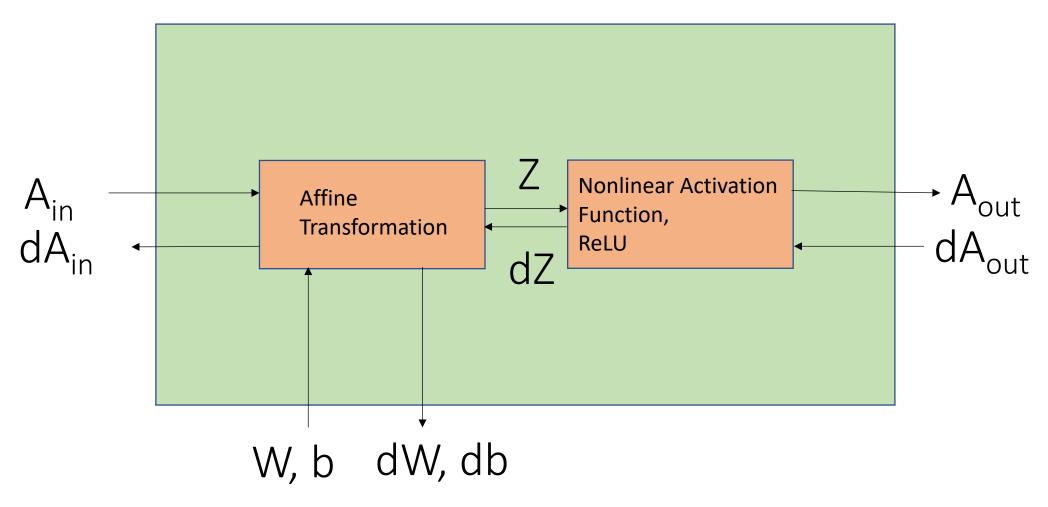
Deep Networks: Putting The Pieces Together

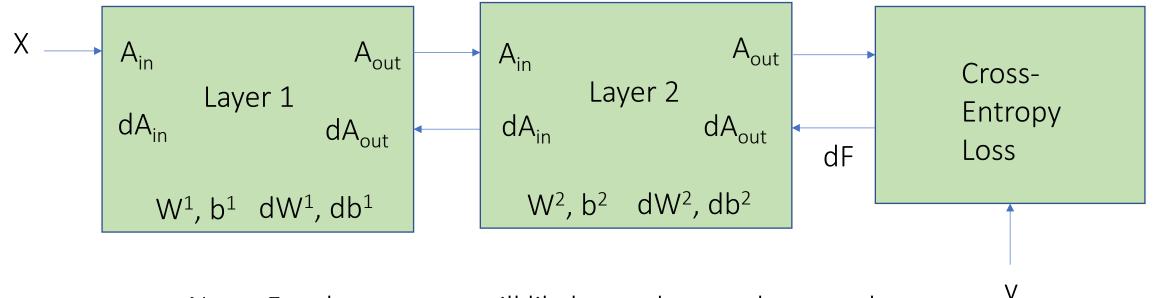
Neural Network Layer



Algorithm 1 Three Layer Network

```
1: procedure THREE-NETWORK(X, \{W^1, W^2, W^3\}, \{b^1, b^2, b^3\}, y, \text{ test})
       Z^1, acache = Affine-Forward(X, W^1, b^1) > acache = affine cache
                                                  \triangleright rcache = relu cache
      A^1, reache1 = ReLU-Forward(Z^1)
      Z^2, acache2 = Affine-Forward(A^1, W^2, b^2)
      A^2, reache2 = ReLU-FORWARD(Z^2, W^2, b^2)
      F, acache3 = Affine-Forward(A^2, W^3, b^3)
       if test == true then
          classifications = argmax over all classes in logits for each example
          return classifications
       loss, dF = Cross-Entropy(F, y)
10:
      dA^2, dW^3, db^3 = Affine-Backward(dF, acache3)
11:
      dZ^2 = \text{ReLU-Backward}(dA^2, \text{reache2})
12:
      dA^1, dW^2, db^2 = Affine-Backward(dZ^2, acache2)
13:
      dZ^1 = \text{ReLU-Backward}(dA^1, \text{reache1})
14:
      dX, dW^1, db^1 = Affine-Backward(dZ^1, acache1)
15:
       Use gradient descent to update parameters i.e. W^1 = W^1 - \eta dW^1
16:
       return loss
17:
```

Neural Network Example and Computational Graph

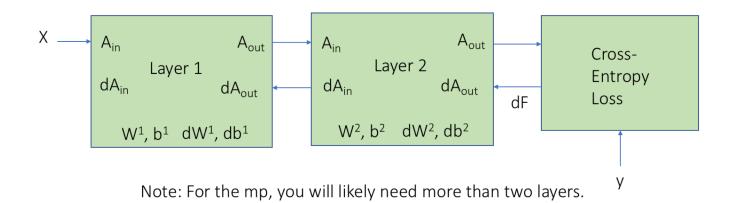


Note: For the mp, you will likely need more than two layers.

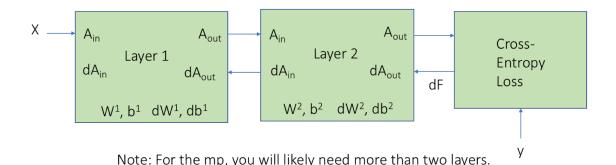
Tensorflow and Autdifferentitation

• Autodifferentiation: You only have to define the forward operation. The backwards operation will be automatically computed.

