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Abstract

The ocean, covering over 70% of the Earth’s surface, is vital for climate regulation, re-
source provision, and human development. This importance has spurred the need for
exploration and utilization of underwater environments, which present significant chal-
lenges due to their hazardous and dynamic nature. Traditional rigid actuators, despite
their high power output, lack flexibility, adaptability, and are prone to mechanical fail-
ure in these unpredictable conditions. To address these limitations, soft robotics, of-
fering increased flexibility and environmental compliance, has emerged as a promis-
ing solution. However, existing soft actuators, such as dielectric elastomer actuators
(DEAs) and hydraulically amplified self-healing electrostatic (HASEL) actuators, still face
challenges in deformation and force output, limiting their effectiveness in underwater
robotics. This study presents a hybrid actuation system that combines the strengths of
DEAs and HASEL actuators to enhance the performance of underwater robots. The inte-
gration of reinforcement learning (RL) and visual perception improves the robot’s control
and decision-making capabilities, enabling optimal performance in complex underwater
environments. The system features three high-level functionalities: autonomous swim-
ming with efficient propulsion, real-time environmental perception, and intelligent path
planning and decision-making via RL. These capabilities are enabled by a novel hybrid
actuation approach, a visual perception system for tracking the robot’s position and en-
vironment, and an RL control system that adjusts movements based on feedback. The
integration of these subsystems ensures robust, adaptable, and autonomous navigation
in dynamic underwater environments.
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1 Introduction

1.1 Purpose

The ocean, covering more than 70% of the Earth’s surface, plays a critical role in climate
regulation, resource provision, and human development [1]. These factors have led to
the increasing need for exploration and utilization of underwater environments, which
presents significant challenges due to their hazardous and unstructured nature [2]. In
these environments, traditional rigid actuators, though high in power output, are lim-
ited by their poor flexibility, adaptability, and risk of mechanical failure, especially in
dynamic and unpredictable conditions [3], [4]. To address these limitations, soft robotics
has emerged as a promising solution, offering increased flexibility, compliance, and envi-
ronmental adaptability [5]. However, current soft actuators, such as dielectric elastomer
actuators (DEAs) and hydraulically amplified self-healing electrostatic (HASEL) actua-
tors, still face challenges, such as limited deformation and force output, which restrict
their effectiveness in underwater robotics [6]–[11].

The goal of this study is to combine the strengths of DEAs and HASEL actuators to de-
velop a hybrid actuation system that leverages both technologies to enhance the perfor-
mance of underwater robots. This hybrid approach will enable greater locomotion, en-
vironmental adaptability, and durability, addressing the challenges posed by traditional
rigid actuators. Additionally, the integration of reinforcement learning (RL) and visual
perception will improve the robot’s control and decision-making capabilities, ensuring
optimal performance in complex underwater environments [12]–[15].

1.2 Functionality

The system is designed to fulfill three high-level functionalities, each of which supports
the overall goal of developing a soft, autonomous underwater robot with intelligent nav-
igation and adaptive control.

1. Autonomous swimming with effective propulsion. The bionic jellyfish robot (2D-
BJR) is capable of generating forward motion through the coordinated actuation of two
electrohydraulic bent-to-straight actuators (EBSAs). These actuators enable rapid con-
traction and extension, mimicking natural jellyfish pulsing. Achieving a reasonably high
swimming speed demonstrates that the hybrid actuator system delivers both power and
compliance, aligning with the project’s objective to develop efficient and biomimetic un-
derwater locomotion.

2. Visual perception and environmental responsiveness. An onboard visual processing
system allows the robot to perceive its surroundings in real-time. Through an integrated
neural network, it extracts key information such as position, orientation, and external
changes in the environment. This enables the robot to make context-aware decisions, sup-
porting the broader goal of deploying autonomous systems in unstructured underwater
environments.

3. Path planning and decision-making via reinforcement learning. The robot uses a
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reinforcement learning (RL) controller to plan a sequence of waypoints and navigate to-
ward the target. The RL agent receives continuous feedback from the visual system and
adjusts motor outputs accordingly. This capability reflects the project’s goal of achieving
closed-loop intelligent control that allows for robust, adaptable, and autonomous naviga-
tion in dynamic settings.

1.3 Subsystem Overview

The system consists of several key subsystems, each playing a vital role in realizing the
intended functionality of the 2D-BJR.

Actuation System: This system adopts a novel hybrid actuation approach that combines
the advantages of DEAs and HASEL actuators. It enables precise control over deforma-
tion, while also offering large strain capability and self-healing properties. This combina-
tion enhances the flexibility and durability of the underwater robot.

Visual Perception System: The visual network processes images captured by the camera
to track the robot’s position, velocity, and orientation. This information is essential for
real-time motion adjustment and accurate tracking of the predefined trajectory.

Reinforcement Learning Control System: The reinforcement learning (RL) control mod-
ule continuously optimizes motion decisions based on visual feedback, enabling the robot
to adapt more effectively and perform robustly in dynamic environments.

Control System: The control system receives motion commands generated by the RL al-
gorithm and transmits them to high-voltage relays to execute corresponding movements.
This ensures that the 2D-BJR can precisely adjust its motion to follow the predefined
path.

