
ECE 445

SENIOR DESIGN LABORATORY

FINAL REPORT

Project: Design, Build and Control of a
Jumping Robot

Team #36

XINYI YANG

(xinyiy19@illinois.edu)
SIYING YU

(siyingy3@illinois.edu)
HANJUN LUO

(hanjunl2@illinois.edu)
XUECHENG LIU

(xl125@illinois.edu)

TA: Leixin Chang

May 18, 2025



Abstract

Complex and uneven terrain presents significant challenges to the locomotion systems
of traditional robots. Some researchers have proposed equipping robots with jumping
mechanisms to address this issue; however, existing jumping robots often suffer from
drawbacks such as high cost, difficulty in miniaturization, structural complexity, and
maintenance challenges. To address these limitations, this project introduces a novel,
low-cost, and reliable bio-inspired jumping robot designed to overcome these issues by
mimicking the jumping mechanism of fleas. Our system integrates an efficient spring-
based energy storage module, an intelligent actuation and control mechanism incorpo-
rating a computer vision module and motors, and an innovative trigger-release system,
ensuring powerful yet precisely controllable jumps within a compact form factor. The
integrated system, which includes mechanical, control, and computer vision modules,
aims to achieve multi-level jumping capabilities, precise jump force regulation guided by
real-time visual feedback, and accurate 3D environmental perception for adaptive trajec-
tory planning. This research aims to provide a versatile robotic platform with enhanced
agility and maneuverability for operation in challenging real-world application environ-
ments.

ii



Contents

1 Introduction 1

2 Design 3
2.1 Design Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Mechenical Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Embedded Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.3 Computer Vision Design . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Design Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 Motion Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Control Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Computer Vision Subsystem . . . . . . . . . . . . . . . . . . . . . . . 11

3 Verification 16
3.1 Spring and Detachment Module . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Gear Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Embedded Control Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Computer Vision Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Costs 20

5 Conclusions 21

References 22

iii



1 Introduction

This project aims to design and implement a spring-powered jumping robot to explore the
feasibility of using mechanical energy for impulsive vertical motion. Unlike traditional
wheeled or tracked robots, a jumping robot stores and rapidly releases elastic potential
energy to achieve lift-off. This mechanism offers advantages such as compact structure
and rapid response, making it suitable for scenarios with constrained space or sudden
mobility demands.

The system is divided into three main subsystems: the CV (Computer Vision and Com-
munication), Control, and Motion modules. The CV module allows the user to send a
jump command via Bluetooth. The control module, based on an ESP32 microcontroller,
receives the command and drives a servo motor to preload the spring mechanism. Upon
reaching the trigger angle, a half-gear mechanism releases the stored energy to initiate the
jump. The motion module consists of a four-bar linkage, gear transmission, and two par-
allel torsional springs responsible for energy storage and mechanical release. The overall
system architecture is illustrated in Figure 1.

Figure 1: Block Diagram of our jumping robot.

The project is designed to meet the following performance requirements:

• The overall robot dimensions must not exceed 15× 15× 15 cm3.

• The system must support two levels of jump height, with at least one exceeding 10
cm.

• The jump must be triggered wirelessly via Bluetooth.

1



The significance of this project lies in its role as an experimental platform for validating
the feasibility of spring-driven jumping mechanisms in compact robotic systems. While
the current implementation remains a basic prototype with limited jump height and fre-
quency, the design demonstrates the viability of performing mechanical jumps with min-
imal electronic control. In the future, this type of robot has potential applications in areas
such as urban obstacle traversal, search-and-rescue, or even low-gravity mobility explo-
ration. Our system establishes a practical foundation for further research on multi-jump
stability, spring selection optimization, and integrated compliant mechanisms.

2



2 Design

2.1 Design Procedure

Discuss your design decisions for each block at the most general level: What alternative
approaches to the design are possible, which was chosen, and why is it desirable?

Introduce the major design equations or other design tools used; show the general form
of the circuits and describe their functions.

2.1.1 Mechenical Design

The mechanical structure of the jumping robot is based on a four-bar linkage mechanism.
This configuration is chosen for its ability to convert rotational motion into linear dis-
placement at the robot’s foot, enabling vertical jumping.

The four-bar linkage consists of a body, two leg links, and a fixed base. The relative
lengths were chosen to maximize vertical displacement while maintaining mechanical
stability.

