
ECE 445

SENIOR DESIGN LABORATORY

FINAL REPORT

Long-horizon Task Completion with
Robotic Arms by Human Instructions

Team #25

BINGJUN GUO (bingjun3)

QI LONG (qilong2)

QINGRAN WU (qingran3)

YUXI CHEN (yuxi5)

(alphabetically)

Sponsor: Gaoang Wang, Liangjing Yang

TA: Tielong Cai, Tianci Tang

May 18, 2025

Abstract

This project developed a robotic system to assist individuals with limited mobility by un-
derstanding human instructions and autonomously performing long-horizon tasks like
table cleaning. The system integrates Perception (Vision Language Models like Qwen-
VL, Grounded SAM), Planning (VLMs for task/motion planning), Control (Raspberry
Pi 5, ROS2), and Action (custom force-feedback gripper) modules. Key achievements
include successful module integration, advanced AI implementation (90% object iden-
tification accuracy), and custom hardware development (force-sensing PCB, lead screw
gripper). This work demonstrates a viable approach for creating intelligent robotic assis-
tants capable of complex instruction interpretation and real-world interaction, advancing
autonomous and helpful robotics.

ii

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 High-Level Requirement List . 2

2 Design 2
2.1 Perception Module . 2

2.1.1 Object identifier . 2
2.1.2 High-level Perception: Scene description 2
2.1.3 Low-level Perception: Fine-grained object stability 3

2.2 Planning Module . 4
2.2.1 Structured High-level Planning . 5
2.2.2 Low-level (kinematics) planning . 5

2.3 Control Module . 7
2.3.1 Peripheral Connection - Force Sensor 7
2.3.2 Peripheral Connection - Motor . 10
2.3.3 Device Connection - Camera, UR3e and Server 10
2.3.4 Module Overall Workflow . 11

2.4 Action Module . 12
2.4.1 Design Procedure . 12
2.4.2 Design Details . 14
2.4.3 Workflow . 15

3 Verification 16
3.1 Verification of PCB Circuit . 16

3.1.1 Comparator Threshold Accuracy . 16
3.1.2 LED Indicator Performance . 16

3.2 Verification of Perception Module . 17
3.2.1 RGB Camera . 17
3.2.2 Force Sensor . 17
3.2.3 Object Locator . 17

3.3 Verification of Planning Module . 18
3.3.1 Task Decomposition . 18
3.3.2 Structured Plan generation . 18
3.3.3 Motion Planning . 19
3.3.4 Plan Display (previously user interface) 19

iii

3.3.5 Contribution to the System . 19
3.4 Verification of Action Module . 19

3.4.1 Grasping Size Range . 19
3.4.2 Grasping Mass Limit . 20
3.4.3 Stop/Safe Operation . 20
3.4.4 Closed-loop Control Response . 20

4 Cost and Schedule 21
4.1 Cost Analysis . 21
4.2 Schedule . 22

5 Conclusion 24
5.1 Accomplishments . 24
5.2 Uncertainties and Future Developments . 24
5.3 Ethical Considerations . 24

5.3.1 IEEE and ACM Code of Ethics[18][19] 25
5.3.2 ISO/TS 15066[20] . 25

References 26

Appendix A ROS Custom Package Code 28
A.1 FSR Sensor Package . 28
A.2 Motor Control Package . 29

iv

1 Introduction

1.1 Problem Statement

Figure 1: The overall block diagram.

The application of robotic arms for assisting with daily tasks is becoming increasingly
important, particularly for individuals with limited mobility, such as the elderly, chil-
dren, and people with disabilities. Many simple activities—like cleaning a table—can be
difficult for these groups to perform independently. While robotic arms have the poten-
tial to improve quality of life and reduce the burden on caregivers, they must be able to
understand human instructions, adapt to changing environments, and provide robust,
consistent performance across multiple steps.

Existing robotic systems often struggle with breaking down and executing long-horizon
tasks, especially in dynamic, real-world settings. Most are limited to predefined scenarios
and cannot effectively respond to unforeseen changes or integrate real-time feedback. To

1

address these limitations, we propose a comprehensive framework that integrates per-
ception, planning, and action for autonomous task completion.

In this project, we focus on developing a robotic system that assists people with limited
mobility in performing everyday tasks, such as cleaning a table, by following human
instructions and adapting to real-world conditions.

1.2 High-Level Requirement List

Perception Accuracy The system must achieve at least 90% accuracy in identifying and
localizing target objects within its operating environment.

Planning Efficiency The robot must generate actionable multi-step operation plans within
5 seconds after receiving human instructions.

Execution Robustness The robotic arm must successfully complete at least 90% of at-
tempted long-horizon tasks without collisions or critical errors under varying environ-
mental conditions.

2 Design

2.1 Perception Module

2.1.1 Object identifier

The Perception Module is designed to identify objects of interest in the scene and locate
them. Specifically, our design consists of a vision language model[1], [2], which extends
the emerged power of large language models[3] to the modalities of both text and image,
for scene description, and a so-called vision foundation model, Grounded SAM[4] for
object locating.

2.1.2 High-level Perception: Scene description

Given a scene image as input, a large Vision Language Model (VLM)[2] is prompted
through ModelScope[5] API to describe the scene and identify objects in the scene.

• Base Model: Qwen/Qwen2.5-VL-7B-Instruct[2] from ModelScope[5].

2

• Prompt (text input): to make the best practice of a VLM, the prompt is designed to
be as simple as possible, but also to be able to ensure a formatted output for further
processing. (Figure 2)

• Combined Input: image of the scene captured from the RGB camera.

• Output: a list of names of objects in the image.

Figure 2: Scene Descriptor prompt.