Figure 1 illustrates the interactions among these subsystems, highlighting the integration
of actuation, visual perception, and reinforcement learning control in the 2D-BJR.

Figure 1: Block Diagram of 2D-BJR system
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2 Design

2.1 Design Procedure

2.1.1 Design Decisions & Alternatives

Simulation environment [Classical Newton / Lagrange Analysis]: We tried both in mod-
eling process and chose the Lagrange formulation for the simulation environment be-
cause it provides a more convenient approach for modeling complex systems involving
constraints, which is just what 5-point model is .

RL control network [DQN / PPO]: We selected Proximal Policy Optimization (PPO) over
Deep Q-Networks (DQN) because PPO is known for its stability and efficiency in con-
tinuous action spaces, which is crucial for fine-tuned control of robotic movements in
dynamic underwater environments. And the training results further proved this.

Computing node [In terminal / GUI]: We opted for the Graphical User Interface (GUI)
version because it provides a more user-friendly interface for real-time monitoring and
control, which is essential for debugging and visualizing the robot’s behavior.

Path planning program [BFS / A*]: We decided on the A* algorithm for path planning as
it offers efficient navigation, especially in complex, dynamic environments like underwa-
ter exploration, where BFS proved to be too slow and resource-intensive.

IR module [Off-the-shelf module / Custom module]: We chose custom module and de-
sign by ourselves, since the off-the-shelf module cannot meet our encoding and decoding
requirement, due to its weak noise filtering capabilities.

Object Detection Backbone [YOLOv8 / YOLOv5]: YOLOv8 is used for visual perception
due to its high accuracy, fast inference speed, and lightweight design, making it suitable
for real-time underwater tracking. Compared to YOLOv5, it introduces C2f and SPPF
modules to enhance feature reuse and multi-scale aggregation, improving detection ro-
bustness in complex environments. The model includes a backbone for feature extraction,
refinement modules, and a detection head for bounding box and class prediction.

Control Unit [Arduino chip updates / Four types of control outputs / Two types]: We
update Arduino chip to a faster chip [ESP32 version], since the Ardunio Every version is
to slow to handle the monitor refreshing.

Actuation Method [HASEL / DEAs / Combination]: In this work, we adopt a hybrid
actuation approach that combines the advantages of both DEAs and HASEL actuators.
This integration serves as one of the main innovations of our study.

High-Voltage Relay Set [Passive Discharge / Polarity Switching / Active Discharge]:
We choose the active discharge method, as the passive discharge approach is too slow to
meet the actuation speed requirements of soft robots, and the polarity switching method,
which uses water as the positive electrode, poses safety risks and is the most difficult to
implement reliably.
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2.1.2 Design Tools

We used Python as the main programming language, employing PyQt5 for GUI develop-
ment, Matplotlib/NumPy/SymPy for computation and modeling, Stable-Baselines3 for
reinforcement learning, Arduino IDE for microcontroller programming, KiCad for PCB
design, and Fusion 360 for mechanical modeling.

2.1.3 General Form of the Circuits

There are generally two parts of circuit design in our project, control unit’s circuit and HV
relay set’s circuit.

(a) Control unit (b) HV relay set

Figure 2: Schematic diagram of the circuits

2.2 Design details

2.2.1 Computing Terminal

Computing Node

The computing node is a software system designed to handle the entire workflow of jelly-
fish control, from processing real-time video input to generating control signals. It uses a
camera to capture video, which is then analyzed by the YOLO object detection model for
identifying relevant objects. Based on this data, the path planning module calculates the
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optimal movement, while the reinforcement learning module, trained by the iterative in-
teraction with the jellyfish simulation environment, refines decision-making to improve
control strategies. The system visualizes the data, display the workflow of the control
algorithm with GUI, and the final control signals are sent to the control unit via an RC-
sender using the UART and NEC protocol. As illustrated in Figure 3, we developed a
control system with a graphical user interface (GUI) using the PyQt5 library, enabling in-
tuitive and real-time interaction with the system. It allows real-time monitoring of visual
recognition results, execution of path planning program, RL / manual control in simula-
tion environment and IR signal sending process.

(a) Visual perception results (b) Path planning setting (c) Control gui setting

Figure 3: GUI for Control System

Visual Processing Network

To enable robust tracking of soft-bodied underwater robots, we implement a modular
multi-object tracking (MOT) pipeline. The system integrates both motion and appearance
cues to enhance tracking accuracy in dynamic underwater environments.

The pipeline begins with object detection using a pretrained YOLOv8 model. Detected
bounding boxes are processed by two parallel modules: a motion-based prediction path
using OC-SORT (with Kalman filtering and camera motion compensation), and an appearance-
based association path using a Re-Identification (ReID) network. Domain adaptation
techniques are optionally applied to improve robustness under underwater image vari-
ability.

These two cues are fused via an affinity weighting mechanism to construct a cost matrix,
which is then solved using the Hungarian algorithm for optimal object-to-track assign-
ment. This design allows consistent identity tracking over time, even under occlusion or
deformation, making it well-suited for soft, deformable agents.

