
ECE 445

Senior Design Laboratory

Final Report

Human-Robot Interaction for Object Grasping
with Visual Reality and Robotic Arms

Team #42

Ziming Yan (zimingy3@illinois.edu)
Jiayu Zhou (jiayu9@illinois.edu)

Yuchen Yang (yucheny8@illinois.edu)
Jingxing Hu (hu80@illinois.edu)

Advisor: Prof. Liangjing Yang &
Prof. Gaoang Wang

TA: Tielong Cai & Tianci Tang

May 19, 2025

Abstract

We present a VR-guided robotic claw system that enables intuitive remote manipulation
through a Unity-based digital twin and Meta Quest VR interface. This system aims at
assistive and industrial applications, it allows users to grasp objects in real time using a 3D
virtual replica synchronized with a UR3e robotic arm. The control module incorporates an
STM32-based closed-loop force control system, leveraging UART and CAN communication
to drive a 42 stepper motor. The digital twin provides high-fidelity simulation at over 250
FPS and real-time feedback, while the VR interface offers immersive control with sub-50 ms
latency. Our design demonstrates reliable performance in both functional grasping tasks and
remote operation scenarios.

ii

Contents

1 Introduction 1

2 Design 2
2.1 Design description . 2
2.2 Control Module . 4

2.2.1 Design Procedure . 4
2.3 Unity Digital Twin . 8

2.3.1 Overall Description . 8
2.3.2 Implementation Details . 8
2.3.3 Design Alternative . 9

2.4 VR Module . 10
2.4.1 Design Procedure . 10
2.4.2 Design Details . 10
2.4.3 Verification and Testing . 12

2.5 Gripper Module . 13
2.5.1 Design Procedure . 13
2.5.2 Design Details . 14

3 Cost & Schedule 16
3.1 Cost Analysis . 16
3.2 Schedule . 17

4 Requirement & Verification 18
4.1 High-Level Requirement . 18
4.2 Requirements & Verifications by Subsections 18

4.2.1 Gripper . 18
4.2.2 Control Module . 20
4.2.3 Digital Twin . 22
4.2.4 VR . 22

5 Conclusion 24
5.1 Summary of Completion . 24
5.2 Further Improvement . 24
5.3 IEEE Ethical Standards Compliance . 25

iii

5.4 Broader Impacts . 25

References 26

Appendix A Supplementary Materials 28
A.1 Codes . 28

A.1.1 STM32F407 Motor Control Logics 28
A.2 Figures . 32
A.3 Tables . 33

iv

1 Introduction

This project addresses the need for natural and efficient human-robot interaction in scenarios
where direct manipulation is impractical. Our system enables users to control a robotic arm
in real time through a Virtual Reality (VR) interface, allowing for intuitive object grasping
from a distance. The primary motivation stems from assistive care: for example, enabling
hospital patients confined to bed to grasp nearby objects on a table without physical effort.
Beyond assistive use, the system also holds potential for remote industrial manipulation in
constrained or hazardous environments—such as during a pandemic—where human presence
is limited. By combining Meta Quest VR [1], Unity-based digital twins [2], [3], and the UR3e
robotic arm, we bridge human intent and robotic execution with high precision, low latency,
and broad applicability.

Figure 1: System Workflow: VR-based control of UR3e robotic arm using Meta Quest 3S,
Unity interface, and IVCam-assisted manual calibration.

1

2 Design

2.1 Design description

Generally, we developed the system which we used to achieve our senior design project,
and we drew the block diagram to delineate the subsystems and individual tasks, which is
shown as Figure 2.The system is composed of four main modules: Control Module, Actuator
Module, User Interaction Module, and Power Module, collaboratively enabling a VR-guided
robotic claw system with closed-loop force control and CAN communication.

Figure 2: Block Diagram

Control Module

At the core of the system lies the Control Module, where Unity software runs and interfaces
with the physical system via multiple communication ports. The UR Stream and Serial Port
in Unity handle command and signal exchange through UART with the Claw Controller
(based on an STM32 microcontroller). The controller processes incoming signals and sends
control commands via CAN bus to the Motor Driver, which in turn drives the 42 Stepper
Motor. Additionally, a Pressure Sensor provides real-time feedback to the Claw Controller
via analog and GPIO inputs, forming a basic closed-loop control system for grasping force
regulation.

2

Digital Twin

In Unity, we create the digital twin of the UR3e robot arm and our self-designed claw. We
provide the control interface as well as the Real-time 3D position for the user to locate the
state of the robot arm.

Actuator Module

The Actuator Module consists of a 42 Stepper Motor and a 3D-printed claw. The motor
is controlled by the Motor Driver, which receives commands from the Claw Controller via
CAN bus. The claw’s design allows for precise control of the grasping force, enabling the
system to adapt to various objects and scenarios.

User Interaction Module

The User Interaction Module is designed to facilitate user engagement with the system.
It includes a VR headset and controllers, which provide an immersive experience for the
user. The Unity software processes input from the VR controllers and translates it into
commands for the Claw Controller, allowing users to interact with virtual objects in a realistic
manner.

Power Module

The Power Module supplies the necessary power to the entire system. It ensures that all
components, including the Control Module, Actuator Module, and User Interaction Module,
receive stable and sufficient power for optimal performance.

Initially, we planned to use a STM32F103 microcontroller and SG-90 motor to control the
claw. However, we found the accuracy was low and reaction time was far from satisfactory.
Therefore, we changed to use more powerful STM32F407 with M4 core and 42 stepper
motor. In addition, we wanted to use unity to control arm through ROS system at first,
but we finally found a online source which allowed us to control arm derectly by unity hub,
which reduces the complexity and optimizes the performance of the system.