2.1.3 Low-level Perception: Fine-grained object stability

Figure 3: Example output of Grounded SAM; input labels: person, plant, bin

Given a scene image and a list of object names in the scene, our Object Detector identi-
fies them in the image, returns masks of the objects in the image, and the corresponding
bounding boxes of them. In our design, we take advantage of the effective open-world
vision representations learned by the Distillation with No Labels(DINO) model[6], which
utilizes the Transformer[7] backbone and was trained in a self-supervised manner. Specif-
ically, we deploy the Grounded Segment-Anything (Grounded SAM)[4] on our server that lis-
tens for a list of object names and an image sent from our control module in binary form,
and returns the masks and boxes for each identified object. Compared with traditional

3

vision models such as You Only Look Once (YOLO)[8], the model we deployed is capa-
ble for open-set identification, that is, for any object in our daily life, rather than a small
group of objects limited by the training process. The pipeline is established with python
packages of FastAPI[9] and Uvicorn[10], which will be introduced in detail in following
sections.

Figure 4: How Grounding DINO becomes open-set

2.2 Planning Module

Figure 5: Planning VLM prompt.

4

2.2.1 Structured High-level Planning

The Planning Module is designed to generate a plan of robot arm actions to decompose
the top-level user instruction and accomplish it. Briefly speaking, it uses a VLM to rea-
son upon information from user (the instruction), from scene (the object locator output)
and make a plan from a composed action list from object list (the scene descriptor out-
put).

• Base Model: Qwen/Qwen2.5-VL-32B-Instruct from ModelScope<empty citation>

• Input: user instruction, object list from Scene Descriptor, and image of scene cap-
tured from the RGB camera and labeled by Object Locator.

• Output: a list of predefined action candidates as a plan.

• Prompt: since the prompt needs to guide the VLM to reason about the physical
world from 2D photos, the intricate constraints on ”Grasp” and ”Move” actions, and
the final output list format, it is designed to include a guideline for detailed instruc-
tions. Besides, inspired by the Chain-of-Thought practice of Large Language Mod-
els (LLMs), the prompt includes a ”step-by-step way” thinking keyword 5. Where
the Task is user input, the action list is a combination between ”Grasp” and objects
as well as ”Move to” and given locations.

2.2.2 Low-level (kinematics) planning

Inverse kinematics is the process of determining the joint parameters (e.g., angles) of a
robotic manipulator that achieve a desired position and orientation of its end effector.
Mathematically, given the desired end effector location Tdesired sent from the planning
module, the inverse kinematics problem solves for the joint variables q such that:

T(q) = Tdesired

where T(q) is the forward kinematics function that maps joint variables to the Cartesian
coordinates of the end effector. In lab5 of the course ECE470[11], we have derived a close
form inverse kinematics process according to the Denavit–Hartenberg parameters[12] of
UR3e[13] as follows:

• θ1: Base rotation angle

First we represent the length l2 − l4 + l6 as lp, the perpendicular offset from Pcen to

5

Figure 6: Inverse-kinematics solution illustration for the UR3e robot arm.[11]

P3end. Then we have the following equations:

θ1 = arctan 2(ycen, xcen)− arcsin(
lp√

x2
cen + y2cen

)

in which arctan 2 is the inverse tangent function, which returns the angle in radians
between the positive x-axis and the point (x, y).

• x3end, y3end, and z3end: From the system of equations above, we have the following
equations:

x3end = xcen + lp sin(θ1)− l7 cos(θ1)

y3end = ycen − lp cos(θ1)− l7 sin(θ1)

z3end = zcen + l8 + l10

• θ2 and θ3: Using law of cosines and sines, we have the following equations:

l3 sin(−θ2) + l1 − l5 sin(θ3 + θ2) = z3end

l3 cos(θ2) + l5 cos(θ3 + θ2) =
√

x2
3end + y23end

6

• θ4: Maintains horizontal end effector

θ4 = −(θ2 + θ3)

• θ5: Keeps end effector vertical
θ5 = −π

2

• θ6: Provides yaw orientation

θ6 − θ1 + θyaw =
π

2

2.3 Control Module

The Control Module is the central hub for managing communication, synchronization,
and information exchange between all other modules in our system. This module is built
around a Raspberry Pi 5 [14] (Figure 7), which runs Ubuntu 24.04 LTS and the ROS2
(Robot Operating System 2) [15], enabling communication between sensors, cameras, mo-
tors, and the model server in real-time.

We chose the Raspberry Pi 5 as the central processing unit due to its enhanced computa-
tional power and interface support. Featuring a faster processor and improved connectiv-
ity options. It efficiently manages real-time data to and from the UR3e robot arm and the
model server. It also ensures seamless integration with peripheral devices through inter-
faces like Universal Asynchronous Receiver-Transmitter (UART) connection with motor,
General-purpose Input/Output (GPIO) connection with sensor, and Camera Serial Inter-
face (CSI) connection for camera.

2.3.1 Peripheral Connection - Force Sensor

Force Sensor Placement To detect whether an object is properly grasped, a FSR402 force
sensor is positioned on the inner surfaces of the gripper finger, where it will make direct
contact with the object.(Figure 8) The sensor outputs an analog signal, which is propor-
tional to the amount of force applied to the object.

PCB Design The analog signal will be processed by a simple custom PCB, which out-
puts a digital signal to indicate whether the object has been properly grasped. The board
converts the analog voltage from an FSR402 force sensor into a clean digital signals and

7

Figure 7: Raspberry Pi 5
Figure 8: FSR Sensor Installation on
Gripper

provides visual feedback via LEDs. The circuit schematics and the PCB layout are shown
in Figure 9 and Figure 10. The 3D view of the PCB board is shown in Figure 11: The key
components are:

• FSR Sensor Input: The FSR402 sensor is wired as a pull-up voltage divider with R1
(10 kΩ). As force increases, the FSR resistance drops and the divider node voltage
rises.

• Decoupling and Filtering Capacitor (C1, C2): A 100nF capacitor C1 close to U1’s
VCC and GND stabilizes the power supply. Another 100nF capacitor C2 at the
sensor input node suppresses high-frequency noise before the comparator.

• Threshold Comparator (U1 – LM393):

– Inverting Input (pin 2) receives the filtered FSR voltage.