Path Planning Program

The Motion Planning Program is designed to generate optimal paths for robotic move-
ment in environments with obstacles, specifically for the jellyfish robot. Users can input
the robot’s starting point, target endpoint, and the positions of circular obstacles in the
environment. Using this information, the program calculates a trajectory that allows the
jellyfish robot to safely reach its destination while avoiding obstacles.

The program discretizes the environment into a grid-based map with adjustable grid
sizes, making it suitable for A* pathfinding. The grid allows the space to be represented as
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a series of cells, where each cell can either be traversable or obstructed by an obstacle. The
A* algorithm is then applied to compute the shortest path, using the key formula,

f(n) = g(n) + h(n), h(n) =
√
(xn − xgoal)2 + (yn − ygoal)2 (1)

where f(n) is the total estimated cost of the cheapest solution through node n, g(n) repre-
sents the actual cost from the start node to node n, and h(n) is the heuristic estimate of the
cost from node n to the goal. We design the heuristic cost h(n) as the Euclidean distance
between the current node n and the goal node:

Jellyfish Simulation Environment

Lagrangian mechanics is a reformulation of classical mechanics that provides a powerful
method for analyzing the motion of systems. It is based on the principle of least action,
which states that the path taken by a system between two states is the one that mini-
mizes the action, a quantity defined as the integral of the Lagrangian over time. The key
principle is as the formula below:

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

= Qi (2)

where Qi = F⃗ · ∂r⃗
∂qi

, L = T − V , T is the expression for kinetic energy, V denotes the
potential energy, F⃗ is the external force, r⃗ is the action point vector, qi is the degree of
freedom variables.

As shown in Figure 4(a), our jellyfish body, consisted of 5 mass points, 4 rods and 3 torque
springs connecting the center of two adjacent poles, has six degrees of freedom.

To derive the expression for kinetic energy, we first need to determine the positions of
the five particles using the six degrees of freedom. The angles θ can also be expressed in
terms of four angular degrees of freedom (for completeness, we define θ0 = 0):

θ =



0

−1
2

1
2

−1
2

1
2


ψo +



0

0

0

−1

0


ψl +



0

0

0

0

1


ψr +



0

−1

−1

−1

−1


ϕ+



0

3π
2

3π
2

π
2

π
2


(3)

So the positions of the nodes can be expressed as:

x1 = x0 +Rcos(θ1), x2 = x0 +Rcos(θ2), x3 = x1 +Rcos(θ3), x4 = x2 +Rcos(θ4) (4)

y1 = y0 +Rsin(θ1), y2 = y0 +Rsin(θ2), y3 = y1 +Rsin(θ3), y4 = y2 +Rsin(θ4) (5)
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(a) Annotation of 6 degrees of free-
dom

(b) Annotation of point number and angle

Figure 4: Schematic diagram of 5-point jellyfish robot modeling

After deriving the positions of the five nodes, we can compute their time derivatives to
obtain the expression for the kinetic energy, as T = 1

2
m

(
ẋT ẋ+ ẏT ẏ

)
.

For the potential energy, since we assume that the jellyfish robot will adjust to a sus-
pended state and move in a two-dimensional horizontal plane, we only consider the elas-
tic potential energy of the three springs in the dynamic process. With the potential energy
formula for torque spring Vtorque spring = 0.5K(θ − θ0)

2,

V = 0.5K
(
(ψl0 − ψl(t))

2 + (ψo0 − ψo(t))
2 + (ψr0 − ψr(t))

2) (6)

For simplification, we idealize the points of application of both external forces as the
midpoints of each rod, with the direction perpendicular to the rod.

For the driving force FD, in order to simulate the characteristic of ”flattening” the jellyfish
robot, we define the driving force directions for the left rods FD1 and FD3 to be clockwise,
while the right rods experience counterclockwise forces. The magnitude of the activating
force is constant and given by FD0. Thus, the magnitude of the driven force is FDi = fiFD0,
where fi is the off / on signal, be 1 when activated, otherwise be 0.

For the water reaction force FW , in order to simulate the impact of the surrounding wa-
ter during the jellyfish robot’s contraction phase and to account for the typical form of
resistance, we model FW = −Cv2⊥v̂w, where v̂w is the unit direction vector representing
the direction of the velocity of the midpoint between the two nodes, along the direction
of the component perpendicular to the rod, v⊥ is the average speed of both ends of the
pole.
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After obtaining the differential equations for the six degrees of freedom using Lagrangian
mechanics, we solve them numerically using the RK45 method.

2.2.2 Reinforcement Learning Control Network

To control the jellyfish robot’s motion, we implement a deep reinforcement learning (DRL)
approach, which combines reinforcement learning (RL) and deep learning. In RL, an
agent interacts with an environment and learns to maximize cumulative rewards [16].
The Bellman equation governs this process:

Q∗(s, a) = E[r + γmax
a′

Q∗(s′, a′)] (7)

Where Q∗(s, a) is the optimal action-value function, r is the immediate reward, γ is the
discount factor, s′ and a′ are the next state and action.

Given that the control output is binary (two-bit encoding), we employ Proximal Policy
Optimization (PPO) [17], a policy gradient method effective in discrete action spaces. The
PPO objective is:

LCLIP (θ) = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
(8)

Where rt(θ) = πθ(at|st)
πθold

(at|st) is the probability ratio of the new and old policies, Ât is the
advantage estimate at time t, ϵ is the clipping parameter.