3

2.2 Control Module

2.2.1 Design Procedure

CAN Module: Through referring to the motor driver board X42_V1.3 instruction manual,
it allows us to use the integrated CAN command to control the stepper [4]. However, the
STM32F407ZG only has RX and TX pins; the transmission of the CAN signal should be
CAN_H and CAN_L two logical voltage [5], which means I need to design a CAN receive
and send message module. After searching online, I decided to use the TJA1050 chip to
convert the digital CAN signals from the microcontroller to the differential voltage signals
required by the CAN bus and vice versa, as shown in the figure 3. The TJA1050 is a CAN
transceiver IC that acts as a bridge between the CAN controller (STM32) and the physical
CAN bus. It converts single-ended digital signals from the microcontroller into differential
signals suitable for transmission over the CAN network, ensuring noise immunity and reliable
data communication. At the receiving end, it converts the differential bus signals back into
digital signals that can be interpreted by the microcontroller. And to ensure that the bus
signals are stable, two 120 Ω resistors should be connected in parallel at both ends of the
CAN bus [5].

Figure 3: CAN Module

Pressure Sensor:

4

The FSR402 pressure sensor is a force-sensitive resistor that changes its resistance based on
the amount of force applied to it. It is commonly used in applications where measuring pres-
sure or force is required. The more force applied, the lower the resistance. By measuring the
voltage across the sensor, we can determine the amount of force being applied. I developed
two approaches to read the sensor data:

1. Using the default ADC (Analog-to-Digital) port of STM32F407ZG, which is a 12-bit
ADC. The ADC converts the analog voltage signal from the FSR402 into a digital
value that can be processed by the microcontroller. The ADC can be configured to
read the voltage across the sensor and convert it into a corresponding digital value.

2. Using the LM393 chip to compare the voltage on the pressure sensor with the refer-
ence voltage (Variable Resistance). When the voltage on FSR402 is larger than the
reference, the output will be high voltage. When the pressure is larger than desired,
it will change voltage, which achieves a simple Analog to Digital transform.

For convenience, I designed a circuit integrated on a small PCB 13 and soldered it. The
circuit is shown in Figure 4. In the circuit, I connect the FSR402 with a 10kΩ resistor.
AO port will output the voltage on FSR402 under 3.3V input, using the 1st method. DO
port with output the comparison consequence of FSR voltage and 10k Ω variable resistance
voltage, using as GPIO input for 2nd method. Finally, I decided to use the 2nd method, and
the reason will be explained in the Verification and Test part.

Coding Explain:

Coding in the control module is a huge and most complex part, I will introduce it with two
aspects: STM32 and Unity.

In STM32, I develop the code based on the HAL library, which is configured by STM32CubeMX,
and implement it in KDM5 (Keil Development Environment).

• can.c: The HAL (Hardware Abstraction Layer) library provides a high-level interface
for configuring and using the CAN peripheral. What I did was initialize the handler
and change the can_send() function to send a standard CAN message to tell the 42
stepper to run its position circle, like move to which position, how fast, when to stop,
and so on. In addition, I also need to write the receive function to receive the position
feedback of the motor to control its stop time. For example, if I send 01 36 6B to
request the position of the motor, it will respond 01 36 01 00 01 00 00 6B, which

5

Figure 4: FSR402 Circuit

means the position is 0x00010000 (16), direction is positive. The send function runs
smoothly, but the feedback function costs me plenty of time to debug.

• usart.c: The UART (Universal Asynchronous Receiver-Transmitter) peripheral is used
for serial communication with the Unity application. The HAL library provides func-
tions to initialize the UART peripheral and rewrite the HAL_UART_RxCpltCallback()
function to achieve communication between the STM32 and Unity.

• sensor.c: As I mentioned before, I chose to use the DO as the output of the pressure
sensor. To achieve this, I just initialized the GPIN_IN and opened the clock of the
corresponding pin, RCC, to receive the digital signal from DO.

• main.c: The main function initializes the system clock, the CAN port, uart port, the
sensor, and so on. After initialization, I develop the logic of gripping and releasing in
an infinite loop. In the loop, it continuously checks for incoming data from Unity via
UART. Unity will send ”S” for start, ”R” for release, and ”H” for stop. After receiving
the start, the CAN message will be sent to tell the motor to begin until the reflected
pressure sensor data shows the claw has gripped the item. When pressure is over the
threshold (input low voltage change), STM32 will send a CAN message to stop the

6

motor. While Unity sends the release signal, the motor will return according to the
position feedback monitoring. Then, the STM32 will wait for the next command from
Unity. The following Moore FSM(Figure 5) shows the overall logic.

Figure 5: Motor FSM

Unity:

• VR Handler:

• Motor Control:

• Serial Port: The serial port communication in Unity is implemented using the Sys-
tem.IO.Ports namespace. This allows Unity to open a serial port, send data to the
STM32, and receive data back. The serial port settings, such as baud rate and parity,
are configured to match those of the STM32. For this project, I use the UART line to
connect them, and my baud rate was set in STM to 115200, therefore, the serial port
in Unity settings corresponds to the baud rate and uses COM4 CH340 PC port.

7

Figure 6: Digital twin of the robot arm and gripper in the Unity simulation environment.

2.3 Unity Digital Twin

2.3.1 Overall Description

The Unity3D Digital Twin Subsystem provides a real-time 3D virtual replica of the physical
system, using the Unity game engine to simulate and visualize the system’s state. Its
primary purpose is to mirror the physical equipment’s behavior in a virtual environment for
monitoring and operator interaction. The subsystem integrates Unity’s physics engine and
high-fidelity graphics rendering to model motion. This digital twin receives live data from
the physical system via TCP/IP and updates the virtual model accordingly. It maintains
synchronization with the real equipment at a frame rate of around 250 frames per second.
Within the overall system architecture, the Unity3D Digital Twin acts as the visualization
and simulation layer. The Unity3D subsystem consumes these updates and applies them to
the virtual model. The digital twin can also produce outputs to control hardware in the real
world. The digital twin visualization can run on operator VR headsets.