To power the jump, we used a torsional spring mounted at two base axes. Compared to
conventional linear springs, torsional springs offer a more compact form factor and allow
direct coupling with the rotating shaft.

For the release mechanism, a custom half-gear was designed to act as a passive detach-
ment system. This gear has teeth only over a portion of its circumference. As the motor
compresses the spring, it engages with a secondary gear. At a specific angular position,
the teeth disappear, causing the gears to disengage automatically and releasing the stored
energy. This eliminates the need for a separate actuator and significantly reduces system
weight and detachment failure risks.

We also considered an adjustable jumping mechanism by implementing a worm gear
and motor to change leg length dynamically. However, this approach introduced exces-
sive mass and complexity. As a result, we opted for a simpler and lighter solution using
manual sliding slots that allow for pre-jump leg length tuning to achieve different jump
heights.

2.1.2 Embedded Design

Phase I: Stepper and Coreless Motor Prototype The first prototype was a two-motor
design, utilizing a stepper motor to actuate the release and using a coreless brushed DC
motor to compress the spring. The stepper motor used full-step drive mode, allowing
for accurate position control and triggering the release part of the constraint. The coreless
motor did not produce enough torque to compress the spring through the gear train, even
when duty cycles were at the maximum. As a result, the cumulative weight and size of
the two motors and supporting control electronics exceeded our limits for a lightweight
mobile platform. In addition, in order to quickly test and iterate, we added an infrared
control module to this generation of control system.

3



Figure 2: Block Diagram for Two Motor System

Phase II: Servo Motor and ESP32 Development Board To simplify the mechanical and
control structures, the second iteration replaced the two motors with one continuous 360°
SG90 servo. The servo offered bi-directional continuous rotation with ample torque to
compress and release the spring and reduced the mechanical complexity significantly. To
generate PWM signals and facilitate bluetooth communication with a host PC, an ESP32-
WROOM development board was used. While this configuration worked properly and
allowed for testing of control via bluetooth, the development board’s large form factor
and peripheral overhead were not acceptable for onboard use in the compact robot chas-
sis.

Phase III: Servo Motor and ESP32-C3 SuperMini Integration The final design is still
in progress. We used the ESP32-C3 SuperMini, a small and lightweight microcontroller
module, to control the SG90 servo. This allowed us full integration of the embedded
system onto the robot, while still maintaining full functionality of the BLE and PWM
generation. The ESP32-C3 SuperMini was powered by a UDM81256 boost converter that
stepped up the 3.7V output from a single cell (401119-100) LiPo battery to a steady 5V. This
5V rail powered both the servo and the ESP32-C3 board. We also designed a custom PCB,
as shown in fig 3 to consolidate the boost converter, servo headers, battery connector, and
ESP32-C3 interface. The EN pin of the UDM81256 was connected to a toggle switch so
that power could be turned on and off conveniently.

Figure 3: PCB Draft for Phase III

4



2.1.3 Computer Vision Design

The computer vision module of our jumping robot is based on a UHD (4k) RGB camera,
a computing unit, and corresponding algorithm. Our choices were guided by the specific
constraints of our small-scale jumping robot, the requirements for real-time performance,
cost-effectiveness, and the nature of our controlled testing environment.

For the camera intended to measure distance between the robot and possible locations of
jump destination, we chose an external high-resolution RGB camera connected to an off-
board, high-powered computer that performs all vision processing. A sizable alternative
we explored was a fully on-board system, with a miniaturized camera and processing unit
onboard the robot. However, an on-board design would present significant problems.
First, because our robot is lightweight for our intended purpose, an onboard camera and
either a sufficiently powerful processor to process the camera feed or a wireless signal
module with enough bandwidth for video signal would add considerable weight which
could directly affect the jump. The off-board system keeps the robot un-encumbered.
Secondly, integrating a high-performance vision system onto a small robot would signifi-
cantly increase its complexity and cost, including challenges with power supply and heat
dissipation. The external setup is simpler in these regards for the robot itself and can be
more economical. Finally, real-time processing of high-resolution video streams demands
significant computational resources, which would be difficult or costly to replicate in a
miniaturized on-board form.

Regarding the method for 3D perception and robot pose estimation, we selected Aruco-
based detection methods and a single RGB camera. Other possible approaches to 3D
perception include stereo camera systems and LiDAR. Aruco markers [1] provide robust
3D pose information using just a single, standard RGB camera. This makes the system
relatively inexpensive and straightforward to implement compared to alternatives, with
sufficient accuracy for our navigation and jump control tasks.