To realize the control objective, the agent keeps updating and optimizing its policy to
track these points pre-calculated by the path planning program sequentially until reach-
ing the goal, as shown in Figure 5.

The state space T includes both visual recognition data (positions and orientations of five
points) and the planned trajectory. The path planning system provides the XY coordinates
of the trajectory points, D .

T =



x0 y0 ϕ0 · · ·

x1 y1 ϕ1 · · ·

x2 y2 ϕ2 · · ·

x3 y3 ϕ3 · · ·

x4 y4 ϕ4 · · ·


,D =


tx0 ty0

tx1 ty1
...

...

txn−1 tyn−1

 (9)

Where xi, yi, ϕi, i ∈ {0, 1, 2, 3, 4}, represent the coordinates and orientations of the detected
points, and · indicates motion features like velocity and angular velocity. txi, tyi, i ∈
{0, 1, · · · , n− 1}, represent the i-th target points, and n is the length of the path.
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The agent’s action space corresponds to the control of the jellyfish’s electrodes using a
binary encoding representing the on/off status of the left and right electrodes.

Start
Read 

T, D

Let i = 0,

tx = Di0, 

ty = Di1

a != 0

state vector 

s = vec(T) 

PPO Network

π(s⊕tx⊕ty) = a

j = active_steps

F = F0 a

j > 0

Simulation Env

j = j - 1,

T = f(T, F)

yes

j = relax_steps

F = 0

j > 0

Simulation Env

j = j - 1,

T = f(T, F)

yes

no

no

yes

i < num_points

i = i + 1,

tx = Di0,

ty = Di1

no

End

no

yes

Figure 5: RL control procedure flowchart.

2.2.3 Control Module

Control Unit

The control unit decodes two-bit infrared signals and translates reinforcement learning
(RL) outputs into control commands for a four-channel relay circuit, enabling directional
movement of the jellyfish robot by activating the left and right electrodes.

To ensure reliable and consistent behavior, we implemented the control logic using a
Moore state machine, where outputs depend solely on the current internal state. The
machine accepts three binary inputs: L (left electrode activation), R (right electrode ac-
tivation), and C (hold signal, 1 = continue, 0 = stop). Based on these, it generates two
outputs: OL and OR, which determine whether the left and right electrodes should be
activated, respectively.

This updated logic improves stability and responsiveness during actuation. The full state
transition process is visualized in Figure 6. The corresponding circuit schematic and PCB
layout are shown in Figures 2(a) and 7, respectively.

HV Relay Set

To ensure that the soft robot can operate at a high frequency, we adopted a charge–discharge
control strategy (see Fig. 8). In this configuration, Relay A is driven by a pulsed control
signal, while Relay B is always driven with the inverse of A’s signal. In Phase 1, Relay
A is closed and Relay B is open. The high-voltage amplifier charges the electrohydraulic
bent-to-straight actuators (EBSA) through a low-resistance path. According to the RC
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Figure 6: Updated Moore state machine diagram for electrode control.

(a) Front copper layer only (F.Cu). (b) All other PCB layers except F.Cu.

Figure 7: PCB layer visualization of the control unit. (a) Displays only the front copper
layer (F.Cu), used for routing signal and power traces. (b) Shows all remaining PCB lay-
ers, including silkscreen, outline, vias, solder mask, and mechanical features.

charging equation:

tcharge = − ln

(
Vtarget

Vsource

)
·RseaC (10)

Given a capacitance of C = 0.2603 nF and a charging resistance of Rsea < 29.7 Ω, the time
to reach 99% of full charge is less than 35.4 ns. In Phase 2, Relay A opens and Relay B
closes. The EBSA is then connected into an RC discharge loop that includes the seawater
resistance and a discharge resistor. The total resistance is less than 1029.6 Ω. According to
the RC voltage decay equation:

tdischarge = − ln

(
V0 − Vtarget

V0

)
·RtotalC (11)

The time required for the voltage to drop to 1% of its initial value is less than 1.23 µs. The
charging and discharging times are sufficiently short to be negligible within the actuation
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Figure 8: Two-relay controlled discharge strategy for safe and reversible EBSA actuation.
A control cycle consists of two phases: a charging phase and a discharging phase. The
discharge resistor used in this configuration is 1000 Ω.

cycle. Therefore, the redesigned two-relay circuit ensures complete charge and discharge
of the EBSA in each cycle, enabling consistent and high-performance actuation.

2.2.4 Actuation Module

HV Amplifier

The HV Amplifier is used to amplify low-voltage signals to the HV required by certain
system components, in our project, the actuation module. For this project, we will be
using the MR HV amplifier provided by laboratory. This amplifier can output a voltage
of up to ±10 kV with a maximum power of 20 W, suitable for HV power supply and
testing.

HV Relay Set

As detailed in Section 2.2.3 HV Relay Set, the implementation here follows the exact same
design and logic, and is thus omitted for redundancy.

