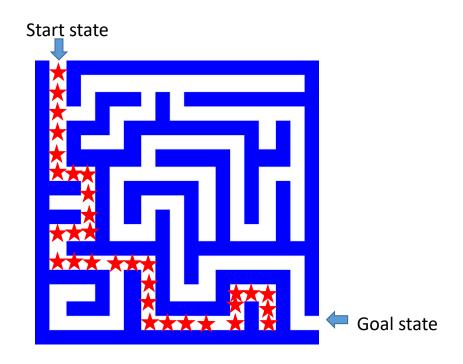
- h[n] = estimate of the distance from node n to goal
- Requirements:
 - Very fast to compute
 - Approximate true cost to goal? Under-estimate?
- Example: Manhattan distance $h[n] = |x_n x_G| + |y_n y_G|$ where (x_n, y_n) = location of node n (x_G, y_G) = location of goal

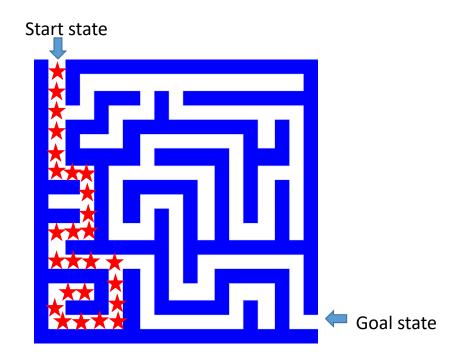


Expand the node that has the lowest value of the heuristic function h(n)

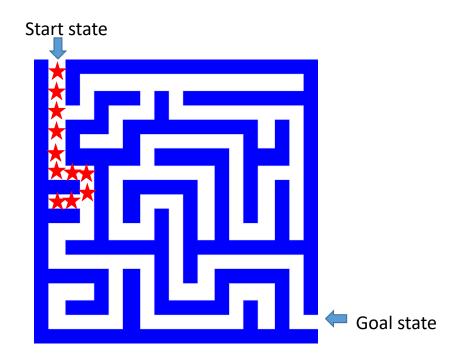




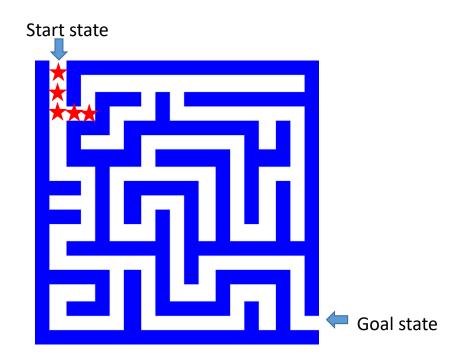




Greedy best-first search



Greedy best-first search



Properties of greedy best-first search

Complete?

No – can get stuck in loops

• Optimal?

No

• Time?

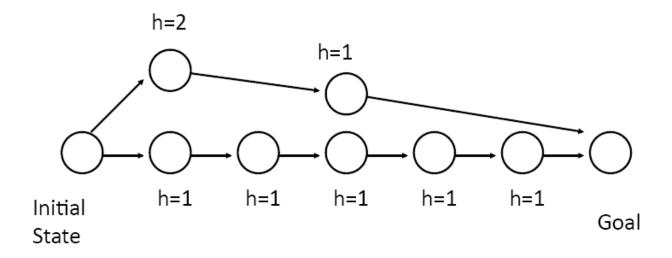
Worst case: $O(b^m)$

Can be much better with a good heuristic

• Space?

Worst case: $O(b^m)$

How can we fix the greedy problem?