2.3.2 Implementation Details

The Unity–UR3e robot arm communication is accomplished through TCP/IP, following the
official preset communication ports [6]. We set up the Unity connection such that Unity
reads data from the robot arm through port 30013, which is a read-only port with a refresh
rate of 1000 Hz. Unity writes data to the robot arm through port 30003, which is a read-write

8

port with a refresh rate of 125 Hz. We use a package for communication that includes two
main classes: Stream and Control. The Stream class handles reading data from the robot.
The data includes joint orientations in radians and Cartesian positions and orientations in
meters. The class uses a thread to continuously read data packets, process them to extract
relevant information, and update global variables with the robot’s current state to update
the Unity model. The Control class manages sending control commands to the robot. It
sends commands based on joystick input as byte arrays, which control the robot’s speed
and movement in Cartesian space. To enable the robot to communicate with an XMLRPC
server hosted on a Windows platform, the robot uses a client connection to call remote
functions. However, Windows by default blocks such incoming HTTP requests. Therefore,
we manually configure the Windows Firewall to allow incoming TCP traffic on ports 30000–
30030 to enable communication between the robot and the host server.

For the model construction, learning from previous work [7], we realized a high-fidelity
model of the UR3e robot arm, as shown in Figure 6. To provide precise object localization
for grasping, we set up two video cameras and streamed them into the scene through the
local wireless network. In practice, we used two mobile phones and the iVCam software [8]
to stream video to the computer.

As shown in Figure 6, the user interface includes the control panel and the camera panel.
The control panel has three functions: the control of the robot arm’s X, Y, Z and RX, RY,
RZ axes, which allows control of all degrees of freedom of the robot arm; a grasp function
linked to the PCB board through a serial port as introduced in Section 2.2; and a linkage
function that allows the user to connect to the local robot arm via its IP address. The third
part of the panel provides a monitor showing the current state of the robot arm for more
precise control. The camera panel provides different camera angles to help the user identify
the robot arm’s state.

2.3.3 Design Alternative

An alternative to using two physical cameras was to digitally replicate all graspable objects
within the Unity scene and rely solely on the digital twin for object localization. However,
we opted for a dual-camera setup streamed via iVCam due to its practicality and cost-
effectiveness. This approach offers clearer real-time visuals of diverse physical objects without
the need for 3D modeling or object tracking integration. It provides a more intuitive and
direct understanding of object position and deformation during grasping, while significantly

9

reducing development overhead and hardware requirements.

2.4 VR Module

2.4.1 Design Procedure

We developed a VR module to enable real-time interaction with our Unity project on PC.
After evaluating multiple linking methods—Meta Quest Link (wired), Air Link (wireless),
and Steam Link (cloud wireless)—we selected Steam Link for its balance between low latency
and portability. It also eliminates the need for VPN, making it more versatile. For optimal
wireless performance, we set up a dedicated router instead of using a phone hotspot.
To enhance user experience and system stability, we upgraded from Oculus Quest 1 (dep-
recated and unstable) to Meta Quest 3S, enabling better developer support and interaction
quality. In the final setup, the VR display is split: the top half shows a Unity control panel
(14-button interface for arm control), while the bottom displays live views from two phone
cameras for manual calibration. Users control the robotic arm by clicking virtual buttons
and referencing the camera feeds for precise adjustments.

2.4.2 Design Details

We designed the VR Module to allow instant connection to our local unity project on the PC.
In order to establish stable connection, we have experimented and compared over various
linking methods, i.e. cable link, represented by Meta Quest Link; wireless Link, represented
by Meta Quest Air Link; and wireless Cloud link, represented by Steam Link. Among all
the different methods, cable link ensures the most stable connection and lowest latency. In
terms of vision quality and data drop rate, all the methods are pretty comparable. How-
ever, what really makes wireless link stand out is that it does not need to be attached to
the device. We finally chose Steam Link due to a tradeoff between latency and portability.
Besides, the cloud wireless linking method does not require a VPN, so it can be expanded
to more application scenarios. As we turn on Steam Link with configurations correctly set,
we can see in the VR a real-time screen cast of our PC. More excitingly, we can use both
the left and right touch controllers to simulate a cursor that can clicks on the buttons in the
unity project, and thus control Robotic Arm through this interface.

10

Table 1: Comparison of VR-PC Linking Methods
Feature Quest Link (USB-C) Quest Air Link (Wi-

Fi)
Steam Link (Cloud)

Connection
Type

Wired (USB 3.0/3.1) Wireless (Wi-Fi
5/6/6E)

Cloud (Over Inter-
net)

Latency Very low, near-
native

Low, depends on Wi-
Fi quality

High, affected by
cloud latency

Visual Qual-
ity

Excellent, minimal
compression

High, with compres-
sion artifacts

Variable, depends on
bandwidth

Freedom of
Movement

Limited by cable Full, cable-free Full, cable-free

Stability Very stable Dependent on local
interference

Dependent on ISP
and network load

For wireless connection, the VR device and our local PC should be connected to the same
Wifi. Upon that, in order to further enable smooth connection between VR and unity project,
we chose to deploy a router in the laboratory to increase network bandwidth, as opposed to
our original choice of phone hotspot.

Furthermore, we even purchased a new VR device for better performance. This is a decision
of various factors. First, we initially borrowed Oculus Quest1 from the university, which is
outdated and does not support stable cable data transmission. Second, Meta officially shut
down its support for Quest1 Developer’s mode starting from May 2nd, 2025 [9]. This means
it would be difficult to build and test on my own device since then. Therefore, we spent
around 2700 yuan to purchase Meta Quest 3S VR online, which later proved to offer much
better interaction and development experience.

And as we have mentioned in previous session, we used two separate phone cameras to assist
manual calibration of the target position. So our final vision in the VR looks like this: We
split the screen into two parts, top and bottom. The top half is a unity project with an
interface of 14 buttons (Grip, Release, X+,X-...rotationX+,rotationX-...) for us to directly
control the Robotic Arm. The bottom half is further split into two windows of IVCam
instances where we can see the phone cameras. When we use the VR touch controller to
click onto the buttons, we simultaneously referred to the two cameras for precise position

11

refinement. And when we want to figure out when is proper moment for lift up, we press
’Grip’ button step by step and observe the deformation level of the object. This allows very
user-friendly experience with high operation error tolerance.