2D-BJR: Hydrogel Electrode Layer

This hydrogel is formed through photo-initiated free radical polymerization (triggered by
I2959, crosslinking AAM with MBAA) to create a covalent network, while GDL-mediated
pH adjustment promotes calcium ion release from hydroxyapatite (HA), inducing ionic
crosslinking with alginate (ALG). The resulting dual covalent-physical network combines
high mechanical strength with dynamic tunability.

According to the theorem of crosslinking, we guess that the proportion of MBAA, AAM,
and ALG have great impact on the property of the hydrogel. As Table 1, for the first two
hydrogel samples, we change the proportion of MBAA and let other materials remain the
same. We find that as the proportion of MBAA increases, the modulus of the hydrogel
increases a lot, while the max strain of the sample is reduced from 4.6 to 1. The yield
stress increases a little bit. For the second and third samples, we change the proportion
of ALG, and let other materials the same as sample 1. We find that if the quantity of ALG
is increased the stickiness of the solution will increase, which leads to too many bubbles
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Table 1: Results of the stretching experiment for the hydrogel electrode layer.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6

Water 25 mL 25 mL 25 mL 25 mL 25 mL 25 mL

MBAA 0.0475 g 0.0085 g 0.0475 g 0.0475 g 0.0475 g 0.0475 g

AAM 4.825 g 4.825 g 4.825 g 4.825 g 3.5 g 6.0 g

I 2959 0.035 g 0.035 g 0.035 g 0.035 g 0.035 g 0.035 g

ALG 0.6025 g 0.6025 g 1.205 g 0.30125 g 0.30125 0.30125 g

HA 0.02 g 0.02 g 0.02 g 0.02 g 0.02 g 0.02 g

GDL 0.115 g 0.115 g 0.115 g 0.115 g 0.115 g 0.115 g

Yield stress 33 kpa 30 kpa 29 kpa 77 kpa 26 kpa 59 kpa

Modulus 51 kpa 12 kpa 65 kpa 57 kpa 26 kpa 59 kpa

Max strain 105% 462% 69% 203% 144% 196%

and make trouble in solidification. If we reduce the quantity of ALG, there is no bubbles,
and the stretch properties of the sample is excellent. The yield stress and modulus are
large enough, while the max strain is also acceptable. Lastly, we change the proportion of
AAM through making hydrogel 5 and 6. From the result we can see that the reduction of
AAM has negative effect on the stretch property, since all the properties is reduced. The
increasing of AAM does not have a large impact on the stretch property, so we think the
increase of AAM is unnecessary.

2D-BJR: Main Body

Figure 9: Illustration of the pre-stretching
experiment for the DE-HASEL actuator.

Figure 10: Manufacture process of 2D-BJR.
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To determine the optimal pre-stretching parameters for fabricating EBSAs, we character-
ized the linear DE-HASEL actuator under various pre-stretch ratios. As shown in Fig-
ure 9, the experiment was conducted as follows: the original length h of the fabricated
DE-HASEL actuator was first measured. Then, the actuator was pre-stretched using a
custom-designed stretching apparatus, and its stretched length h′ was recorded. The
stretch ratio was calculated as h′/h.

Subsequently, the actuator’s electrode dimensions were measured, including the length
x along the stretching direction and the width y perpendicular to it, along with the ap-
plied force F during stretching. Afterward, the actuator was electrically activated, and
the stretched dimensions x′, y′ and the actuation force F ′ were recorded. From these mea-
surements, we derived the axial stretch ratio x′/x, the transverse stretch ratio y′/y, and
the force change F − F ′ under different pre-stretch ratios and driving voltages, as shown
in Figure B.12.

Figure 10 shows the fabrication process of the linear DE-HASEL actuator, the core of the
2D-BJR. Two rectangular VHB films were prepared, with a smaller release paper placed
between them. The exposed VHB edges were pressed and bonded, forming a sealed
pouch. Silicone oil was injected into the pouch and evenly spread, after which the release
paper was removed and air bubbles expelled. The opening was then sealed with another
VHB layer.

To assemble the 2D-BJR, two shaped hydrogel substrates were used. Unstretched VHB
was applied to one side of a hydrogel, and the pre-stretched actuator was bonded to the
other side. Upon releasing the prestretch, the structure curled into a jellyfish-like shape,
completing the 2D-BJR.

2.2.5 Peripherals

The peripheral modules of the system include several key components. The IR signal
module enables wireless communication between the computing node and the control
unit by transmitting infrared signals and converting them via a TTL-to-USB cable. The
camera captures real-time video input, providing essential data for object detection and
visual tracking. The square wave generator, specifically the AFG1022 model, produces
stable signals with configurable frequency to drive the actuator effectively. Finally, the
glass water tank serves as a transparent and sealed testing environment for the jellyfish
robot, ensuring both experimental integrity and clear video monitoring.

3 Design Verification

3.1 Completeness and Verification of Requirements

The high-level requirements of the system comprehensively cover key functional mod-
ules, including the actuation system, visual perception, and intelligent control, with clearly
defined performance targets for each. The actuator is required to provide strong and sta-
ble force feedback; the visual system must process environmental inputs in real time with
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high precision; and the reinforcement learning controller should be capable of guiding the
robot along a predefined path. Each requirement is verified through quantitative testing:
actuator performance is evaluated through motion analysis, the visual system is tested
based on object recognition accuracy and response delay, and the reinforcement learning
module is assessed via path-tracking accuracy and task success rate. Detailed low-level
requirements are provided in Appendix A.