– Non-inverting Input (pin 3) is tied to a threshold network with adjustable po-
tentiometer R2 (10 kΩ).

– When the FSR voltage exceeds the threshold (set by R2), the comparator output
toggles through the OUT/A pin. (pin 1)

• LED Indicators:

– LED1 with R3 (1 kΩ) illuminates when the circuit is working properly.

– LED2 (red) with R4 (1 kΩ) illuminates when the comparator output is high
(pressure detected).

8

In summary, a pull-up resistor feeds the sensor voltage into the LM393 comparator, whose
other input is set by a potentiometer. When the sensor voltage exceeds the threshold, the
comparator output toggles.

Figure 9: PCB Board Circuit Schematics

Figure 10: PCB Board Layout

Figure 11: PCB Board 3D View

9

Sensor Signal Processing The digital signal is transmitted to the Raspberry Pi 5’s GPIO
port. A custom ROS2 package processes this signal with debounce to prevent false trig-
gers. The package’s node publishes the sensor data to a ROS topic, allowing other mod-
ules to access it via the ROS2 interface. The main portion of the code for this package is
provided in Appendix A.

2.3.2 Peripheral Connection - Motor

We control the gripper using a stepper motor and a dedicated control board. The step-
per motor is powered independently via a separate power adapter. The control board
interfaces with the Raspberry Pi 5 through a UART (serial) connection.

The control board accepts various commands via the UART interface, including enabling
and disabling of the motor, absolute and relative position moves, speed-based jog com-
mands, emergency stop, etc.

A custom ROS 2 package is developed to manage motor control. When the node initial-
izes, it establishes a serial connection to the motor controller and sets the motor’s initial
position to zero. The /grasp object service commands the motor to jog clockwise at a fixed
speed until a force sensor detects contact. Once triggered, the force sensor node pub-
lishes a message to the corresponding ROS topic and stops the motor. The /release object
service moves the motor counter-clockwise back to position zero, resetting the gripper to
its initial open state.

To protect the hardware, the node enforces a global movement range limit. If the motor
attempts to move beyond this predefined range, it immediately stops the motor regard-
less of ongoing commands, preventing potential damage to the gripper. The main portion
of the code for this package is provided in Appendix A.

2.3.3 Device Connection - Camera, UR3e and Server

Camera Setup We also used a 4K Pi camera with field of view H108◦×V92◦ as the pri-
mary visual input. It connects directly to the Raspberry Pi 5’s CSI port, which natively
supports the camera without the need for additional drivers.

UR3e Robot Arm Connection We connected the Raspberry Pi 5 to the UR3e robot via
Ethernet by following the official guidelines [16]. By setting up the recommended ROS
2 packages on the Raspberry Pi, we can establish a reliable communication channel be-
tween the Pi and the UR3e robot arm. This setup allows us to send motion commands

10

and receive feedback directly from the robot’s controller in real time. As a result, we can
easily control the robot’s movements, monitor its state, and integrate it into the overall
system.

Remote Server Connection We created straightforward APIs on the server to enable
seamless communication between the ROS2 framework and the model server. Specifi-
cally, the backend uses FastAPI[9], a modern Python web framework focused on speed.
FastAPI’s automatic data validation and async capabilities made it particularly suitable
for handling real-time image uploads and predictions efficiently. The server runs on Uvi-
corn[10], a lightning-fast ASGI server, which ensures low-latency, concurrent processing
of incoming requests. Through these APIs, the ROS2 system can upload images directly
to the model server and receive inference results in real time, allowing for immediate
feedback and smooth integration with the robotics pipeline.

2.3.4 Module Overall Workflow

The overall system workflow integrates multiple hardware and software modules to en-
able seamless, real-time robotic operation. At the center of this architecture is the Rasp-
berry Pi 5, which orchestrates data flow and command execution among sensors, actua-
tors, the UR3e robotic arm, and the model server.

The process starts with the camera capturing images of the robot’s workspace. These im-
ages are processed locally and then transmitted to the model server via the ROS2 frame-
work using a FastAPI-based API. The model server performs image analysis and returns
inference results in real time.

Based on the inference results, the Raspberry Pi 5 sends movement commands to the
UR3e robotic arm. When the arm reaches the target position, the system calls the grasp object
service to activate the gripper. The gripper closes until the FSR402 force sensor detects
contact with the object, signaling a successful grasp. The Raspberry Pi 5 then issues fur-
ther movement instructions to the robot arm. Upon reaching the final target location, the
system calls the release object service to open the gripper and release the object.

This integration of the modules ensures synchronized operation and robust error han-
dling, resulting in a reliable robotic system. Figure 12 illustrates the overall workflow of
the system.

11

Figure 12: Control & Action Module Workflow

2.4 Action Module

2.4.1 Design Procedure

In this project, a custom gripper needed to be designed and attached to the end-effector.
The default end-effector provided was a suction cup, which was limited to picking ob-
jects with flat upper surfaces. This limitation became problematic when attempting to
handle rounded objects, such as apples or bottles, or items with soft surfaces, like kitchen
sponges.

12

Figure 13: UR3e Figure 14: UR3e End Effector

Initially, we proposed a mechanism depicted in Figure 15. This gripper utilized a servo
motor to actuate two linkages connected directly to two parallel ”fingers”. These fingers
were constrained by sliders, limiting their motion to one direction (grasping or releasing).
Although simple and straightforward, this design presented a significant shortcoming:
the mechanism was unable to supply adequate torque, as it translated the servo motor’s
torque directly into linkage force without amplification.

Figure 15: Gripper Version 1

Given a servo torque τ = 0.016Nm, finger length l = 0.05m, and friction factor µ = 0.5,

13

the grasping force F can be calculated as:

F =
τ

l × µ
=

0.016

0.05× 0.5
= 0.64N

The force is too small to grasp a kitchen sponge. To address this torque limitation, two
potential solutions were considered:

1. Implementing a torque-amplifier, such as a gear set, to enhance the effective torque
transmitted to the fingers.

2. Redesigning the gripper mechanism entirely.

Due to the constraints imposed by the limited precision of the 3D printers available in our
laboratory—a valuable lesson learned from ME371—we opted against adding complexity
via gear systems. Instead, we pursued a more robust and straightforward alternative: a
lead screw-based mechanism as shown in Figure 16.