2.2 Design Details

The overall layout and mechanical structure of the jumping robot are shown in Fig-
ure 4.

2.2.1 Motion Subsystem

Gear Transmission and Linkage Actuation To enable the jumping motion, we imple-
mented a four-bar linkage system that transforms the motor’s rotational motion into a
vertical thrust.

The main purpose of using the four-bar linkage was to achieve a feasible and controllable
jumping trajectory without relying on complex mechanisms. We used simulation tools to
model the linkage motion and evaluate the resulting trajectory, ensuring that the output
motion remained predominantly vertical. By adjusting the lengths and pivot positions
of the links, we were able to control the initial launch angle, which in turn affected the

5



jumping height. This tunability allowed us to explore different configurations and select
a geometry that met both the robot’s size constraints and the desired performance.

Figure 4: Physical design of the jumping robot.

The input to the linkage is driven by a motor connected to a compound gear train with
a total reduction ratio of approximately 3.8 × 3.8 × 2 = 28.9. This multi-stage reduction
significantly lowers the motor’s output speed while increasing the available torque, al-
lowing sufficient force to preload the torsional spring before the jump. All linkage and
gear components were 3D-printed and manually assembled.

Torsional Spring Selection The jumping mechanism relies on storing energy in tor-
sional springs and releasing it rapidly. To estimate the minimum required energy for a
successful jump, we apply the conservation of energy principle. The potential energy
needed to lift a robot of mass m = 30 g = 0.03 kg to a height of h = 0.1 m is:

E = mgh = 0.03× 9.81× 0.1 = 0.0294 J

This energy must be provided by the torsional springs. The energy stored in a torsional
spring is given by:

E =
1

2
kθ2

where k is the torsional stiffness (in Nm/rad) and θ is the preload angle (in radians). Since
we used two identical springs in parallel, the total energy becomes:

6



Etotal = 2× 1

2
kθ2 = kθ2

Assuming a preload angle of θ = π
2
rad, the required minimum spring stiffness be-

comes:

k ≥ 0.0294

(π/2)2
≈ 0.0119 Nm/rad

In our prototype, we used two torsional springs made of spring steel, each with an outer
diameter of 5.5 mm and a wire diameter of 1 mm. The mean coil diameter is approx-
imately 4.5 mm. Each spring has 6 active turns. Using the standard torsional spring
stiffness formula [2]:

k =
d4G

10.8DN

where d = 1 mm, D = 5.5 mm, G = 79.3× 109 Pa, and N = 6, we estimate:

k ≈ (0.001)4 × 79.3× 109

10.8× 0.0055× 6
≈ 0.2225 Nm/rad

Each spring contributes approximately 0.2225 Nm/rad, giving a combined effective stiff-
ness of about 0.45 Nm/rad, which is sufficiant for the 10cm jump.

Nonetheless, our physical testing showed that this spring configuration successfully launched
a 30g robot to a height of approximately 10cm. This suggests that the theoretical estima-
tion is conservative, and that real-world factors—such as rapid energy release, energy
losses, and mechanical amplification—can compensate for lower spring stiffness.

The current design demonstrates that even relatively soft torsional springs can achieve
functional jumping performance under appropriate mechanical conditions.

Motor Transmission and Integration To determine whether the selected motor is capa-
ble of compressing the torsional springs to the desired preload angle, we estimated the
minimum required torque based on experimental measurements. Specifically, we mea-
sured the tangential force required to twist a single torsional spring by 90◦.

The total torque needed at the output shaft (i.e., at the spring interface) is given by:

τspring = F · r ·N

where F = 6N is the experimentally measured tangential force, r = 0.04m is the moment
arm, N = 2 is the number of torsional springs in parallel.

Substituting the values:

7



τspring = 6N · 0.04m · 2 = 0.48Nm

Note that this torque is be delivered after the gear train. To calculate the corresponding
required motor torque, we divide by the gear reduction ratio G = 28.88 and account for
transmission inefficiency using a safety factor of 1

0.8
= 1.25:

τmotor =
τspring

G · η
=

0.48

28.88× 0.8
≈ 0.0208Nm

Therefore, the motor must supply at least 0.0208 Nm of torque at its shaft to overcome
mechanical losses and preload the springs to the desired angle. This value serves as the
baseline for selecting an appropriate actuator and ensuring reliable operation under real-
world conditions.