3.2 Quantitative Results

Quantitative results for all requirements are provided below. These results are consistent
with the verification procedures, ensuring that the system meets or exceeds the defined
specifications.

Measured Technical Parameters: The following table lists the technical parameters di-
rectly listed in the R&V table in Appendix A. The results in Table 2 are the average results
obtained through more than 10 measurements.

Table 2: Verification results of key system requirements

Requirement Target Result

Data process rate ≥ 30fps 41fps

Computer vision accuracy ≥ 95% 98.3%

Computing node delay ≤ 200ms 73ms

Target reaching precision ≤ 2radii 1.72radii

RL control speed ≤ 30fps 39fps

Path planning speed ≤ 30fps 202fps

Control unit processing time ≤ 150ms 57ms

IR signal delay ≤ 100ms 22ms

RL Training Results: Figure B.15 presents the training curve of the RL agent. Gradually
rising and converging curve indicates that it has found a better strategy. Figure B.14
shows the control process of the RL agent - the agent first activates the left, adjusting the
direction, then activates both, controls the jellyfish bot move straightly to the goal.

Linear DE-HASEL Actuators Results: As shown in Figure B.12, the results indicate that a
higher pre-stretch ratio leads to improved performance of the linear DE-HASEL actuator.
However, since VHB material tends to delaminate or rupture when stretched beyond
700%, we finally selected a pre-stretch ratio of 600% as the optimal value.
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2D-BJR Swimming Results: Figure 11(a) illustrates a single actuation cycle of the 2D-BJR
during forward motion. In each cycle, the actuator extends over approximately 0.08 s and
rapidly contracts in about 0.01 s (actuation period = 0.15 s, i.e., 4 Hz). The contraction is
significantly faster than the extension, enabling net forward propulsion.

Figure 11(b) demonstrates the locomotion of the 2D-BJR at 4 Hz and 9 kV. After 5.19 s of
actuation, the robot travels nearly one body length, achieving a speed of approximately
0.188 BL/s —- substantially faster than the typical swimming speed of Aurelia aurita
(0.08 BL/s).

(a) Single actuation cycle of the 2D-BJR, illustrating the extension and rapid contraction phases.

(b) Sequential locomotion of the 2D-BJR over nearly one body length under 4 Hz actuation at 9 kV.

Figure 11: Demonstration of the 2D-BJR’s actuation and locomotion performance.

Hydrogel Electrode Layer Results: As showen in Figure B.13, after changing various
proportion of the materials, we find that hydrogel 4 has the best stretch properties. It has
very large modulus and yield stress. And it also has a reasonable max strain.
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4 Costs & Schedule

4.1 Parts

The cost estimate in Table 3 covers both core robotic components and necessary testing
infrastructure, including sensors, UV curing systems, and CNC machining. As a research-
oriented prototype, many expenses reflect one-time development and validation efforts.
In future iterations, costs could be significantly reduced through bulk purchasing, design
simplification, and hardware reuse—potentially lowering total expenses by 40–60%.

Table 3: Representative Parts and Costs Summary

Item Description Quantity Price (yuan)

Silicone oil 0.65 cSt, 1 L 1 39

VHB tapes 3M 4095, 1 mm and 0.5 mm 2 246

Hydrogel sheets 58×87 mm and 80×80 mm 88 190

High voltage relays CRSTHV-20KV-A, PCB footprint 9 1653

Camera 12 MP, USB-A 1 227

Glass tank 200×100×10 mm quartz glass 1 180

Arduino Nano Every, ATMega4809 1 120

Control PCBs Custom-made, control + relay sets 15 566

CNC machining Custom mechanical components 7 900

Sensors Tension sensor + DAQ card 2 474

Misc. components Resistors, sockets, cables, etc. — 300

UV curing system 365 nm, 240 W 1 936.32

Total — — 4831.32

4.2 Labor

Assuming each team member worked 40 hours per week for 6 weeks, the total esti-
mated labor cost is $120, 000, calculated using the formula Labor Cost = Hourly Rate ×
Hours Spent × 2.5.

4.3 Schedule
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Table 4: Project Timeline (April 14 – May 23, 2025)

Week Date (2025) Detailed Tasks Member(s)

