
ECE 445

Senior Design Laboratory

Final Report

Human-Robot Interaction for Object Grasping
with Visual Reality and Robotic Arms

Team #42

Ziming Yan (zimingy3@illinois.edu)
Jiayu Zhou (jiayu9@illinois.edu)

Yuchen Yang (yucheny8@illinois.edu)
Jingxing Hu (hu80@illinois.edu)

TA: Tielong Cai & Tianci Tang

May 19, 2025

Abstract

This document provides an outline and LATEX template for report formatting in Senior
Design. This document does not teach you what to include, or how to use LaTeX. Assumes
a workable level of LaTeX proficiency.

ii

Contents

1 Introduction 1

2 System Description 2

3 Design 4
3.1 Control Module . 4

3.1.1 Design Procedure . 4
3.1.2 Design Details . 4
3.1.3 Verification and Testing . 8

4 Cost Analysis 10

5 Conclusion 11
5.1 Summary of Completion . 11
5.2 Further Improvement . 11
5.3 IEEE Ethical Standards Compliance . 11
5.4 Broader Impacts . 11

References 12

Appendix A Example Appendix 13
A.1 Codes . 13
A.2 Figures . 13

iii

1 Introduction

A general section looks like this. There is usually a blurb introducing the top-level section
here.

1

2 System Description

Generally, we developed the system which we used to achieve our senior design project,
and we drew the block diagram to delineate the subsystems and individual tasks, which is
shown as Figure 1.The system is composed of four main modules: Control Module, Actuator
Module, User Interaction Module, and Power Module, collaboratively enabling a VR-guided
robotic claw system with closed-loop force control and CAN communication.

Figure 1: Block Diagram

Control Module

At the core of the system lies the Control Module, where Unity software runs and interfaces
with the physical system via multiple communication ports. The UR Stream and Serial Port
in Unity handle command and signal exchange through UART with the Claw Controller
(based on an STM32 microcontroller). The controller processes incoming signals and sends
control commands via CAN bus to the Motor Driver, which in turn drives the 42 Stepper
Motor. Additionally, a Pressure Sensor provides real-time feedback to the Claw Controller
via analog and GPIO inputs, forming a basic closed-loop control system for grasping force
regulation.

2

Actuator Module

The Actuator Module consists of a 42 Stepper Motor and a 3D-printed claw. The motor
is controlled by the Motor Driver, which receives commands from the Claw Controller via
CAN bus. The claw’s design allows for precise control of the grasping force, enabling the
system to adapt to various objects and scenarios.

User Interaction Module

The User Interaction Module is designed to facilitate user engagement with the system.
It includes a VR headset and controllers, which provide an immersive experience for the
user. The Unity software processes input from the VR controllers and translates it into
commands for the Claw Controller, allowing users to interact with virtual objects in a realistic
manner.

Power Module

The Power Module supplies the necessary power to the entire system. It ensures that all
components, including the Control Module, Actuator Module, and User Interaction Module,
receive stable and sufficient power for optimal performance.

Initially, we planned to use a STM32F103 microcontroller and SG-90 motor to control the
claw. However, we found the accuracy was low and reaction time was far from satisfactory.
Therefore, we changed to use more powerful STM32F407 with M4 core and 42 stepper
motor. In addition, we wanted to use unity to control arm through ROS system at first,
but we finally found a online source which allowed us to control arm derectly by unity hub,
which reduces the complexity and optimizes the performance of the system.

3

3 Design

3.1 Control Module

3.1.1 Design Procedure

The Control Module is the brain of the system, where all the processing and decision-making
occurs. It is responsible for receiving input from the user, processing that input, and sending
commands to the Actuator Module. The core of the control module is the Unity, it received
the control signal from VR handler, like pressing the buttons to move the UR3 arm and the
grip process of claw, then, it translate command signal to the parameters of motor and sent
it to subcontrollers.