Figure 7: Practice demonstration of VR-controlled robotic grasping system in action.

2.4.3 Verification and Testing

To verify our submodule requirement, ensuring that the VR-Robotic Arm interaction is
nearly simultaneous and functions at a practical distance (latency below 1 second; distance
beyond sight), we conducted a series of evaluations.

Latency Test: We performed latency tests using both theoretical and practical measurements.
The official documentation states a best-case latency of 16.67 ms [10], while our real-world
measurement using the UU Accelerator showed an average of approximately 33 ms. This
satisfies the requirement for sub-second latency and supports responsive control.

Distance Test: Connectivity tests confirmed stable performance at distances over 20 meters,
as limited by the range of our lab-deployed router. This verifies functionality in extended

12

real-world scenarios, including bedside or remote operations.

Together, these results validate the submodule’s capacity to deliver smooth and responsive
VR-based robotic control in diverse settings.

2.5 Gripper Module

2.5.1 Design Procedure

The mechanical claw subsystem serves as the end effector of the UR3 robotic arm, designed
to enhance its ability to grasp small objects of irregular shape. We tried to first use the
SG90 steering motor as input and finish the prototype shown in Figure 15. By switching
to a different thickness of acrylic plate, we were able to solve the problem of the center
plate being too thick and causing the servo’s POWER output shaft to be positioned too
low, which in turn caused the small wheels to rub against the mounting screws.However,
due to the inability to obtain precise angular information from the servo horn, coupled with
the limited torque of the servo motor and the lack of fine-tuned angle control, we eventually
adopted a new mechanical gripper design.

In the latter version, we chose the 42 stepping motor as the power source and took the
gripper design in [11]for reference. Compared with the last design, this gripper will be
heavier, larger, and more precise. The reference provided a basic structure for us, and we
modified and assembled based on that. Compared to the present gripper design, the biggest
change is the jaw. We tried a kind of flexible printing material, which is named TPU98A.
In the next part, it will be introduced in detail.

13

2.5.2 Design Details

Figure 8: Comparsion between CAD model and final item

As you can see in Figure 8,the gripper subsystem could be divided into several parts.From up
to down, they are connecting flange, motor cage, base, actuator flange and TPU jaws.

Component Description

Connecting Flange Attaches the gripper to the end of the robotic arm.

Motor Cage The area where the motor is installed.

Base Secures the motor and linkage mechanism.

actuator flange The brown small part. Transmits actuation from the motor to the jaws.

Flexible Jaws Made by TPU.End-effectors responsible for grasping.

14

The actuator flange is assembled using M3 heat-set inserts and can slide along the lead screw.
It is connected to an acrylic linkage with a thickness of 9.5 mm. The design of TPU flexible
jaws is based on [12]. This work proposes a new method of endogenous self-awareness of the
flexible gripper based on thin-film bending sensors, which realizes the real-time detection
of contact state and object properties by measuring local structural deformation on the
load transfer path, and provides a new solution for the environment sensing and interactive
operation of adaptive flexible bionic grippers. As for our gripper jaw, we take the fin-ray
look for reference and find it works well. The CAD model of the triangular fin-ray jaw is
available from [13].

15

3 Cost & Schedule

3.1 Cost Analysis

Description Quantity Price

STM32F407ZGT6 development board 1 ¥174.08

Emm42_V5.0 motor control board 1 ¥54.99

42mm Stepper motor 1 ¥22.99

220V to 24V power supply 1 ¥19.80

FSR 402 Pressure Sensor 2 ¥20.00

PCB Circuit Board 10 ¥43.20

3362P-1-501 5 ¥0.48

LM393DR 10 ¥0.47

PZ254V-11-04P 20 ¥0.29

ZX-PM2.54-1-2PY 5 ¥0.27

CGA0603X7R104K500JT 100 ¥0.10

0603WAF1001T5E 100 ¥0.07

0603WAF1002T5E 100 ¥0.07

3362P-1-103 5 ¥4.55

Component Courier Fee 2 ¥22.00

Total ¥363.37

16

3.2 Schedule

Table 2: 12-Week Project Schedule by Team Member and Module
Week Ziming Yan Jingxing Hu Jiayu Zhou Yuchen Yang