1 Apr 14–16 Prepare initial hydrogel samples Junwei Zhang

Apr 17–20 Preliminary mechanical and water
absorption tests

Junwei Zhang

Apr 14–18 Fabricate initial DE-HASEL actuators Yinliang Gan

Apr 19–20 Initial optimization of actuator fabri-
cation

Yinliang Gan

Apr 14–20 Capture ∼700 images of 3D-printed
jellyfish

Shuran Yan

Apr 14–20 Refine jellyfish simulation model and
bug fixing

Wangjie Xu

2 Apr 21–24 Detailed mechanical tests (elastic
modulus, fatigue life)

Junwei Zhang

Apr 25–27 Electrical conductivity tests Junwei Zhang

Apr 21–27 DE-HASEL actuator prestretch exper-
iments

Yinliang Gan

Apr 21–27 Train preliminary detection and ReID
algorithms

Shuran Yan

Apr 21–27 Visualize data and conduct initial RL
training

Wangjie Xu

3 Apr 28–30 Finalize optimal hydrogel formula
and verify properties

Junwei Zhang

May 1–4 Fabricate hydrogel electrodes Junwei Zhang

Apr 28–May 2 Assemble actuator with hydrogel
electrodes

Yinliang Gan

May 3–4 Initial jellyfish robot structural assem-
bly

Yinliang Gan

Apr 28–May 4 Refine dataset and algorithms; start
angle calculation

Shuran Yan

Apr 28–May 4 RL optimization and begin path plan-
ning scripts

Wangjie Xu

Continued on next page
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Table 4 Continued from previous page

Week Date (2025) Detailed Tasks Member(s)

4 May 5–8 Waterproof sealing Yinliang Gan

May 9–11 Finalize robot assembly Yinliang Gan

May 5–11 Complete angle calculation algorithm Shuran Yan

May 5–11 RL tracking for arbitrary targets and
debug path planning

Wangjie Xu

5 May 12–15 Produce final datasets integrating real
robot movements

Yinliang Gan, Shuran
Yan

May 16–18 Verify jellyfish robot line-following
performance

Yinliang Gan, Shuran
Yan

May 12–18 Achieve sequential target RL track-
ing; start FSI simulations

Wangjie Xu

6 May 19–23 Integrate visual recognition, RL con-
trol, and physical actuation; vali-
date infrared communication; con-
duct complete system testing

All Members

5 Conclusion

5.1 Accomplishments

Our project successfully fulfilled all high-level requirements outlined at the beginning of
the design. First, the hybrid actuation system based on electrohydraulic bent-to-straight
actuators (EBSAs) demonstrated both strong force output and structural stability. By
combining dielectric elastomer actuators (DEAs) with HASEL actuators, we achieved
enhanced compliance, controllability, and deformation, surpassing the performance of
conventional soft actuators in underwater conditions.

Second, the onboard visual processing network—built upon the YOLOv8 object detection
algorithm and a multi-object tracking (MOT) framework—enabled the system to robustly
identify and track the jellyfish robot in real time. Accurate extraction of key position
and orientation data allowed for adaptive feedback control, even in environments with
dynamic lighting and water turbulence.

Third, our reinforcement learning (RL) control network, based on the Proximal Policy Op-
timization (PPO) algorithm, successfully generated discrete control commands to guide
the robot toward predefined waypoints. The control system demonstrated reliable trajectory-
following behavior in the test tank, with consistent loop closure between prediction and
physical actuation.
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Together, these accomplishments validate the effectiveness of our integrated design ap-
proach. The final 2D-BJR system combines innovative actuation, perception, and control
into a cohesive platform capable of intelligent navigation in aquatic environments, which
representing a significant step forward in the development of bioinspired underwater
robots.

5.2 Uncertainties

Despite the successful realization of all high-level requirements, several uncertainties
remain in the system’s closed-loop performance due to the inherent limitations of soft
robotic components and control latency. The most critical challenge lies in precise tra-
jectory tracking under real-world disturbances, such as actuation variability and sensing
noise.

Specifically, the actuation module introduces granularity and variability in displacement:
each discrete pulse contributes approximately ∆x = 2.5 mm, with up to ±10% deviation
due to mechanical backlash and fluid interaction. Additionally, the control system experi-
ences a delay of τ = 2±1 timesteps, affecting real-time responsiveness. Sensor noise, with
a bounded error of ±2 mm, further contributes to uncertainty in pose estimation.

To quantify the impact of these uncertainties, we constructed a mathematical model and
conducted a parameter sweep simulation. The worst-case error propagation was derived
from:

∆eworst
t+1 = ±δr − (nt−τ ± 0.5)(∆x± 10%) (12)

where δr is the maximum rate of change in the reference trajectory. Simulation results
demonstrated that even under worst-case conditions, the peak tracking error remained
below 15 mm, which is within the system’s acceptable tolerance band of ±20 mm.

However, error increases with control delay and command quantization. These results
highlight the need for future improvements in closed-loop feedback design, such as higher-
resolution actuation or predictive compensation methods. Furthermore, while the system
avoids sustained oscillation within the tested bounds, its robustness in more complex or
larger-scale underwater environments remains to be evaluated.

5.3 Ethical Considerations

5.3.1 Adherence to IEEE Code of Ethics

This project fully adheres to the IEEE Code of Ethics by:

Public Safety and Responsible Research: All testing was conducted in controlled en-
vironments. The soft robot’s compliant design eliminates mechanical injury risks and
minimizes environmental disruption.
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Data Privacy and Integrity: The vision system is used solely for navigation and control.
No personally identifiable information (PII) is collected. Data is anonymized, and trans-
mission is encrypted using TLS.

Scientific Honesty and Accuracy: All results are derived from reproducible experiments
and validated simulations. Safety margins are computed and documented, avoiding ex-
aggerated claims of performance.