A* search

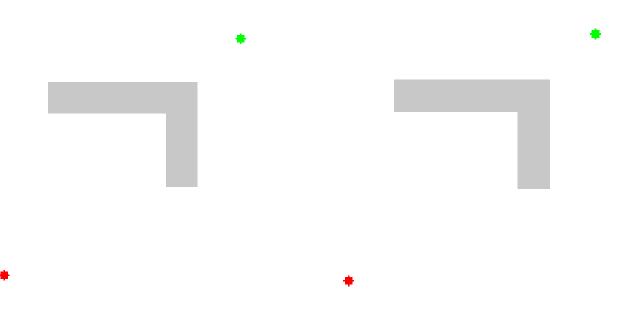
- Idea: avoid expanding paths that are already expensive
- The evaluation function f(n) is the estimated total cost of the path through node n to the goal:

$$f(n) = g(n) + h(n)$$

g(n): cost so far to reach n (path cost)

h(n): estimated cost from n to goal (heuristic)

BFS vs. A* search



Source: Wikipedia

Admissible heuristics

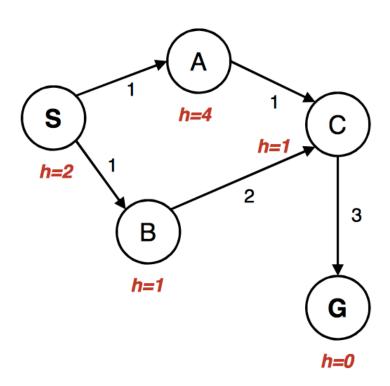
- An admissible heuristic never overestimates the cost to reach the goal
- A heuristic h(n) is admissible if for every node n, h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal state from n
- Example:
 - straight line distance never overestimates the actual road distance
 - Manhattan distance never overestimates actual road distance if all roads are on a Manhattan grid
- Theorem: If h(n) is admissible, and if we don't do repeated-state detection, then A^* is optimal

Optimality of A*

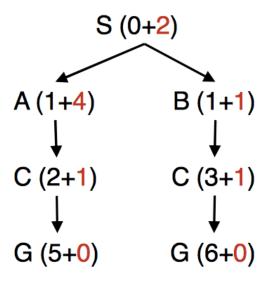
- Theorem: If h(n) is admissible, A^* is optimal (if we don't do repeated state detection)
- Proof sketch:
 - A* expands all nodes for which $f(n) \le C^*$, i.e., the *estimated* path cost to the goal is less than or equal to the *actual* path cost to the first goal encountered
 - When we reach the goal node, all the other nodes remaining on the frontier have *estimated* path costs to the goal that are at least as big as C*
 - Because we are using an admissible heuristic, the true path costs to the goal for these nodes cannot be less than C*

A* gone wrong?

State space graph

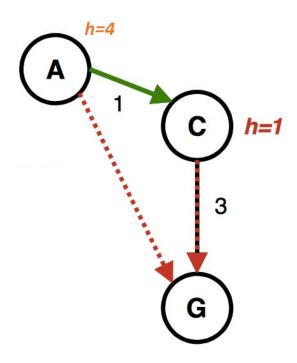


Search tree



Source: Berkeley CS188x

Consistency of heuristics



- Consistency: Stronger than admissibility
- Definition:

```
cost(A 	ext{ to } C) + h(C) \ge h(A)

cost(A 	ext{ to } C) \ge h(A) - h(C)

real cost \ge cost implied by heuristic
```

- Consequences:
 - The f value along a path never decreases
 - A* graph search is optimal

Source: Berkeley CS188x

Optimality of A*

- Tree search (i.e., search without repeated state detection):
 - A* is optimal if heuristic is *admissible* (and non-negative)
- Graph search (i.e., search with repeated state detection)
 - A* optimal if heuristic is consistent
- Consistency implies admissibility
 - In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems

Source: Berkeley CS188x

Optimality of A*

- A* is optimally efficient no other tree-based algorithm that uses the same heuristic can expand fewer nodes and still be guaranteed to find the optimal solution
 - Any algorithm that does not expand all nodes with $f(n) \le C^*$ risks missing the optimal solution

Properties of A*

• Complete?

Yes – unless there are infinitely many nodes with $f(n) \le C^*$

• Optimal?