The servo under consideration weighs only 9 grams and provides a stall torque of 1.6
kg·cm (approximately 0.157 Nm). Its built-in position feedback and angle control make it
well suited for use with the partial gear design.

2.2.2 Control Subsystem

The Embedded Control System coordinates communications and motion for the robot.
We used an ESP32-C3 development board soldered onto a custom PCB which is then
powered by a small 401119 LiPo battery. The control commands are sent to the ESP32-
C3 microcontroller wirelessly over Bluetooth Low Energy (BLE) from the host device.
The microcontroller processes the received commands and generates the PWM signals to
drive the servo motor. All connection routing and power management is handled on the
custom PCB.

Figure 5: ESP32C3

8



Microcontroller The microcontroller, ESP32-C3 Supermini5 development board, han-
dles data transmitting and motor driving. This microcontroller was chosen because of its
low cost, small size, light weight, and built-in Bluetooth capability. It communicates with
the developer’s computer and flash the firmware through the type-C serial port.

To facilitate compact installation and autonomous operation, we designed a custom PCB
6 to connect the ESP32-C3 SuperMini to peripheral components. The PCB incorporates a
boost converter module, a toggle switch, and connections to the servo, while providing
a clean way to route power and deliver signals. It provides 3.7V regulated voltage from
the 401119 LiPo battery to the servo through the boost module, while also consolidating
all control and power paths into a single lightweight board.

Figure 6: PCB Schematic

Bluetooth The Bluetooth communication channel serves as the wireless bridge between
the host PC and the embedded control system. This module is logically divided into two
parts: the embedded device side, implemented on the ESP32 microcontroller, and the
host-side controller, which initiates and manages the communication session. Together,
these subsystems form a low-latency control loop that supports command dispatch and
feedback monitoring, as shown in Figure 7. The embedded Bluetooth Low Energy (BLE)
module is implemented on the ESP32-C3 using the native BLE stack. The ESP32 acts as
a BLE server that exposes a custom service with a writable characteristic. Upon initial-
ization, the system configures a primary service and registers a characteristic that allows
both read and write operations, serving as the main channel for remote command in-
put.

The BLE interface is interrupt-driven. A subclass of BLECharacteristicCallbacks
is defined to override the onWrite() function. Whenever the host sends a new com-
mand, the ESP32 immediately triggers this callback, which parses the received string

9



Figure 7: Bluetooth Module Processing Pipeline

(e.g., “+500” or “-800”) and converts it into control actions for the servo motor, includ-
ing rotation direction and duration.

To manage connection states, the ESP32 also registers a server callback to detect connect
and disconnect events. When disconnection is detected, advertising is restarted automat-
ically. In addition, a periodic “ping” string is sent to the host every 10 seconds using BLE
notifications. This mechanism allows the host to verify that the connection remains active
and facilitates lightweight keep-alive communication.

On the host side, a Bluetooth client (e.g., smartphone using nRF Connect) connects to the
ESP32 device, discovers the BLE service, and writes UTF-8 encoded command strings to
the characteristic. Commands such as “+500”, “-400”, or “0” represent forward, reverse,
or stop signals for the servo motor respectively. The host can also receive periodic “ping”
notifications, which provide feedback on connection health and device status.

Servo We selected the 360° version of the SG90 micro servo as the actuation compo-
nent for the robot’s jumping mechanism. This decision was motivated by multiple en-
gineering trade-offs. The SG90 servo offers a better power-to-weight ratio than stepper
motors in our application where weight is critical for the lightweight jumping robot de-
sign, even though they provide very good angular control, the stepper motoe is way too
heavy. There was also consideration given to coreless DC motors, but they did not pro-
vide enough torque to reliably actuate the spring-loaded mechanical structure.

The 360° SG90 is a continuous rotation servo, which processes standard PWM signals as
commands for speed and direction - not as commands for target angles. A PWM signal
of 1.5ms pulse width results in zero speed (stop) and closer to 0.5ms pulse width max-
imum speed in one direction, and 2.5ms pulse width maximum speed in the opposite
direction.