5.3.2 Environmental and Data Ethics

Environmental Impact The robot is constructed using biodegradable hydrogels and
elastomers certified for non-toxicity. No harmful microplastics or lubricants are released
during operation. Environmental risk is modeled as R = I · Pf , where potential impact I
and failure probability Pf are minimized through careful design and lab validation. Low-
Reynolds-number propulsion ensures minimal turbulence and avoids disturbing aquatic
ecosystems.

Privacy Protection Cameras are used strictly for system feedback. No human subjects
are recorded. All images are hashed and stored locally. No secondary usage or exter-
nal distribution is permitted. Data minimization is enforced: only necessary frames are
retained for navigation.

5.3.3 Safety Measures

Electrical Safety: Though the system uses high voltage (up to 7 kV), the stored energy is
extremely low (< 2 µC), and the charging time is limited to nanoseconds. This ensures
no risk of electric shock or thermal hazard.

Mechanical Safety: The robot’s maximum actuation force (≤ 5 N) and contact pressure
(≤ 50 kPa) are well within human-safe thresholds.

Environmental Safety: All materials degrade within 2–3 weeks in marine environments
(ASTM D6691). Sealants and coatings are water-stable and non-toxic.

Fail-Safe Protocols: Emergency kill-switches, watchdog timers, and flotation mecha-
nisms are implemented. All team members completed lab safety training and follow a
checklist before each test.

5.4 Future Work

Future improvements include reducing the control latency by integrating onboard com-
puting modules, enhancing waterproof sealing for open-water deployment, and increas-
ing energy efficiency through custom low-power HV amplifiers. Additional work will
focus on expanding the robot’s degrees of freedom, introducing 3D motion capability,
and integrating self-sensing electrodes to enable closed-loop proprioception. Long-term,
we envision this system being adapted for environmental monitoring or marine life inter-
action.
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Appendix A Requirements and Verification

Table A.5: Requirements and verification table

Requirements Verification
1. Visual Processing Network

1. Process data at 30 fps or higher.
2. Accuracy of recognition points

must be above 95%.

1. A. Test at various frame rates to en-
sure 30 fps.

B. Confirm accuracy greater than
95% via statistical sampling.

2. Computing Node

1. Facilitate data exchange and
computation.

2. Delay from input to output
must be less than 200 ms.

1. A. Test peripherals to ensure proper
functionality.

B. Measure signal delay and ensure
it is under 200 ms.

3. Reinforcement Learning Control Network

1. Accomplish target reaching
within 2 radii distance.

2. Follow planned path points reli-
ably.

3. Achieve more than 30 fps con-
trol speed.

1. A. Validate task completion and
distance.

B. Ensure path-following with no
obstacles.

C. Benchmark control speed to
meet 30 fps.

4. Motion Planning Program

1. Calculate motion paths with 5+
points at more than 30 fps.

1. A. Verify path has more than 5
points and avoids obstacles.

B. Test for robustness and speed of
path planning.

5. Control Unit

1. Total control time must be
smaller than 150 ms.

2. Respond accurately to all com-
mands.

1. A. Measure control time to meet the
150 ms requirement.

B. Verify correct relay activation
across all commands.

6. HV Amplifier

1. Amplifier must provide suffi-
cient gain and clear output.

1. A. Test gain and check for signal
distortion.

Continued on next page
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Table A.5 Continued from previous page
Requirements Verification

7. HV Relay Set
1. Ensure full charge/discharge of

EBSA within control cycle.
2. Cost-effective and scalable for

multiple units.

1. A. Measure EBSA charge and dis-
charge times (<1 ms).

B. Verify circuit operates with 2 re-
lays per unit.

8. 2D-BJR (hydrogel electrode layer)

1. Hydrogel must withstand de-
formation, retain conductivity,
and maintain water content.

1. A. Perform tensile and fatigue tests.
B. Measure conductivity and water

retention.

9. 2D-BJR (main actuation structure)

1. VHB films must form sealed
pouch for electrohydraulic actu-
ation.

2. Actuator must be prestretched
for efficiency.

3. Actuator must form expected
3D shape after post-stretch re-
lease.

1. A. Inspect VHB pouch sealing.
B. Test actuation at various pre-

stretch levels.
C. Confirm formation of jellyfish-

like shape post-release.

10. Peripherals

1. IR signal Module support sig-
nal transmission and reception
with less than 100 ms delay.

2. Camera capture high-quality
video at more than 30 FPS.

3. Square Wave Generator gener-
ates stable square waves at con-
figurable frequencies.

4. Glass Water Tank be transpar-
ent and leak-proof to accommo-
date jellyfish model.

1. A. Test signal communication and
transfer.

B. Verify transmission/reception
delay less than 100 ms.

2. A. Ensure stable video feed with no
frame loss.

3. A. Verify waveform stability and
frequency.

4. A. Check transparency and capac-
ity.

B. Test for leaks.
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Appendix B Visual Results

(a) x′/x vs. voltage (b) y′/y vs. voltage (c) F − F ′ vs. voltage

Figure B.12: Results of the pre-stretching experiment for linear DE-HASEL actuators.

Figure B.13: Illustration of the strain-stress digrams for the hydrogel electrode layer.

Figure B.14: Illustration of RL
control process.

Figure B.15: Training curve of the RL agent.
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