Yes

• Time?

Number of nodes for which $f(n) \le C^*$ (exponential)

• Space?

Exponential

Prioritized Search

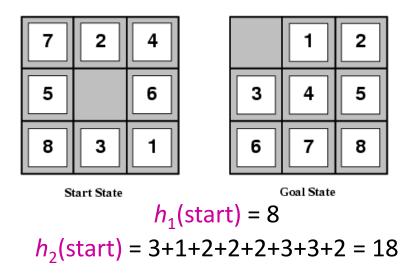
- Review: Tree Search vs. Dijkstra's Algorithm
- Criteria for evaluating a search algorithm: completeness, optimality, computational cost, storage cost
- Search algorithms without side information: BFS, DFS, IDS, UCS
- Search algorithms with side information: GBFS vs. A*
 - Heuristics to guide search
 - Greedy best-first search
 - A* search
 - Admissible vs. Consistent heuristics
 - Designing heuristics: Relaxed problem, Sub-problem, Dominance, Max

Designing heuristic functions

• Heuristics for the 8-puzzle

 $h_1(n)$ = number of misplaced tiles

 $h_2(n)$ = total Manhattan distance (number of squares from desired location of each tile)



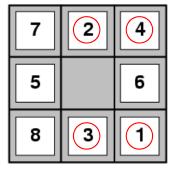
• Are h_1 and h_2 admissible?

Heuristics from relaxed problems

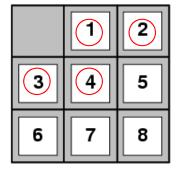
- A problem with fewer restrictions on the actions is called a relaxed problem
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution
- If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution

Heuristics from subproblems

- Let $h_3(n)$ be the cost of getting a subset of tiles (say, 1,2,3,4) into their correct positions
- Can precompute and save the exact solution cost for every possible subproblem instance pattern database



Start State



Goal State

Dominance

- If h_1 and h_2 are both admissible heuristics and $h_2(n) \ge h_1(n)$ for all n, (both admissible) then h_2 dominates h_1
- Which one is better for search?
 - A* search expands every node with $f(n) < C^*$ or $h(n) < C^* g(n)$
 - Therefore, A^* search with h_1 will expand more nodes

Dominance

• Typical search costs for the 8-puzzle (average number of nodes expanded for different solution depths):

```
• d=12 \text{ IDS} = 3,644,035 nodes

A^*(h_1) = 227 \text{ nodes}

A^*(h_2) = 73 \text{ nodes}
```

•
$$d=24$$
 IDS $\approx 54,000,000,000$ nodes $A^*(h_1) = 39,135$ nodes $A^*(h_2) = 1,641$ nodes

Combining heuristics

- Suppose we have a collection of admissible heuristics $h_1(n)$, $h_2(n)$, ..., $h_m(n)$, but none of them dominates the others
- How can we combine them?

```
h(n) = \max\{h_1(n), h_2(n), ..., h_m(n)\}
```

All search strategies

Algorithm	Complete?	Optimal?	Time complexity	Space complexity	Implement the Frontier as a
BFS	Yes	If all step costs are equal	O(b^d)	O(b^d)	Queue
DFS	No	No	O(b^m)	O(bm)	Stack
IDS	Yes	If all step costs are equal	O(b^d)	O(bd)	Stack
UCS	Yes	Yes	Number of nodes w/ g(n) ≤ C*	Number of nodes w/ g(n) ≤ C*	Priority Queue sorted by g(n)
Greedy	No	No	Worst case: O(b^m) Best case: O(bd)	Worse case: O(b^m) Best case: O(bd)	Priority Queue sorted by h(n)
A *	Yes	Yes	Number of nodes w/ $g(n)+h(n) \le C^*$	Number of nodes w/ $g(n)+h(n) \le C^*$	Priority Queue sorted by h(n)+g(n)