1 Research
Unity-STM32
communication; study
CAN, UART, and
FSR sensor usage

Research servo
motors, stepper
drivers, and claw
design materials

Research Meta Quest
linking and hand
tracking methods

Study digital twin
background

2 Finalize control
architecture

Sketch mechanical
design; select stepper
motor and driver

Outline Unity VR
scene structure; test
Steam Link

Plan Unity scene and
3D model fidelity
goals

3 Set up STM32;
configure UART/CAN

CAD modeling Connect Meta Quest
via Steam Link

Set up Unity project;
import UR3e model

4 Implement
UART-Unity interface

Print and assemble
first claw prototype

Build Unity VR UI
panel

Simulate robot motion
in Unity

5 Implement CAN
comm layer

Test motor control
and gripping logic

Stream camera to
Unity via iVCam

Integrate object
localization with
cameras

6 Integrate FSR402
sensor

Refine grip logic;
calibrate servo

Complete VR control
input and layout

Sync Unity scene with
real-time feedback

7 Build FSM logic in
STM32 for
grip/release

Improve claw strength
and durability

Complete VR panel
interaction pipeline

Enable feedback from
robot to Unity

8 Debug CAN, UART,
ADC timing issues

Tune grip parameters;
test stability

Conduct VR usability
testing

Reach 250 FPS in
Unity

9 Complete control loop Refine PID +
feedback stop logic

Evaluate gesture
usability and latency

Integrate Unity twin
with physical robot

10 Prepare diagrams and
communication logs

Finalize claw model
and casing

Finalize VR workflow
and UI

Debug full pipeline
latency and sync

11 Record STM32 logs;
finalize CAN setup

Run grip stress and
response tests

Record VR usage
demo

Document integration
metrics and visuals

12 Live demo of
Unity-STM32
closed-loop system

Demo claw grasping
various objects

Live VR demo with
camera feedback

Present fully synced
digital twin system

17

4 Requirement & Verification

4.1 High-Level Requirement

1, Enable Meta Quest VR to control UR3e Robotic Arm to grasp Objects with different
materials properties (Soft and Rigid)
2, Ensure the VR-Robotic Arm Interaction to be nearly simultaneous and distant (Latency
below 1 second. Distance: Beyond Sight)
3, Establish Digital Twins of UR3e Robotic Arms in the Unity Project. Enable real-world
robotic arm movement with instant in-project simulation (Smooth real-time rendering at �30
FPS)
4, Build 3D-Printed Gripper with Contact Pressure Detector Self-Adaptation, controlled by
PCB and driven by Motor (Operate continuously for at least 30 minutes and 6 times of
gripping without failure)

4.2 Requirements & Verifications by Subsections

4.2.1 Gripper

This gripper needs to act precisely. However, there are some defects in the present design. As
shown in Figure9, the connecting rod that connects to the actuator flange will be subjected
to a relatively large tensile force when the claws are closing,they may even broken. The part
corresponds to the yellow rods where under the base in Figure8 and they are paired up in
pairs to dispersive stress. However, they will break when the gripper is closed tightly, as
shown in Figure11.

Known Parameters:

• Motor torque: T = 0.412N ·m (converted from 4.2 kg·cm)

• Lead screw lead: l = 2mm = 0.002m

• Lead screw efficiency: η = 0.35

• Linkage angle with respect to screw axis:

– Closed position: θ = 0◦

– Open position: θ = 45◦

18

Calculation:

The axial force F produced by the screw is calculated using:

F =
2πT η

l
=

2π ·0.412 ·0.35
0.002

≈ 453N

The effective gripping force is the projection of this axial force along the direction of the
linkage, depending on angle θ :

Fgrip = F · cos(θ)

Fgrip(0◦) = 453 · cos(0◦) = 453N

Fgrip(45◦) = 453 · cos(45◦)≈ 453 ·0.707 = 320N

Conclusion:

The theoretical gripping force varies from 320N to 453N, depending on the linkage angle.
Compared to the applied simulation load of 150N, the system exhibits a safety margin of over
2×, confirming structural adequacy under expected operation. However，in the simulation,
a preset axial force of 150 N was applied, which resulted in a minimum safety factor of
2.2. However, based on the calculated motor output, the actual force borne by each acrylic
linkage is approximately 453

2 = 226.5 N.

Moreover, the actual thickness of the acrylic bar is approximately 4.85 mm, slightly less
than the 5 mm used in the simulation model. Considering these factors, the fracture of the
linkage observed in Figure11 appears to be within expectations.

Since the external dimensions cannot be modified, one way to improve structural strength is
to reduce the hole diameter from M4 to M3, thereby increasing the effective material cross-
section. However, the most effective solution is to replace the acrylic component with a
higher-strength material, such as one fabricated from metal through CNC machining.

19

Figure 9: The simulation result of one arcylic rod stress under 150N

Figure 10: The safety factor of the arcylic rod under 150N

Figure 11: The arcylic rod break in test

4.2.2 Control Module

PCB Testing:Before the circuit above, I have designed a failed circuit, which is shown as
Figure 14. However, I found errors after the soldering. While applying 3.3V on the VCC
port, the voltage on AO didn’t change with the pressure on FSR402. Therefore, I used the
multimeter to check the circuit. There are errors, like the voltage on AO before FSR insertion

20

should be 0.3V, but I measured 3.17V. In addition, resistance between VCC and DO should
be 909.1Ω, but is actually wired at 9.792kΩ. Finally, I found there is an open circuit in the
PCB design. After designing the new circuit, I succeeded. The following Table 3 shows my
measurement history.
Baud Rate Mismatch: While sending the CAN message (position circuit control) to the
stepper motor, the motor cannot run correctly as desired. After checking the CAN-related
codes, I didn’t find the bug. Then, I use an oscilloscope to check the CAN_H port. Normally,
if the CAN message is sent correctly, the CAN_H will have a voltage change; the low voltage
should be about 0, and the high should be 5V. However, I found that the CAN_H wave is
always 4.176 mV, which means the CAN initialization failed. So I check the default CAN
HAL init, the baud rate is set to 1M, which is mismatched from my motor’s CAN receive
rate. My designed baud rate should be 50000. The CAN bus baud rate on STM32 is
determined by configuring the CAN timing registers, primarily the Prescaler, BS1, BS2, and
SJW parameters, and the rate computation should use the equation:

Baud Rate = CAN Clock Frequency
Prescaler× (1+BS1+BS2) (1)

For my project, system clock is 168Mhz, the CLK OF CAN is APB1 CLK = System Clock
4 =

42Mhz I changed the Prescaler to 14, BS1 to 4, BS2 to 1. Therefore my designed baud rate
should be 42Mhz

14×(1+4+1) = 50000 , which matched the default rate. After changing the baud
rate, I successfully finished the communication with the motor.
STM32 ADC Delay:After comparing my two methods prepared to monitor the pressure by
FSR, I found that the DO port responds to the pressure threshold faster compared with AO
after ADC. I thought the DO would enable my claw to be more sensitive, but actually, the
ADC delay is about 1ms, which is not acceptable for my project. Therefore, I choose to use
the DO port as input.
CAN Feedback:At first, I didn’t think the position feedback of the motor was necessary.
However, I found that there are errors in the phase of motor D axle, varying from 0.9◦ to
1.2◦. With accumulation, the original position of the claw will be changed, causing the
claw cannot close completely. Therefore, I added the CAN feedback function to monitor
the position of the axle, ensuring the motor runs backward until the position is 0. Through
testing, the average position error decreased, within 0.08◦.