 You build the computation graph first and then run the graph in a session.



Tensorflow Example for Two Layer Net



Tensorflow Example Continued

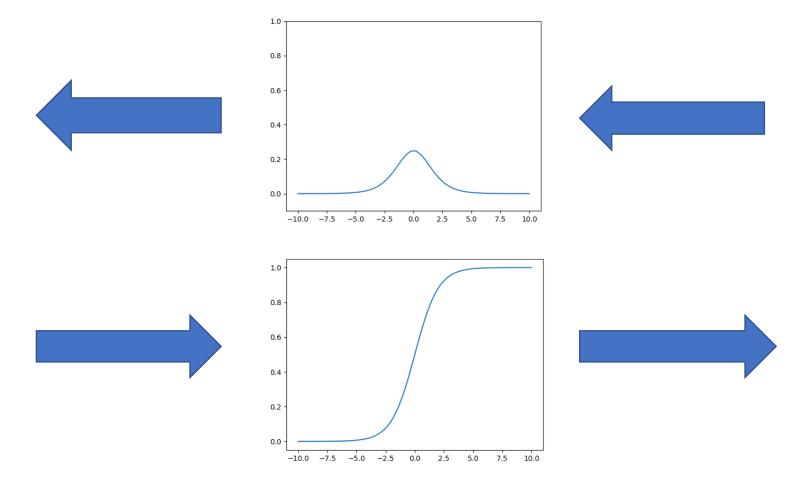
```
def main():
    # load dataset
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
    # Create model
   net = TwoLayerNet(128, 10, 0.01) # hidden layer has 100 units, last layer has 10
    x = tf.placeholder(tf.float32, [None, 784]) # placeholder for our data
    y = tf.placeholder(tf.float32, [None, 10])
    output, train_op = net.define_forward(x, y)
    # Run in session
   with tf.Session() as sess:
        # Train model for 1000 iterations
       sess.run(tf.global_variables_initializer())
        for _ in range(1000):
            bx, by = mnist.train.next_batch(100)
            scores, _ = sess.run([output, train_op], feed_dict={x: bx, y: by})
            accuracy = calculate_accuracy(by, scores)
            print('Training Accuracy: ', accuracy)
       # Evaluate model
       scores = sess.run(output, {x: mnist.test.images})
        accuracy = calculate_accuracy(mnist.test.labels, scores)
        print('Testing Accuracy: ', accuracy)
```

Tensorflow Ops

- Placeholders
- Variables
- MathOperations

Why it is important to know backpropagation?

Why do we need to know backpropagation? It helps us avoid bugs!



Terminology of Reinforcement Learning

- Policy function: function that maps a state to an action.
- Q-Function: expected future reward for states and actions.
- Value Function: expected future reward for states.
- Deep learning can learn and approximate functions.

Dataset for MP4

Batch Data X

	Ball-X	Ball-Y	Velocity-X	Velocity-Y	Paddle-Y
X_0	0.296	0.265	-0.080	0.049	0.120
X_1	0.216	0.315	-0.080	0.049	0.080
X_2	0.136	0.364	-0.080	0.049	0.120
X_3	0.056	0.413	-0.080	0.049	0.120

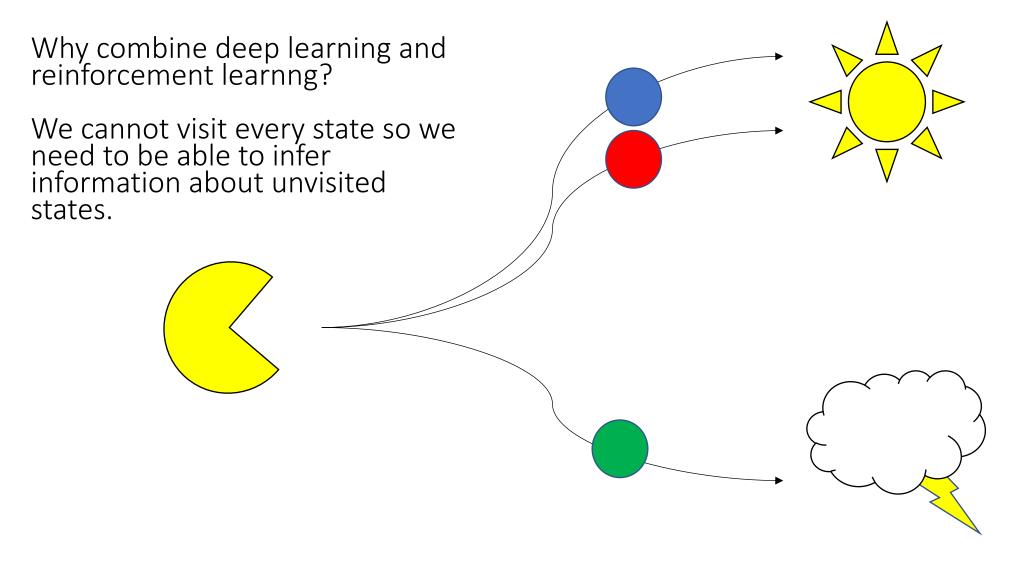
Batch Targets y

Action	
0	y ₀
2	y ₁
1	y ₂
1	y ₃

X₀₁ X₃₂

Behavioral Cloning / Imitation Learning Approximate the policy function of an expert.

What are the advantages of deep learning?



Up next: Deep Q-Learning