The ESP32-C3 microcontroller generates PWM actuators with a 50Hz signal using its

10



built-in LEDC (LED Controller) Peripheral. The duty cycle is modified in order to vary
the pulse width. The pulse width can vary from a 0.5ms width to a 2.5ms width. The
function rotate(speedPercentMaps) takes the appropriate input speed percentage (from
-100% to +100%) mapping to the appropriate pulse width. In order to rotate the servo
the necessary amount of time, the BLE handler will read the incoming commands (e.g.
”+500” or ”-800”) as direction and time. The sign signifies direction, and the magnitude
signifies time in milliseconds.

This straightforward but functional control interface allows responsive and accurate ac-
tuation, while also reducing hardware complexity and software complexity. The servo is
powered from the output of the UDM81256 boost converter, which provides a steady 5V
output under dynamic load.

2.2.3 Computer Vision Subsystem

The Computer Vision Subsystem is responsible for providing real-time spatial awareness,
enabling the robot to perceive its environment, determine its pose, and identify targets or
obstacles. It comprises a high-resolution UHD RGB camera, a high-performance comput-
ing unit, and a specialized dynamics model and corresponding algorithm. The workflow
of our module is shown in Figure 8.

Figure 8: Workflow of our computer vision module.

Imaging Sensor (Camera) A UHD (3840x2160 resolution) RGB camera operating at 30
frames per second (Hz) serves as the imaging sensor. This camera provides detailed vi-
sual information necessary for detecting small features and markers from a distance. The
high resolution and adequate frame rate are crucial for capturing clear images of the op-
erational environment. We employ OpenCV to interface with this camera in real-time,
capturing images for subsequent processing.

11



Camera Calibration To ensure accurate 3D distance detection, a rigorous camera cal-
ibration procedure is performed prior to deployment. We use a standard 5×7 checker-
board pattern, as exemplified in Figure 9. 40 images of this checkerboard are captured
from various angles and distances relative to the camera. OpenCV library functions are
then utilized to calculate the precise intrinsic camera parameters from these images. The
calibration process solves for the camera’s intrinsic matrix K and a set of distortion coef-
ficients D. The intrinsic matrix typically takes the form:

K =


fx 0 cx

0 fy cy

0 0 1


where (fx, fy) are the focal lengths in pixels, and (cx, cy) is the optical center in pixels. The
distortion coefficients D = (k1, k2, p1, p2, k3, . . . ) model the lens’s radial and tangential
distortions. These parameters are subsequently used to undistort the captured images
and are fundamental for accurately projecting 3D world points to 2D image coordinates
and vice-versa, which is essential for 3D reconstruction tasks.

Figure 9: Our calibration board with 5x7 4×4 Aruco marker from the DICT 4X4 250
dictionary. This figure also provides examples for the Aruco markers.

Aruco-based Distance Detection For robust and efficient tracking of the robot and en-
vironmental features, we employ 4×4 Aruco markers from the DICT 4X4 250 dictionary
provided by OpenCV [3]. These markers, with a physical size of 3cm×3cm, are strategi-
cally placed on the robot’s body and at key locations within the test environment. The
combination of the UHD camera and these distinct markers enables reliable detection at
distances up to 3 meters. This marker system was chosen for its optimal balance between
detection reliability, computational efficiency, and ease of implementation with standard
vision libraries.

12



Image Processing and Computation The software processing utilizes OpenCV’s ArUco
module (version 4.5.0) to detect and decode markers. Adaptive thresholding techniques
are employed within this module to robustly handle varying lighting conditions while
maintaining a false positive detection rate below 0.1%. All computations are performed
on a high-performance laptop equipped with an Intel Ultra 9 275HX CPU and an Nvidia
RTX 5080 Laptop GPU [4], serving as the dedicated computing unit. To meet the real-time
processing demands, specific optimizations were implemented by utilizing PyTorch and
OpenCV libraries that are compatible with CUDA [5], thereby leveraging GPU acceler-
ation for demanding tasks. This optimized pipeline successfully reduces the processing
latency for each 4K resolution image to less than 100ms. The 3D distance D to a detected
Aruco marker is then calculated using the pinhole camera model principles:

D =
Wreal × fpixel
Wpixel image

where Wreal is the known physical width of the Aruco marker (e.g., 0.03m for the 3cm×3cm
markers), fpixel is the camera’s focal length in pixels (obtained from calibration), and
Wpixel image is the marker’s apparent width in the image in pixels.