Figure 16: Gripper Figure 17: Gripper Internal View

2.4.2 Design Details

The lead screw mechanism is central to our revised gripper design, converting the rota-
tional motion of the stepper motor into precise linear displacement. This design provides
a mechanical advantage, significantly amplifying the applied torque.

The stepper motor selected has a torque of 0.43Nm and lead screw pitch (lead) of 2mm.

14

Considering an efficiency factor of approximately 20%, the effective linear force provided
by the lead screw is calculated as:

Faxial =
2πτ × η

Lead
=

2π × 0.43× 0.2

0.002
≈ 270.18N

Ff = µ× Faxial = 0.5× 270.18 ≈ 135.09N

This effective force of approximately 135.09N, accounting for efficiency losses, should in
theory be sufficient for robust gripping in typical application scenarios. However, in prac-
tice, the maximum reliable gripping force is typically lower due to additional mechanical
losses, compliance in the parts, and imperfect force transmission throughout the mecha-
nism. Therefore, we conservatively set the maximum grasping weight to 0.25kg for safe
and reliable operation.

2.4.3 Workflow

The workflow of the Action Module is shown in Figrue 12 and described as follows:

First, the Robot Arm Control Node transmits motion commands to the UR3e Robot Arm
to execute the trajectories generated by the Planning Module. Once the UR3e Robot Arm
reaches the target position, it provides feedback to the Control Module, indicating suc-
cessful positioning.

Subsequently, the Motor Control Node issues movement commands to the stepper mo-
tor. The stepper motor actuates the gripper mechanism to either grasp or release objects
as required. During the grasping process, the force sensor continuously monitors the
applied gripping force. When the sensor detects that a sufficiently large force has been
achieved—indicating a successful grasp—it sends feedback to the Motor Control Node to
halt the stepper motor, thereby preventing excessive force application.

For object release, the Motor Control Node instructs the stepper motor to move the grip-
per to a predefined “safe” open position. Once this position is reached, the stepper motor
notifies the Motor Control Node to stop further actuation.

This closed-loop workflow ensures accurate and safe execution of both grasping and re-
leasing actions, with continuous feedback at each step to enhance reliability and protect
both the hardware and the objects being manipulated.

15

3 Verification

3.1 Verification of PCB Circuit

To ensure reliable operation of the PCB circuit, we performed several verification tests on
the LM393 comparator, the FSR402 sensor, and the LEDs.

3.1.1 Comparator Threshold Accuracy

We placed the FSR402 sensor on the input node and varied the potentiometer R2 across
its full range to test the comparator’s toggle point:

• Resolution: A 1 kΩ change in R2 produced an average 0.32 V shift in the toggle
point.

• Repeatability: Cycling R2 back and forth over its range multiple times yielded a
maximum error of 50mV in the measured threshold, demonstrating stable compara-
tor performance despite mechanical variation in R2.

• Sensor-to-Threshold Correlation: When a 500 g weight was applied to the FSR, the
comparator toggled at R2 about 4.5 kΩ. Increasing weight to 1 kg required R2 about
3.0 kΩ, confirming the expected inverse relationship between sensor resistance and
threshold setting.

These results verify that by adjusting R2, the LM393 comparator can be tuned to detect
specific grasp forces, and the system’s resolution is sufficient for our application.

3.1.2 LED Indicator Performance

We measured LED currents and illumination thresholds to verify visual feedback:

• LED1 turns as long as the VCC and GND pins are correctly connected.

• LED2 turns on when comparator output ”1”.

Both LEDs switch cleanly with the comparator output and are clearly visible under nor-
mal lab lighting.

Overall, these tests validate that the LM393 comparator, the FSR sensor, and the LED
operate within the design specifications.

16

3.2 Verification of Perception Module

3.2.1 RGB Camera

The RGB camera is successfully connected to the Raspberry Pi 5 via a csi cable[17]. The
pictures are taken with the Linux library libcamera. The collected scene images can be
transmitted to the Perception Module via ssh connection and python packages fastapi[9]
and Uvicorn[10]. The whole process is verified to be able to complete in 0.1 second.

3.2.2 Force Sensor

The FSR Sensor is successfully installed on gripper and can adjust the robot arms’ motor
based on signals from it. It can assist gripper’s action when gripping an object accordingly
as expected.

3.2.3 Object Locator

Our Object Locator is evaluated on a common-objects test dataset. The results 18 19 show
the effectiveness of this model, reaching an accuracy of 90% on the identification of 860
objects of 24 common classes. For a single image image of DINO timing pending

Figure 18: Grouding DINO evaluation result
Figure 19: Grouding DINO an-
notation example

17

3.3 Verification of Planning Module

3.3.1 Task Decomposition

The Planning Module can correctly decompose high-level user instructions into subtasks
that are ordered in valid and feasible logic. A case study 20 shows its effectiveness, where
the task is decomposed correctly.

3.3.2 Structured Plan generation

The Planning Module can generate plans that are consistent with the current scene, as
described by the Perception Module. The case study 20 shows its effectiveness, where the
plan is generated feasibly and consistent to the user instruction and current scene.

Figure 20: A planning module case study.

<User Instruction> Give me two fruits after giving me a coke.

<Output> To accomplish the task of giving two fruits after giving a coke, we need to follow the sequence of actions carefully.

Here's the step-by-step decomposition of the task and the corresponding plan:

Task Decomposition:

1. **Pick up the coke**: The user needs a coke first.

2. **Move the coke to the user**: Deliver the coke to the

user.

3. **Pick up the banana**: After delivering the coke, pick up one fruit (banana).