In addition to Unity, we added a STM32 board to control the stepper motor to finish the
closed-loop control of claw, inorder to ensure the stability of grisping. After confirming the
main controllers in module, I need to think about how to connect them with each other or
other modules. Through refering to the ST company manual of STM407ZG chip, I found that
it supports the USART communication protocol, which means it can receive the command
from PC Unity with UART line. Moreover, it also has pins with CAN_RX and CAN_TX,
which also supports me to control the stepper motor with CAN protocol [1].

After designing the flow path, I wanted to add a sensor on claw to monitor the grip power,
so I added the FSR402 pressure sensor and connect it to STM board. Overall, I got the
main data flow idea.

3.1.2 Design Details

Aftering determining the main data flow theorically, I design to set up hardware circuit,
therefore, I drew the design graph, as shown in the Figure 2. This introduces the main
connection of control module.

4

Figure 2: Design Circuit

CAN Communication:

Through referring to the motor driver board X42_V1.3 instruction manual, it allows us to
use intergrated CAN command to control the stepper [2]. However, the STM32F407ZG only
have RX and TX pins, the transmition of CAN signal should be CAN_H and CAN_L two
logical voltage [3], which means I need to design a CAN receive and send message module.
After searching online, I decided to use the TJA1050 chip to convert the digital CAN signals
from the microcontroller to the differential voltage signals required by the CAN bus and vice
versa, as shown in the figure 3. The TJA1050 is a CAN transceiver IC that acts as a bridge
between the CAN controller (STM32) and the physical CAN bus. It converts single-ended
digital signals from the microcontroller into differential signals suitable for transmission
over the CAN network, ensuring noise immunity and reliable data communication. At the
receiving end, it converts the differential bus signals back into digital signals that can be
interpreted by the microcontroller. And to ensure that the bus signals are stable, two 120
Ω resistors should be connected in parallel at both ends of the CAN bus [3].

Pressure Sensor:

5

Figure 3: CAN Module

The FSR402 pressure sensor is a force-sensitive resistor that changes its resistance based
on the amount of force applied to it. It is commonly used in applications where measuring
pressure or force is required. The FSR402 sensor works by changing its resistance when a
force is applied to its surface. The more force applied, the lower the resistance. By measuring
the voltage across the sensor, we can determine the amount of force being applied. I develop
two approaches to read the sensor data:

1. Using the default ADC (Analog-to-Digital) port of STM32F407ZG, which is a 12-bit
ADC. The ADC converts the analog voltage signal from the FSR402 into a digital
value that can be processed by the microcontroller. The ADC can be configured to
read the voltage across the sensor and convert it into a corresponding digital value.

2. Using the LM393 chip to compare the voltage on pressure sensor with referrence voltage
(Variable Resistance). When the voltage on FSR402 is larger than referrence, the
output will be high voltage. When the pressure is larger than desired, it will change
voltage, which achieves simple Analog to Digita transform.

For convinient, I design a circuit intergrated on a small PCB 6 and soldering it. The circuit
is shown as Figure 4. In circuit, I connect the FSR402 with 10kΩ resistor. AO port will
output the voltage on FSR402 under 3.3V input, using for the 1st method. DO port with
output the compare consequence of FSR voltage and 10k Ω variable resistance voltage, using

6

as GPIO input for 2ed method. Finally, I decide to use the 2ed method and the reson will
be explained in Verification and Test part.

Figure 4: FSR402 Circuit

Coding Explain:

Coding in control module is a huge and most complex part, I will introduce it with two
aspects: STM32 and Unity.

In STM32, I develop the codes based on the HAL library which is configured by STM32CubeMX
and implemented them in KDM5 (Keil Development Environment).

• can.c: The HAL (Hardware Abstraction Layer) library provides a high-level interface
for configuring and using the CAN peripheral. What I did is initializing the handler
and change the can_send() function to send standard CAN message to tell the 42
stepper to run its position circle, like move to which position, how fast, when stop,
and so on. In addition, I also need to write the receive function to receive the position
feedback of motor to control its stop time. For example, if I send 01 36 6B to request
the position of motor, it will response 01 36 01 00 01 00 00 6B, which means the postion
is 0x00010000 (16), direction is positive. The send function runs smoothly, but the

7

feedback function costs me plenty of time to debug.