21

4.2.3 Digital Twin

Real-Time Visualization Performance: The subsystem is required to provide a smooth real-
time visualization of the physical system. It must maintain a frame rate of at least 30
frames per second (FPS) during normal operation, with a target of 60 FPS for optimal
smoothness. In practice, we achieved an average of over 250 FPS, as shown in Figure 12.
Data Throughput and Update Rate: The Unity3D subsystem shall handle incoming data
streams from the physical system at a sufficient rate. It is expected to support at least a
10 Hz update frequency for all critical sensor inputs. In practice, we achieved an update
frequency of 1000 Hz for input data in the Stream thread from the robot arm, and an update
rate of 125 Hz for output control data. Scene Complexity and Rendering Capability: The
subsystem shall support the full complexity of the system’s 3D model. It should render
all relevant components with high visual fidelity. As shown in Figure 6, we achieved high-
fidelity models for both the robot arm and the claw. Integration and Compatibility: The
Unity3D subsystem must integrate seamlessly with the overall system’s data and control
architecture. We integrated the whole system as expected; the demo demonstrates our
successful integration.

Figure 12: Frame rate performance of the Unity3D Digital Twin subsystem, demonstrating
an average of over 250 FPS during operation.

4.2.4 VR

To validate the VR system’s capability to control the UR3e Robotic Arm for grasping
objects with different material properties, we conducted a series of real-time manipulation
tests. Objects with distinct mechanical characteristics—such as soft sponges and rigid plastic
blocks—were placed within reach of the robotic gripper. The VR interface enabled users to
precisely control grip force and timing via a 14-button Unity panel. For soft objects, gradual
activation of the“Grip”button allowed the user to visually assess deformation through live
IVCam video feeds and stop gripping at an appropriate moment to avoid damage. For rigid
objects, full grip closure was executed without material failure. These tests demonstrate the
system’s robustness across a range of material compliance levels.

22

We tested the robotic arm via VR to grasp both soft (e.g., sponge) and rigid (e.g., plastic)
objects. Users adjusted grip force in real time using the VR interface while observing defor-
mation through live camera feeds, ensuring successful and damage-free manipulation.
Latency was measured at 33 ms using UU Accelerator, well below the 1-second threshold.
The system also maintained stable performance beyond 20 meters using a dedicated router,
confirming reliable long-distance control.

23

5 Conclusion

5.1 Summary of Completion

We successfully developed a VR-controlled robotic grasping system that enables intuitive and
remote interaction with physical objects. The system allowed users to grasp and release four
different objects—paper cup, medicine box, sponge, and bandit—with high precision using
Meta Quest VR and Unity integration. Real-time control was achieved with low latency
and stable wireless streaming via Steam Link. Users could perform step-by-step gripping
actions while observing object deformation through IVCam feedback, enabling safe handling
of both soft and rigid items. The project validates the feasibility and potential of immersive
human-robot interaction for assistive and remote applications.

5.2 Further Improvement

While our current system demonstrates robust VR-controlled robotic manipulation, several
hardware and software enhancements can further expand its functionality and user experi-
ence.

Hardware Enhancements:

• Three-Jaw Gripper Design: Upgrading to a three-jaw configuration will improve con-
tact stability and object adaptability, especially for round or asymmetric shapes.

• Larger Sawteeth or Surface Grip Features: Enhancing the claw’s surface with larger
sawteeth or textured material will increase friction and reduce slippage when handling
smooth objects.

• Metal Linkages: Replacing plastic joints with metal linkages will significantly improve
structural integrity, precision, and safety under stress.

Software Enhancements:

• Automatic Trajectory Planning: Integrating autonomous motion planning algorithms
will reduce the need for manual adjustments and improve efficiency in complex tasks.

• Controller Integration: Mapping directional control buttons directly onto the VR touch
controllers will simplify input and enhance real-time responsiveness.

24

• Standalone Unity App: Building the Unity project as a self-contained, publishable
application will support broader deployment and usability across VR platforms.

These future developments aim to enhance the system’s adaptability, reliability, and ac-
cessibility in both assistive and industrial contexts.

5.3 IEEE Ethical Standards Compliance

Throughout the development of this project, we have adhered strictly to the IEEE Code of
Ethics to ensure academic integrity, technical honesty, and safety in engineering practice. In
particular, our mechanical gripper design is based on a publicly shared model by Raunak
Jain. We properly credited the original work and documented all modifications made to
enhance adaptability and application in assistive environments. These improvements reflect
our commitment to building upon prior contributions while maintaining transparency and
accountability.

We also prioritized safety in all fabrication and testing procedures. All team members
received training before operating high-risk equipment such as laser cutters and robotic arms.
We implemented rigorous safety protocols during acrylic sheet processing, bonding, and
mechanical assembly to avoid accidents and ensure safe working conditions. Our adherence
to ethical and safety standards exemplifies responsible engineering conduct and reinforces
our commitment to protecting users, collaborators, and intellectual property throughout the
project lifecycle.

5.4 Broader Impacts

The integration of Virtual Reality with robotic manipulation in our system offers significant
potential across multiple domains. In healthcare, it enables bedridden patients to interact
with their environment independently, reducing reliance on caregivers and improving quality
of life. In industrial settings, the system provides a safe and effective solution for remote
manipulation, particularly valuable during emergencies or pandemics where human presence
is limited or risky. Furthermore, its intuitive VR interface lowers the barrier for non-expert
users to operate complex robotic systems, promoting broader accessibility in education,
rehabilitation, and teleoperation. As VR and robotics technologies continue to advance,
our project lays foundational work for scalable, human-centric robotic assistance in both
personal and professional contexts.