4. **Move the banana to the user**: Deliver the banana to

the user.

5. **Pick up the apple**: Pick up the second fruit (apple).

6. **Move the apple to the user**: Deliver the apple to the user.

Plan Generation:

Based on the action list and the guidelines, the plan will be:

```xm1
<plan>['grasp coke', 'move to user', 'grasp banana', 'move

to user', 'grasp apple', 'move to user']</plan>

```
Explanation of Each Step:

1. **'grasp coke'**: Pick up the coke can from the table.

2. **'move to user'**: Deliver the coke to the user.

3. **'grasp banana'**: Pick up the banana from the table.

4. **'move to user'**: Deliver the banana to the user.

5. **'grasp apple'**: Pick up the apple from the table.

6. **'move to user'**: Deliver the apple to the user.This plan ensures that the task is completed in the correct order, adhering to

the constraints and guidelines provided.

18

3.3.3 Motion Planning

The planner can successfully produce physically executable motion plans for the robot.
The output action tuples can be further transformed into coordinates of movement cap-
tured by the camera. This requirement was initially verified in the Gazebo simulation
environment and then in the reality.

Figure 21: Motion Planning in Simulation.

3.3.4 Plan Display (previously user interface)

Before robot’s execution, the planning module will present planned subtasks to the user
and incorporate confirmation before execution. As shown by the case 20, the generated
plan is displayed on the screen and if the generation is not in the given format of action
tuples, it will regenerate the plan.

3.3.5 Contribution to the System

The Planning Module can effectively interface with upstream (perception) and down-
stream(control)modules, which is shown in the final demo or demo video.

3.4 Verification of Action Module

3.4.1 Grasping Size Range

To verify the size range, the gripper was used to grasp objects with widths of 1 cm, 3 cm,
and 5 cm. In each test, the gripper was able to reliably grasp and hold objects of these
sizes without slipping or dropping. This confirms that the gripper meets the expected
operational range for object width.

19

3.4.2 Grasping Mass Limit

To assess the load capacity, the gripper was tested on objects weighing 0.1 kg, 0.2 kg, and
0.25 kg. The gripper securely lifted and transported each weight without any slippage or
failure. These results confirm that the gripper can safely handle objects up to 0.25 kg as
intended.

3.4.3 Stop/Safe Operation

For safety verification, the emergency stop function was tested using the robot control
panel. During both grasp and release operations, pressing the emergency button imme-
diately paused the robot and stopped all motion. In each case, the gripper maintained a
secure hold on the object or safely ceased operation, demonstrating reliable stop and safe
handling capability.

3.4.4 Closed-loop Control Response

The closed-loop control feature was verified by interacting directly with the force sensor.
When the force sensor was pressed, or when the gripper successfully grasped an object,
the stepper motor stopped automatically as designed. This confirms that the closed-loop
feedback system is responsive and prevents over-compression, protecting both the grip-
per and the object.

20

4 Cost and Schedule

4.1 Cost Analysis

Cost Item Unit Cost (USD) Quantity Total Cost (USD)

Hardware Components

Raspberry Pi 5 $80.00 1 $80.00

Force Sensors (FSR402) $8.50 1 $8.50

UR3e Robotic Arm $0.00 1 $0.00

Stepper Motor $7.72 1 $7.72

Controller $7.83 1 $7.83

Power Supply $4.38 1 $4.38

Screws and Nuts $3.47 1 $3.47

Anti-Slip Silicone Tape $1.09 1 $1.09

Torsion Spring $1.82 1 $1.82

Bearing $0.22 10 $2.20

PCB Board $25.00 1 $25.00

Hardware Subtotal $142.01

Labor

Engineering Labor $15.00/hr 200 $3,000.00

Total Project Cost $3142.01

Table 1: Detailed Cost Breakdown

21

4.2 Schedule

Table 2: Project Timeline and Team Responsibilities

Week Qi Long Bingjun Guo Yuxi Chen Qingran Wu

Phase 1: Research & Investigation

3/17 Literature Re-
view: Guiding
Long-Planning
with VLM

Literature
Review: Hierar-
chical Planning
Foundation
Model

Literature Re-
view: Optimal
force sensor
placement for
gripper design

Investigate
common grip-
per design for
robot arm

3/24 Literature Re-
view: VLA
models, includ-
ing OpenVLA

Literature Re-
view: Improved
VLA strategies,
including ECoT

Investigate PCB
design for sen-
sor integration

Build the initial
CAD model of
the gripper

3/31 Set up server
environments
and experiment
on OpenVLA
model

Set up server
environments
and validate in-
verse kinematic
method

Collaborate
with Qin-
gran sensor
placement and
gripper design

3D-print, as-
semble, test
the gripper, and
collaborate with
Yuxi on sensor
placement

Phase 2: Design

4/7 Team Collaboration: Design Document Composition

Perception
Module

Planning Mod-
ule

Planning Mod-
ule

Action Module

Phase 3: Implementation

Continued on the next page

22

Table 2 – Continued from previous page

Week Qi Long Bingjun Guo Yuxi Chen Qingran Wu

4/14 Implement
ECoT pipeline
and experiment
on ECoT-VLA
model

Experiment the
inverse kine-
matic method
in lab environ-
ment

Create prelimi-
nary PCB lay-
out

Improve the de-
sign and con-
tinue to assem-
ble and test the
gripper

4/21 Implement
Grounding
DINO calling
code and verify
on test set

Implement the
motion driver
(3d input) for
UR3e with
python package
for ROS2

Write ROS
nodes for force
sensors

Complete the
assembly and
test the func-
tionality

4/28 Test Object Lo-
cator and ECoT-
VLA model

Review on
Grounded
SAM; set up the
vision pipeline
with fastapi
and uvicorn

Execute end-to-
end system test-
ing on ROS and
finalize PCB de-
sign

Figure out the
connection
between the
gripper and the
robot arm

Phase 4: Testing & Integration

5/5 Integration Testing

Software work-
flow testing
with Bingjun

Software work-
flow testing
with Qi and
Yuxi

Hardware
workflow
testing with
Qingran and
Bingjun

Hardware
workflow test-
ing with Yuxi

5/12 Full System Implementation

5/19 System Testing and Debugging

23

5 Conclusion

This project developed a robotic system to understand human instructions and perform
long-horizon tasks, aiding individuals with limited mobility. It integrated perception,
planning, control, and action modules for autonomous operation.