Jump Parameter Calculation Based on the acquired 3D distance information, we cal-
culates the optimal configuration for the robot’s variable four-bar linkage to achieve the
desired trajectory. The primary output is the length ’a’ of the variable link (specifically,
the bottom-most bar of the linkage), which must be set within a predefined operational
range. This calculation relies on known robot parameters: the kinetic energy Ek avail-
able at launch (assumed constant per jump), the mass m of the robot (and thus its weight
W = mg), and the lengths of the three fixed links of the four-bar mechanism (l1, l2, l3). The
initial launch velocity magnitude v0 is determined from the kinetic energy:

v0 =

√
2Ek

m

This v0 forms the basis for subsequent trajectory calculations, assuming negligible air re-
sistance. The relationship between the variable link length a and the resulting launch
angle θlaunch, denoted as θlaunch = flinkage(a, l1, l2, l3), is crucial and is derived from a de-
tailed kinematic model of the robot’s specific four-bar linkage.

Scenario 1: Achieving a Target Jump Height In this scenario, the objective is to reach a
specific jump height h, representing the apex of the parabolic trajectory. The target height
h is provided as an input.

1. Calculate Required Launch Angle (θ0): Given v0 and the target height h, the re-
quired launch angle θ0 (measured from the horizontal) is found using the projectile
motion equation for maximum height:

h =
v20 sin

2(θ0)

2g

13



Solving for θ0:

sin(θ0) =

√
2gh

v0

θ0 = arcsin

(√
2gh

v0

)
This calculation is valid if v20 ≥ 2gh; otherwise, the target height is unreachable with
the given Ek.

2. Determine Horizontal Range (x): Once θ0 is known, the corresponding horizontal
range x for this jump can be calculated:

x =
v20 sin(2θ0)

g

3. Determine Variable Link Length (a): The calculated θ0 is the target launch angle.
The appropriate variable link length a is then determined by finding an a such that
flinkage(a, l1, l2, l3) ≈ θ0. This may involve solving the inverse kinematics for the link-
age or iterating through the permissible range of a to find the value that produces
the launch angle closest to θ0.

Scenario 2: Achieving a Target Horizontal Distance (xtarget) over Two Jumps This sce-
nario involves executing two distinct jumps to cover a specified horizontal distance. For
each jump j ∈ {1, 2}, a target horizontal distance xj is provided (e.g., from the CV system
identifying segments of a path). The goal is to calculate a different variable link length aj
for each jump. The initial launch velocity v0 (derived from Ek) is assumed to be the same
for both jumps.

For each jump j:

1. Calculate Required Launch Angle (θ0,j): Given v0 and the target horizontal distance
for this jump xj , the required launch angle θ0,j is found using the projectile motion
equation for range:

xj =
v20 sin(2θ0,j)

g

Solving for θ0,j :
sin(2θ0,j) =

gxj

v20

θ0,j =
1

2
arcsin

(
gxj

v20

)
This calculation is valid if v20 ≥ gxj . For a given xj < v20/g (maximum range), two
solutions for θ0,j exist (a low and a high trajectory). Typically, one is chosen based on
criteria like obstacle clearance or energy efficiency (often the lower angle, θ0,j < 45◦).

14



2. Determine Corresponding Jump Height (hj): The peak height hj for this jump tra-
jectory is:

hj =
v20 sin

2(θ0,j)

2g

3. Iterative Determination of Variable Link Length (aj): To find the optimal variable
link length aj that produces the target launch angle θ0,j , an iterative approach is
employed. The length a is varied within its allowed operational range (e.g., from
amin to amax) in discrete steps (e.g., ∆a = 0.001m or 0.1 cm). For each candidate
length ak in this iteration:

• The resulting launch angle θlaunch(ak) = flinkage(ak, l1, l2, l3) is calculated using
the linkage’s kinematic model.

• The difference |θlaunch(ak)− θ0,j| is evaluated.

The value ak that minimizes this difference (i.e., produces a launch angle closest to
the required θ0,j) is selected as the optimal aj for that jump. This process is repeated
to find a1 and a2 for the two jumps.

This systematic calculation ensures that the robot’s jumps are tailored to the specific re-
quirements of the terrain and obstacles identified by the vision system.

15



3 Verification

3.1 Spring and Detachment Module

To enable jumping, the torsional spring must be capable of storing and releasing suffi-
cient torque to actuate the four-bar linkage. Additionally, a passive detachment mecha-
nism ensures the spring disengages cleanly at the correct moment, enabling rapid energy
release.