25

References

[1] Meta Developers, Hello vr: Unity tutorial for meta horizon platform, Accessed: 2025-
05-25, n.d. [Online]. Available: https://developers.meta.com/horizon/documentation/
unity/unity-tutorial-hello-vr/.

[2] F. Tao, H. Zhang, A. Liu, and A. Y. C. Nee, “Digital twin in industry: State-of-the-
art,” IEEE Transactions on Industrial Informatics, vol. 15, no. 4, pp. 2405–2415, 2019.
doi: 10.1109/TII.2018.2873186.

[3] M. Grieves and J. Vickers, “Digital twin: Mitigating unpredictable, undesirable emer-
gent behavior in complex systems,” in Transdisciplinary Perspectives on Complex Sys-
tems: New Findings and Approaches, F.-J. Kahlen, S. Flumerfelt, and A. Alves, Eds.
Cham: Springer International Publishing, 2017, pp. 85–113. doi: 10.1007/978-3-319-
38756-7_4. [Online]. Available: https://doi.org/10.1007/978-3-319-38756-7_4.

[4] 张大头, 步进闭环驱动说明书 rev1.3, https://blog.csdn.net/zhangdatou666/article/
details/132644047, Accessed: 2025-05-18, 2023.

[5] 艾格北峰, Can 总线协议, https : / / blog . csdn . net / qq _ 35057766 / article / details /
135580884, Accessed: 2025-05-18, 2024.

[6] Universal Robots, Overview of client interfaces, Accessed: 2025-05-25, n.d. [Online].
Available: https://www.universal-robots.com/articles/ur/interface-communication/
overview-of-client-interfaces/.

[7] R. Parak, A digital-twins in the field of industrial robotics integrated into the unity3d
development platform, https://github.com/rparak/Unity3D_Robotics_Overview,
2020–2024.

[8] e2eSoft, Ivcam - use mobile phone as a pc webcam, Accessed: 2025-05-25, n.d. [Online].
Available: https://www.e2esoft.com/ivcam/.

[9] Meta Developers, Changes coming to quest 1 in 2023 - meta, Accessed: 2025-05-25,
2023. [Online]. Available: https://developers.meta.com/horizon/blog/changes-coming-
quest-1-2023-meta/.

[10] Valve Corporation, Steam link on steam, Accessed: 2025-05-25, n.d. [Online]. Available:
https://store.steampowered.com/app/353380/Steam_Link/.

[11] Muhmmd Abu Baker, Robot servo motor gripper, Accessed: 2025-05-29, 2023. [Online].
Available: https://grabcad.com/library/robot-servo-motor-gripper-2.

[12] G. Chen, S. Tang, S. Xu, et al., “Intrinsic contact sensing and object perception of an
adaptive fin-ray gripper integrating compact deflection sensors,” IEEE Transactions
on Robotics, vol. 39, no. 6, pp. 4482–4499, 2023. doi: 10.1109/TRO.2023.3311610.

26

https://developers.meta.com/horizon/documentation/unity/unity-tutorial-hello-vr/
https://developers.meta.com/horizon/documentation/unity/unity-tutorial-hello-vr/
https://doi.org/10.1109/TII.2018.2873186
https://doi.org/10.1007/978-3-319-38756-7_4
https://doi.org/10.1007/978-3-319-38756-7_4
https://doi.org/10.1007/978-3-319-38756-7_4
https://blog.csdn.net/zhangdatou666/article/details/132644047
https://blog.csdn.net/zhangdatou666/article/details/132644047
https://blog.csdn.net/qq_35057766/article/details/135580884
https://blog.csdn.net/qq_35057766/article/details/135580884
https://www.universal-robots.com/articles/ur/interface-communication/overview-of-client-interfaces/
https://www.universal-robots.com/articles/ur/interface-communication/overview-of-client-interfaces/
https://github.com/rparak/Unity3D_Robotics_Overview
https://www.e2esoft.com/ivcam/
https://developers.meta.com/horizon/blog/changes-coming-quest-1-2023-meta/
https://developers.meta.com/horizon/blog/changes-coming-quest-1-2023-meta/
https://store.steampowered.com/app/353380/Steam_Link/
https://grabcad.com/library/robot-servo-motor-gripper-2
https://doi.org/10.1109/TRO.2023.3311610

[13] EddieChan, Dummy末端执行器 , Accessed: 2025-05-25, n.d. [Online]. Available: https:
//makerworld.com.cn/zh/models/249697-dummymo-duan-zhi-xing-qi-__rou-xing-
jia-zhua?from=search.

27

https://makerworld.com.cn/zh/models/249697-dummymo-duan-zhi-xing-qi-__rou-xing-jia-zhua?from=search
https://makerworld.com.cn/zh/models/249697-dummymo-duan-zhi-xing-qi-__rou-xing-jia-zhua?from=search
https://makerworld.com.cn/zh/models/249697-dummymo-duan-zhi-xing-qi-__rou-xing-jia-zhua?from=search

Appendix A Supplementary Materials

A.1 Codes

A.1.1 STM32F407 Motor Control Logics

1 #include <stdio.h>
2 #include "MOTOR.h"
3 #include "delay.h"
4 #include "PWM.h"
5 #include "sys.h"
6 #include "SENSOR.h"
7 #include "usart.h"
8 #include "can.h"
9 #include "Emm_42.h"

10 #include "ROS.h"
11 #include <stdbool.h>
12

13 bool grip_cmd = false;
14 bool release_cmd = false;
15

16 int main(void)
17 {
18 uint8_t data_receive[12];
19 uint8_t len;
20 uint32_t id;
21 typedef enum {
22 CLAW_IDLE = 0,
23 CLAW_WAIT,
24 CLAW_GRIPPING,
25 CLAW_HOLDING,
26 CLAW_RELEASING,
27 GET,
28 } CLAW_STATE;
29 CLAW_STATE State = CLAW_IDLE;
30

31 // 系统初始化
32 Stm32_Clock_Init(336, 8, 2, 7);
33 delay_init(168);
34 uart_init(115200);
35 ADC_Init();