5.1 Accomplishments

The project achieved several key milestones:

• Integrated System: A multi-module robotic system (Perception, Planning, Con-
trol, Action with custom gripper) was successfully designed and developed, orches-
trated by a Raspberry Pi 5 with ROS2.

• Advanced AI: State-of-the-art AI (VLMs like Qwen/Qwen2.5-VL for scene descrip-
tion/task planning, Grounded SAM for object localization) was implemented, with
the Object Locator achieving 90% accuracy on a test dataset.

• Custom Hardware: Key custom hardware, including a PCB for FSR402 force sensor
signal processing and a lead screw-based gripper, was designed and integrated.

• Modular Verification: Individual modules were verified, demonstrating accurate
object identification (within 5 seconds), effective task decomposition, feasible plan
generation, and successful inter-module communication.

5.2 Uncertainties and Future Developments

Despite successes, certain uncertainties and areas for future work remain. Fully achiev-
ing the 90% success rate for long-horizon tasks across diverse, dynamic environments
requires further extensive testing, as detailed Action Module and integrated system per-
formance metrics were not fully elaborated. Scaling to more complex tasks or nuanced
human instructions, and managing the inherent limitations of VLMs, presents future chal-
lenges. Enhancing the naturalness and depth of human-robot interaction, particularly in
handling ambiguity and implicit intent, requires further development.

5.3 Ethical Considerations

These are a couple of critical ethical considerations that go throughout our project:

24

5.3.1 IEEE and ACM Code of Ethics[18][19]

The project could be misused for unsafe or malicious tasks such as unauthorized modifi-
cations or weaponization. Responding to both the IEEE Code’s concern [18] about physi-
cal abuse and ACM Code’s[19] valuing on the public good, we strictly restrict our robot’s
capability to conduct physical harm through e.g. limiting the maximum operation speed
or rejecting malicious language instructions. Another risk is that users might overes-
timate the robot’s ability, leading to dangerous reliance on automation. We will provide
clear user guidelines and training that ensure the maintenance of users’ awareness of lim-
itations of the robot, responding to the ACM Code’s requirement to foster public aware-
ness of our technology.

5.3.2 ISO/TS 15066[20]

As the project involves a robot interacting with human instructions, this standard pro-
vides guidelines on safe human-robot interaction, ensuring safe speeds, forces, and workspace
conditions. We will also ensure that the instructions are given from a safe distance with
respect to the robot’s workspace.

25

References

[1] A. Radford, J. W. Kim, C. Hallacy, et al., “Learning transferable visual models from
natural language supervision,” in Proceedings of the 38th International Conference on
Machine Learning (ICML), CLIP: a foundational vision–language model; accessed
05/18/2025, 2021, pp. 8748–8763. [Online]. Available: https://openai.com/research/
clip.

[2] S. Bai, K. Chen, X. Liu, et al., “Qwen2.5-vl technical report,” arXiv preprint arXiv:2502.13923,
2025.

[3] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, and et al., “Language models are few-
shot learners,” Advances in Neural Information Processing Systems, vol. 33, pp. 1877–
1901, 2020, GPT-3, a 175 B-parameter large language model; accessed 05/18/2025.
[Online]. Available: https://arxiv.org/abs/2005.14165.

[4] T. Ren, S. Liu, A. Zeng, et al., Grounded sam: Assembling open-world models for diverse
visual tasks, 2024. arXiv: 2401.14159 [cs.CV].

[5] M. Contributors, ModelScope: One-stop, open-source platform for foundation models, ver-
sion 1.12.0, Online; accessed 05/18/2025, 2022. [Online]. Available: https://modelscope.
cn/.

[6] M. Caron, H. Touvron, I. Misra, et al., “Emerging properties in self-supervised vi-
sion transformers,” in Proceedings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), DINO: Self-Distillation with No Labels; accessed 18May2025,
2021, pp. 9650–9660. [Online]. Available: https://arxiv.org/abs/2104.14294.

[7] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,” in Proceedings
of the 31st International Conference on Neural Information Processing Systems (NeurIPS),
2017, pp. 6000–6010. [Online]. Available: https://arxiv.org/abs/1706.03762.

[8] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 779–788. [Online]. Available: https : / /
arxiv.org/abs/1506.02640.

[9] S. Ramı́rez, FastAPI: Fast and performant web framework for building APIs with Python
3.7+, version 0.110.0, Online; accessed 05/18/2025, 2019. [Online]. Available: https:
//fastapi.tiangolo.com/.

[10] T. Christie and contributors, Uvicorn: A lightning-fast asgi server implementation, us-
ing uvloop and httptools, version 0.29.0, Online; accessed 05/18/2025, 2018. [Online].
Available: https://www.uvicorn.org/.

26

https://openai.com/research/clip
https://openai.com/research/clip
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2401.14159
https://modelscope.cn/
https://modelscope.cn/
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://fastapi.tiangolo.com/
https://fastapi.tiangolo.com/
https://www.uvicorn.org/

[11] ECE 470 Course Staff, University of Illinois Urbana-Champaign, Lab 5: Robot Arm
Motion Planning, https://courses.engr.illinois.edu/ece470/sp2025/labs/lab5/,
Course laboratory handout, accessed 05/18/2025, 2025.

[12] J. Denavit and R. S. Hartenberg, “A kinematic notation for lower-pair mechanisms
based on matrices,” Journal of Applied Mechanics, vol. 22, no. 2, pp. 215–221, 1955.
[Online]. Available: https://doi.org/10.1115/1.4010995.