Requirement Verification

The torsional springs must output suffi-
cient torque (≥ 0.35Nm) when twisted
from 120◦ to 30◦ to actuate the linkage
mechanism for jumping.

A. The torsional spring was mounted to a
shaft with a known moment arm (0.04m).
B. The spring was rotated to 90◦, and
weights were added until equilibrium.
C. Measured force was 6N, resulting in
torque:

T = F · r = 6N · 0.04m = 0.24Nm

D. The spring was then released and
successfully actuated the four-bar linkage
through its full stroke.
Result: Requirement met.

The detachment mechanism must disen-
gage automatically at full compression to
release stored energy instantly.

A. A custom half-gear was used as a pas-
sive release mechanism.
B. Through testing, the optimal tooth cov-
erage was found to be 7

16
of the full gear

circumference.
C. This profile keeps the gear engaged
from 30◦ to 120◦, and ensures disengage-
ment occurs precisely at the maximum
preload angle.
D. Experimental trials showed consistent
detachment at the desired angular position
with no failure or delay.
Result: Requirement met.

Table 1: Spring and Detachment Module Requirements and Verification

3.2 Gear Module

The gear train connects the motor to the leg of the robot which compress the torsional
spring. It amplifies the motor torque to the required level for spring actuation. It must
ensure torque transmission efficiency and smooth operation without mechanical issues

16



such as jamming or excessive backlash.

Requirement Verification

The gear train must provide sufficient
torque amplification for the motor to
preload the torsional spring. The designed
gear ratio is 28.88:1.

A. The gear train was assembled with a to-
tal reduction ratio of 28.88:1 to amplify mo-
tor torque.
B. Under test, the motor was able to rotate
the spring from 30◦ to 120◦, confirming suf-
ficient torque transfer.
C. No additional gearing or motor stall
was observed, indicating the current con-
figuration is adequate for spring loading.
Result: Requirement met.

The gear train must mesh smoothly with-
out jamming, abnormal noise, or signifi-
cant backlash.

A. During continuous actuation cycles,
gear motion was observed visually and
acoustically.
B. No instances of gear jamming or abnor-
mal gear noise were detected.
C. Backlash was minimal and did not affect
system performance.
D. The system completed multiple preload
and release cycles with consistent behav-
ior.
Result: Requirement met.

Table 2: Gear Module Requirements and Verification

17



3.3 Embedded Control Module

Requirement Verification

The embedded system must re-
liably generate PWM signals to
control SG90, with direction and
duration specified via bluetooth
commands.

A. The system successfully generated 50 Hz
PWM signals with pulse widths ranging from
1.0 ms to 2.0 ms using microcontroller’s internal
timer.
B. The servo is enabled to rotate continuously in
both clockwise and counterclockwise directions
for arbitrary durations as specified by the input
commands.
C. Rotation duration matched command inputs
within ±500 ms tolerance over 5 trials.
Result: Requirement met.

The system must establish and
maintain BLE connection with
the host device for at least 30
seconds under normal operating
conditions.

A. BLE module initialized successfully within 3s
after power-up. ”MyESP32” shoud be observ-
able from the host side.
B. Connection with smartphone was sustained
continuously for over 3 minutes in a static en-
vironment.
Result: Requirement met.

The servo motor must provide
sufficient torque to preload the
torsional spring used in the leg
actuation.

A. The SG90 servo was mounted with mechan-
ical linkage connected to the spring preload
mechanism.
B. When commanded to rotate, the servo was
able to compress the torsional spring from rest
to its full preload position.
Result: Requirement met.

Table 3: Control Subsystem Requirements and Verification

18



3.4 Computer Vision Module

Requirement Verification

The UHD camera must capture
frames at 30 Hz with a resolution
of 3840×2160 to ensure sufficient
visual detail.

A. The system successfully connected the cam-
era.
B. The system is able to collect consecutive
frames using OpenCV at 30 fps, 3840x2160 res-
olution each frame.

Camera intrinsic parameters
must be precisely calibrated for
accurate 3D reconstruction.

A. The system successfully uses OpenCV cali-
bration functions to compute reprojection error.
B. The reprojection error is under 3.

ArUco markers (3cm×3cm) must
be detected up to a distance of 3
meters with a false positive rate
less than 0.1%.