28

36 Sensor_Init();
37 CAN_Init();
38 //USER_CAN1_Filter_Init();
39 // 打开中断接收
40

41 Emm_V5_En_Control(0x01, true, false); // 使能电机
42 HAL_Delay(100);
43

44 Emm_V5_Modify_Ctrl_Mode(0x01, false, 2); // 设置为闭环控制模式（模式 2）
45 HAL_Delay(100);
46

47 printf("Init Finish\r\n");
48

49 while (1)
50 {
51 uint8_t reset = 0;
52 int32_t pos = 0;
53 Check_ROS_Command();
54

55 switch (State)
56 {
57 case CLAW_IDLE:
58 Emm_V5_Reset_CurPos_To_Zero(0x01); // 初始设为 0
59 printf("State: CLAW_IDLE\r\n");
60 State = CLAW_WAIT; // 等待命令
61 HAL_Delay(50);
62 break;
63

64 case CLAW_WAIT:
65 if (grip_cmd)
66 {
67 grip_cmd = false;
68 Emm_V5_Pos_Control(0x01, 0, 100, 0, 1000, false, false);
69 printf("State: CLAW_GRIPPING\r\n");
70 State = CLAW_WAIT;
71 }
72 else if (release_cmd)
73 {
74 State = GET;
75 }
76 HAL_Delay(50);

29

77 break;
78

79 case CLAW_GRIPPING:
80 if (Pressure_Trigger())
81 {
82 Emm_V5_Stop_Now(0x01, false);
83 ToROS_Message("GRIP_COMPLETE\r\n"); // send complete signal to

ROS↪→

84 printf("State: CLAW_HOLDING\r\n");
85 printf("Wait for Release cmd ...\r\n");
86 State = GET;
87 }
88 HAL_Delay(50);
89 break;
90

91 case GET:
92 while (1)
93 {
94 Emm_V5_Read_Sys_Params(0x01, S_CPOS);
95 CAN_Receive_Message(&id, data_receive, &len);
96 if (data_receive[0] == 0x36) // 确保是位置反馈
97 {
98 pos = (data_receive[2] << 24) | (data_receive[3] << 16) |
99 (data_receive[4] << 8) | data_receive[5];

100

101 if (data_receive[1] == 0x01) pos = -pos;
102 printf("Current position: %d\r\n", pos);
103 break;
104 }
105 else
106 printf("loop\r\n");
107 }
108 State = CLAW_HOLDING;
109 break;
110

111 case CLAW_HOLDING:
112 if (release_cmd)
113 {
114 release_cmd = false;
115 Emm_V5_Pos_Control(0x01, 1, 100, 0, pos, true, false);
116 printf("State: CLAW_RELEASING\r\n");

30

117 State = CLAW_RELEASING;
118 }
119 HAL_Delay(50);
120 break;
121

122 case CLAW_RELEASING:
123 while (reset != 1)
124 {
125 Emm_V5_Read_Sys_Params(0x01, S_CPOS);
126 CAN_Receive_Message(&id, data_receive, &len);
127 if (data_receive[0] == 0x36)
128 {
129 pos = (data_receive[2] << 24) | (data_receive[3] << 16) |

(data_receive[4] << 8) | data_receive[5];↪→

130 if (data_receive[1] == 0x01) pos = -pos;
131 printf("Current position: %d\r\n", pos);
132

133 if (pos >= -5 && pos <= 5)
134 {
135 reset = 1;
136 Emm_V5_Stop_Now(0x01, false);
137 printf("Motor has returned to zero.\r\n");
138 }
139 }
140 }
141 State = CLAW_WAIT;
142 // Emm_V5_Reset_CurPos_To_Zero(0x01);
143 ToROS_Message("RELEASE_COMPLETE");
144 printf("State: CLAW_RELEASED\r\n");
145 printf("Wait for next cmd ...\r\n");
146 HAL_Delay(50);
147 break;
148

149 State = CLAW_WAIT;
150 ToROS_Message("RELEASE_COMPLETE");
151 printf("State: CLAW_RELEASED\r\n");
152 printf("Wait for next cmd ...\r\n");
153 HAL_Delay(50);
154 break;
155

156 default:

31

157 State = CLAW_IDLE;
158 break;
159 }
160 HAL_Delay(50);
161 }
162 }
163

164 void Error_Handler(void)
165 {
166 printf("Error\r\n");
167 }
168

A.2 Figures

Figure 13: FSR402 PCB

32

Figure 14: FSR402 Failed Circuit

A.3 Tables

Figure 15: first prototype gripper with Steering motor

33

PCB Type Test Item Expected Result Actual Result

Failed Voltage on AO 1kΩ
11kΩ ×3.3V = 0.3V 3.17V

Failed R between sensor port 2 and VCC 10kΩ 9.792kΩ

Failed R between VCC and DO 1kΩ×10kΩ
1kΩ+10kΩ ≈ 909.1Ω 6.147kΩ

Success Voltage on AO 3.3V 3.197V

Success R between sensor port 1 and VCC 10kΩ 9.807kΩ

Success R between VCC and DO 10kΩ 9.076kΩ

Table 3: PCB Testing

34

	Introduction
	Design
	Design description
	Control Module
	Design Procedure

	Unity Digital Twin
	Overall Description
	Implementation Details
	Design Alternative

	VR Module
	Design Procedure
	Design Details
	Verification and Testing

	Gripper Module
	Design Procedure
	Design Details

	Cost & Schedule
	Cost Analysis
	Schedule

	Requirement & Verification
	High-Level Requirement
	Requirements & Verifications by Subsections
	Gripper
	Control Module
	Digital Twin
	VR

	Conclusion
	Summary of Completion
	Further Improvement
	IEEE Ethical Standards Compliance
	Broader Impacts

	References
	Appendix Supplementary Materials
	Codes
	STM32F407 Motor Control Logics

	Figures
	Tables