[13] Universal Robots A/S, Dh parameters for calculations of kinematics and dynamics, https:
//www.universal-robots.com/articles/ur/application-installation/dh-parameters-
for-calculations-of-kinematics-and-dynamics/, Online article, accessed 05/18/2025,
n.d.

[14] Raspberry Pi Ltd., Raspberry Pi 5 — technical specifications, https://www.raspberrypi.
com/products/raspberry-pi-5/, Datasheet and product page, accessed 05/18/2025,
2023.

[15] S. Macenski, G. Biggs, R. Lange, et al., “ROS 2: Design, architecture, and uses,” in
IEEE International Conference on Robots and Automation (ICRA) Workshop on Robots
Operating in the Real World, Accessed 05/18/2025, Philadelphia, PA, 2022. [Online].
Available: https://design.ros2.org.

[16] Universal Robots, Universal robots ros2 driver, https://github.com/UniversalRobots/
Universal Robots ROS2 Driver, Accessed 05/18/2025, 2025.

[17] Manufacturer Name, Raspberry pi camera cable, Online product page; accessed 18
May 2025, n.d. [Online]. Available: https : / / www. raspberrypi . com / products /
camera-cable/.

[18] IEEE, Ieee code of ethics, https://www.ieee.org/about/corporate/governance/p7-
8.html, Approved June 2024; accessed 05/18/2025, 2024.

[19] A. for Computing Machinery, Acm code of ethics and professional conduct, https://
www.acm.org/code-of-ethics, Adopted 06/2018; accessed 05/18/2025, 2018.

[20] ISO. “Robots and robotic devices — collaborative robots.” (2016), [Online]. Avail-
able: https://www.iso.org/obp/ui/#iso:std:iso:ts:15066:ed-1:v1:en.

27

https://courses.engr.illinois.edu/ece470/sp2025/labs/lab5/
https://doi.org/10.1115/1.4010995
https://www.universal-robots.com/articles/ur/application-installation/dh-parameters-for-calculations-of-kinematics-and-dynamics/
https://www.universal-robots.com/articles/ur/application-installation/dh-parameters-for-calculations-of-kinematics-and-dynamics/
https://www.universal-robots.com/articles/ur/application-installation/dh-parameters-for-calculations-of-kinematics-and-dynamics/
https://www.raspberrypi.com/products/raspberry-pi-5/
https://www.raspberrypi.com/products/raspberry-pi-5/
https://design.ros2.org
https://github.com/UniversalRobots/Universal_Robots_ROS2_Driver
https://github.com/UniversalRobots/Universal_Robots_ROS2_Driver
https://www.raspberrypi.com/products/camera-cable/
https://www.raspberrypi.com/products/camera-cable/
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.acm.org/code-of-ethics
https://www.acm.org/code-of-ethics
https://www.iso.org/obp/ui/#iso:std:iso:ts:15066:ed-1:v1:en

Appendix A ROS Custom Package Code

A.1 FSR Sensor Package

1 import rclpy

2 from rclpy.node import Node

3 from std_msgs.msg import Bool

4 from gpiozero import DigitalInputDevice

5

6 class FSRPublisher(Node):

7 def __init__(self):

8 super().__init__('fsr_publisher')

9

10 # Declare a parameter 'gpio_pin' with default value 17

11 self.declare_parameter('gpio_pin', 17)

12 gpio_pin =

self.get_parameter('gpio_pin').get_parameter_value()↪→

13

14 # Initialize GPIO pin 17 for FSR input with debounce

15 self.fsr = DigitalInputDevice(gpio_pin, bounce_time=0.1)

16

17 # Publisher for FSR status

18 self.publisher_ = self.create_publisher(Bool,

'fsr_pressed', 10)↪→

19

20 # Internal state to track current pressure status

21 self.is_pressed = not self.fsr.value

22

23 # Callbacks to update the internal state

24 self.fsr.when_activated = self._on_released

25 self.fsr.when_deactivated = self._on_pressed

26

27 # Timer to publish the current status at 10 Hz

28 self.timer = self.create_timer(0.1, self._publish_status)

29

30 self.get_logger().info('FSR sensor node started.')

31

32 def _on_pressed(self):

28

33 self.is_pressed = True

34 self.get_logger().info('Pressure detected (pressed)')

35

36 def _on_released(self):

37 self.is_pressed = False

38 self.get_logger().info('Pressure released')

39

40 def _publish_status(self):

41 msg = Bool()

42 msg.data = self.is_pressed

43 self.publisher_.publish(msg)

44

45 def main(args=None):

46 rclpy.init(args=args)

47 node = FSRPublisher()

48 try:

49 rclpy.spin(node)

50 except KeyboardInterrupt:

51 pass

52 node.destroy_node()

53 rclpy.shutdown()

A.2 Motor Control Package

1 import rclpy

2 from rclpy.node import Node

3 from std_msgs.msg import Bool

4 from std_srvs.srv import Trigger, SetBool

5 from serial import Serial

6 from stepper.device import Device

7 from stepper.stepper_core.parameters import DeviceParams

8 from stepper.stepper_core.configs import Address

9 import re

10 import time

11

12 class GripperController(Node):

13 def __init__(self):

29

14 super().__init__('gripper_controller')

15

16 # Define motor port and address, global bounds (omitted)

17 self.release_target_pos = 0

18

19 # Connect to motor

20 serial_conn = Serial(port, 115200, timeout=0.1)

21 self.device =

Device(DeviceParams(serial_connection=serial_conn,

address=Address(address)))

↪→

↪→

22 self.device.parse_cmd('ENA')