• usart.c: The UART (Universal Asynchronous Receiver-Transmitter) peripheral is used
for serial communication with the Unity application. The HAL library provides func-
tions to initialize the UART peripheral and rewrite the HAL_UART_RxCpltCallback()
function to achieve the communication between STM32 and Unity.

• sensor.c: AsI mentioned before, I choose to use the DO as output of the pressure sensor.
To achieve this, I just initialized the GPIN_IN and open the clock of corresponding
pin RCC to receive the digital signal from DO.

• main.c: The main function initializes the system clock, can port, uart port, sensor,
and so on. After initialization, I develop the logic of gripping and releasing an infinite
loop. In the loop, it continuously checks for incoming data from Unity via UART,
the Unity will send ”S” for start, ”R” for release and ”H” for stop. After receiving
the start, CAN message will be send to tell motor to begin until the reflected pressure
sensor data shows the claw have griped the item. When pressure is over the threshold
(input low voltage change), STM32 will send CAN message to stop motor. While
Unity sending release signal, the motor will return according to the position feedback
minitoring. Then, the STM32 will wait for next command from Unity. The following
Moore FSM(Figure 5) shows the overall logics.

Unity:

• VR Handler:

• Motor Control:

• Serial Port: The serial port communication in Unity is implemented using the Sys-
tem.IO.Ports namespace. This allows Unity to open a serial port, send data to the
STM32, and receive data back. The serial port settings, such as baud rate and parity,
are configured to match those of the STM32. For this project, I use the UART line to
connect them and my baud rate was set in STM to 115200, therefore, the serial port
in unity setting is corresponding to baud rate and use COM4 CH340 PC port.

3.1.3 Verification and Testing

After going through all the procedures above, I successfully set up the control module with
hardware as shown in Figure . However, I encountered plenty of problems during the testing

8

Figure 5: Motor FSM

and debugging process.

• PCB Testing:(voltage test)

• Baud Rate Mismatch:(equation)

• STM32 ADC Delay:(why method2)

• CAN Feedback Missing:(debug)

9

4 Cost Analysis

10

5 Conclusion

5.1 Summary of Completion

5.2 Further Improvement

5.3 IEEE Ethical Standards Compliance

5.4 Broader Impacts

11

References

[1] STMicroelectronics, STM32F407ZG - High-performance foundation line, Arm Cortex-
M4 core with DSP and FPU, 1 Mbyte of Flash memory, 168 MHz CPU, ART Accel-
erator, Ethernet, FSMC, https://www.st.com/en/microcontrollers-microprocessors/
stm32f407zg.html, Accessed: 2025-05-17.

[2] 张大头, 步进闭环驱动说明书 rev1.3, https://blog.csdn.net/zhangdatou666/article/
details/132644047, Accessed: 2025-05-18, 2023.

[3] 艾格北峰, Can 总线协议, https : / / blog . csdn . net / qq _ 35057766 / article / details /
135580884, Accessed: 2025-05-18, 2024.

12

https://www.st.com/en/microcontrollers-microprocessors/stm32f407zg.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f407zg.html
https://blog.csdn.net/zhangdatou666/article/details/132644047
https://blog.csdn.net/zhangdatou666/article/details/132644047
https://blog.csdn.net/qq_35057766/article/details/135580884
https://blog.csdn.net/qq_35057766/article/details/135580884

Appendix A Example Appendix

A.1 Codes

A.2 Figures

Figure 6: FSR402 PCB

13

	Introduction
	System Description
	Design
	Control Module
	Design Procedure
	Design Details
	Verification and Testing

	Cost Analysis
	Conclusion
	Summary of Completion
	Further Improvement
	IEEE Ethical Standards Compliance
	Broader Impacts

	References
	Appendix Example Appendix
	Codes
	Figures