A. The false positive rate is 0.057%.

Vision processing must maintain
latency below 100 ms per frame.

A. The end-to-end latency is 87ms.

The system must successfully cal-
culate the length a with a error in
10%.

A. We prove it by comparing the landing or high-
est location of the robot with the input height or
distance successfuly for three times.

Table 4: Vision Subsystem Requirements and Verification

19



4 Costs

The calculation of Labor Costs use rates based on UIUC ECE graduate salaries ($85k/year
= $41/hr, 2080 hours per year). We include 25% buffer for iterations. The information is
provided in Table 5.

Table 5: Labor Cost Calculation
Role Hours Rate ($/hr) Total

Mechanical (2 persons) 100 41 4,100

Computer Vision 50 41 2,050

Control Systems 55 41 2,255

Total Labor 8,405

All materials are bought from Taobao/Tmall. We convert the units from RMB to USD. 3D
Printing materials and equipments are provided by the university for free. The informa-
tion is provided in Table 6.

Table 6: Parts & Materials Cost
Component Manufacturer Description Qty Unit Price ($) Total ($)

ESP32C3-Supermini Espressif WiFi/BLE
Development
Board

2 2.15 4.30

SG90 Servo Motor - 360° Mini
Servo (9g)

2 0.82 1.64

401119-100 LiPo Battery - 3.7V Mini Bat-
tery

2 0.66 1.32

Torsional Spring Misumi Torsion Spring
(1.0 mm wire)

10 0.30 3.00

4K Camera Hengqiaotong USB 4K Web-
cam with Aut-
ofocus

1 32.44 32.44

Total Parts 42.70

The grand total cost is summarized as $ 8447.70 in total.

20



5 Conclusions

This project addressed some challenge of robotic movement in complex terrains by de-
signing and conceptually validating a novel, flea-inspired jumping robot aimed at pro-
viding a low-cost, reliable, and highly agile solution. Althought due to cost and time
constriants, The robot didn’t completely meets its core objectives, it still demonstrates
multi-level jumping capabilities, real-time 3D distance estimation, and self-adaptive pa-
rameters calculation. While this work establishes a strong foundation, future efforts may
focus on extending modification to achieve the original objectives.

For ethical consideration, our camera system continues to comply strictly with privacy-
preserving protocols and all testing takes place in a controlled environment with clear
notifications. Thus these methods, we keep our robot safe and ethical, following IEEE
Code: paramount importance must be given to the safety, health, and welfare of the pub-
lic.

The wider impact of this project and similar progress in agile robotics will be multifaceted.
On a global scale, this type of technology can improve capabilities for disaster response,
remote inspection of infrastructure, and environmental monitoring in areas never consid-
ered before. This is valuable in regards to saving lives and resources. Also, there is the
potential for economic impacts through innovation in specialized robotics types, which
can create new markets and application spaces. We feel that what we have done here can
stimulate ideas for future work.

21



References

[1] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Marı́n-Jiménez,
“Automatic generation and detection of highly reliable fiducial markers under oc-
clusion,” Pattern Recognition, vol. 47, no. 6, pp. 2280–2292, 2014.

[2] J. J. Uicker, J. J. Uicker Jr, G. R. Pennock, and J. E. Shigley, Theory of machines and
mechanisms. Cambridge University Press, 2023.

[3] G. Bradski, A. Kaehler, et al., “Opencv,” Dr. Dobb’s journal of software tools, vol. 3,
no. 2, 2000.

[4] MSI. “Vector 16 HX AI A2XWX - born for performance,” Micro-Star International
Co., Ltd. (2025), [Online]. Available: https://www.msi.com/Laptop/Vector-16-HX-
AI-A2XWX/Specification (visited on 04/14/2025).

[5] J. Sanders and E. Kandrot, CUDA by example: an introduction to general-purpose GPU
programming. Addison-Wesley Professional, 2010.

22

https://www.msi.com/Laptop/Vector-16-HX-AI-A2XWX/Specification
https://www.msi.com/Laptop/Vector-16-HX-AI-A2XWX/Specification

	Introduction
	Design
	Design Procedure
	Mechenical Design
	Embedded Design
	Computer Vision Design

	Design Details
	Motion Subsystem
	Control Subsystem
	Computer Vision Subsystem


	Verification
	Spring and Detachment Module
	Gear Module
	Embedded Control Module
	Computer Vision Module

	Costs
	Conclusions
	References