23

24 # Sensor state and parameters

25 self.fsr_triggered = False

26 self.is_grasping = False

27 self.is_releasing = False

28 self.is_out_of_bounds = False

29

30 # ROS interfaces

31 self.fsr_subscriber = self.create_subscription(Bool,

'/fsr_pressed', self.fsr_callback, 10)↪→

32 self.grasp_service = self.create_service(SetBool,

'/grasp_object', self.handle_grasp)↪→

33 self.release_service = self.create_service(SetBool,

'/release_object', self.handle_release)↪→

34 self.end_lock_service = self.create_service(Trigger,

'/end_lock', self.handle_end_lock)↪→

35 self.grasp_release_check_timer = self.create_timer(0.1,

self.check_grasp_release_status)↪→

36 self.get_logger().info('GripperController node has

started.')↪→

37

38 def fsr_callback(self, msg):

39 self.fsr_triggered = msg.data

40 # self.get_logger().info(f'FSR state updated:

{self.fsr_triggered}') # Uncomment for debugging↪→

41

30

42 def handle_grasp(self, request, response):

43 if self.is_out_of_bounds:

44 if not request.data:

45 response.success = False

46 response.message = "Gripper in Emergency Stop. Call

/grasp_object with data=true to force."↪→

47 return response

48 else:

49 self.device.parse_cmd('ENA')

50 self.get_logger().info('Grasping object...')

51 self.fsr_triggered = False

52 self.is_grasping = True

53 self.device.parse_cmd('CLR')

54 self.device.parse_cmd('JOG 300')

55 response.success = True

56 response.message = 'Grasp command sent. Waiting for FSR

trigger...'↪→

57 return response

58

59 def handle_release(self, request, response):

60 if self.is_out_of_bounds:

61 if not request.data:

62 response.success = False

63 response.message = "Gripper in Emergency Stop. Call

/release_object with data=true to force."↪→

64 return response

65 else:

66 self.device.parse_cmd('ENA')

67 self.get_logger().info('Releasing object...')

68 self.device.parse_cmd('ENA')

69 self.device.parse_cmd('CLR') # Clear stall condition

70 self.device.parse_cmd(f'MOV {self.release_target_pos}')

71 self.is_releasing = True

72 response.success = True

73 response.message = 'Release command sent. Waiting for

completion...'↪→

74 return response

31

75

76 def handle_end_lock(self, request, response):

77 self.get_logger().info('Removing out-of-bounds

constraints...')↪→

78 self.device.parse_cmd('ENA')

79 self.device.parse_cmd('CLR') # Clear stall condition

80 self.is_out_of_bounds = False

81 self.is_grasping = False

82 self.is_releasing = False

83 response.success = True

84 response.message = 'Successfully cleared out-of-bounds

constraints.'↪→

85 return response

86

87 def check_grasp_release_status(self):

88 current_pos = self.get_position()

89 if self.is_grasping:

90 if self.fsr_triggered:

91 self.get_logger().info('Object detected by FSR |

stopping motor.')↪→

92 self.device.parse_cmd('STP')

93 self.is_grasping = False

94 elif current_pos > self.max_pos:

95 self.get_logger().warning(

96 f'Position {current_pos} out of bounds

({self.min_pos} - {self.max_pos}). Stopping

motor.'

↪→

↪→

97)

98 self.device.parse_cmd('STP')

99 self.device.parse_cmd('DIS')

100 self.is_grasping = False

101 self.is_out_of_bounds = True

102 elif self.is_releasing:

103 if current_pos < self.min_pos:

104 self.get_logger().warning(

32

105 f'Position {current_pos} out of bounds

({self.min_pos} - {self.max_pos}). Stopping

motor.'

↪→

↪→

106)

107 self.device.parse_cmd('STP')

108 self.device.parse_cmd('DIS')

109 self.is_releasing = False

110 self.is_out_of_bounds = True

111 elif abs(current_pos - self.release_target_pos) < 250:

112 self.get_logger().info('Gripper fully opened.')

113 self.is_releasing = False

114

115 def get_position(self) -> int:

116 s = str(self.device.parse_cmd('POS'))

117 try:

118 m = re.search(r'POS\s*=\s*(-?\d+)', s)

119 except Exception as e:

120 self.get_logger().error(f"Error parsing position: {e}")

121 raise ValueError("Could not parse position from device

response.")↪→

122 if not m:

123 raise ValueError("Could not parse position from device

response.")↪→

124 return int(m.group(1))

125

126 def _cleanup(self):

127 if rclpy.ok(): # Only log if rclpy is still active

128 self.get_logger().info('Shutting down')

129 try:

130 self.device.parse_cmd('DIS')

131 except Exception:

132 pass

133

134 def destroy_node(self):

135 self._cleanup()

136 super().destroy_node()

137

33

138

139 def main(args=None):

140 rclpy.init(args=args)

141 node = GripperController()

142 try:

143 rclpy.spin(node)

144 except KeyboardInterrupt:

145 pass

146 finally:

147 node.destroy_node()

34

	Introduction
	Problem Statement
	High-Level Requirement List

	Design
	Perception Module
	Object identifier
	High-level Perception: Scene description
	Low-level Perception: Fine-grained object stability

	Planning Module
	Structured High-level Planning
	Low-level (kinematics) planning

	Control Module
	Peripheral Connection - Force Sensor
	Peripheral Connection - Motor
	Device Connection - Camera, UR3e and Server
	Module Overall Workflow

	Action Module
	Design Procedure
	Design Details
	Workflow

	Verification
	Verification of PCB Circuit
	Comparator Threshold Accuracy
	LED Indicator Performance

	Verification of Perception Module
	RGB Camera
	Force Sensor
	Object Locator

	Verification of Planning Module
	Task Decomposition
	Structured Plan generation
	Motion Planning
	Plan Display (previously user interface)
	Contribution to the System

	Verification of Action Module
	Grasping Size Range
	Grasping Mass Limit
	Stop/Safe Operation
	Closed-loop Control Response

	Cost and Schedule
	Cost Analysis
	Schedule

	Conclusion
	Accomplishments
	Uncertainties and Future Developments
	Ethical Considerations
	IEEE and ACM Code of Ethicsieeecoeacmcoe
	ISO/TS 15066iso/its15066

	References
	Appendix ROS Custom Package Code
	FSR Sensor Package
	Motor Control Package

