
ECE 445

SENIOR DESIGN LABORATORY

FINAL REPORT

The Smart Fitness Coach

Team #11

YUXUAN LIN

(yuxuan42@illinois.edu)
XINGYU LI

(xingyul6@illinois.edu)
LISHAN SHI

(lishans3@illinois.edu)
TIANHENG WU

(tw44@illinois.edu)

TA: Xiaoai Wang

May 18, 2025

Abstract

The Smart Fitness Coach is an AIoT-based real-time exercise tracking system de-
signed to provide accurate, low-cost, and accessible fitness guidance without the need
for wearable devices or human supervision. Leveraging a compact PCB camera mod-
ule and a server-side pose estimation pipeline powered by MediaPipe, the system an-
alyzes user posture and delivers dynamic feedback via a cross-platform mobile fron-
tend developed with UniApp.

The project addresses key shortcomings of existing solutions—namely, the dis-
comfort of wearable sensors and the passivity of pre-recorded videos—by enabling
skeleton-based tracking of body movements such as squats and push-ups. Core com-
ponents include a Wi-Fi-enabled image acquisition module, a Flask-based backend
with REST and WebSocket interfaces, and a SQLite-integrated session tracker. The
entire pipeline operates with latency under 200ms in most conditions.

Extensive validation was conducted across various lighting, distance, and motion
scenarios to ensure robustness. Results show consistent recognition accuracy and
real-time responsiveness. The final implementation meets design goals in portability,
affordability, and performance. Broader impacts include potential integration with
fitness equipment in gym environments and the promotion of safe, interactive home
exercise practices.

ii

Contents

1 Introduction 1

2 Deisgn 2
2.1 Design procedure . 2

2.1.1 Hardware . 2
2.1.2 Software . 2
2.1.3 Physical Design . 3

2.2 Design details . 4
2.2.1 Subsystem of Hardware Setup . 4
2.2.2 Software Overview . 8
2.2.3 Software Components . 9
2.2.4 Implementation Specifics . 9
2.2.5 Physical Components . 12

3 Verification 14
3.1 Control Unit . 14
3.2 WiFi Module . 14
3.3 Camera Module . 15
3.4 Frontend . 15
3.5 Backend . 15

4 Costs 17
4.1 Labor Cost Estimation . 17
4.2 Parts and Materials . 17

5 Conclusion 18
5.1 Ethical Considerations . 18
5.2 Broader Impacts . 19

References 20

iii

1 Introduction

Smart Fitness Coach is an AIoT platform that offers instant camera-based exercise track-
ing and feedback to home fitness workout users. The concept of this project is founded
on growing demands for accessible and engaging fitness gadgets that can support users
comfortably without the need for wearables or trainers. While existing products are ei-
ther founded upon intrusive attachment sensors or passive video instructions, the sug-
gested design addresses the gap in that it offers a camera-based, light feedback mecha-
nism with the potential to detect and evaluate large movements such as squats, push-ups,
and lunges.

As illustrated in Figure 1, the system captures photos via a Wi-Fi-enabled PCB camera
module and then transfers them to a Flask-built cloud-based backend fueled by Media-
Pose for skeleton pose estimation. Posture evaluation is performed server-side, and per-
sonalized feedback is returned to the user through a UniApp-built[1] responsive mobile
frontend. The backend also makes use of a SQLite database for session logging and track-
ing user progress over time. This hybrid architecture offers high accuracy and adapt-
ability with low cost and portability. Compared to wearable systems, our approach does
away with issues of discomfort and incomplete anatomical coverage. Unlike static tuto-
rial videos, Smart Fitness Coach offers real-time and dynamic feedback enabling users to
adjust their form and reduce the risk of injury. With RESTful APIs and WebSocket chan-
nels, real-time data exchange between front-end interface and back-end inference engine
offers sub-200ms latency in most situations.

Systematic testing under conditions of lighting, motion, and camera location demon-
strates the robustness and reliability of the system. The final implementation yields con-
sistent performance and achieves the original design requirements of affordability, sim-
plified deployment, and user-centric interaction. This document records the motivation,
engineering effort, and verification plan that brought Smart Fitness Coach to comple-
tion.

Figure 1: The Smart Fitness Coach

1

2 Deisgn

2.1 Design procedure

2.1.1 Hardware

The system architecture integrates five key subsystems—power supply, control unit, cam-
era, PCB, and angle regulator—through a structured design methodology balancing per-
formance, cost, and reliability. The power supply employs a USB-Mini input with a
low-dropout linear regulator (LDO) to eliminate switching noise, prioritizing stable 5V
output over the higher efficiency of buck converters, which was deemed unnecessary
for low-current IoT applications. The control unit centers on the AI-M61-32S microcon-
troller, selected for its integrated Wi-Fi and camera interface, avoiding the complexity of
other module designs. The angle regulator utilizes two SG90 servo motors (0–180° range)
controlled via PWM pulses generated by the MCU, ensuring precise angular positioning
without the complexity of stepper motor drivers.

2.1.2 Software

The software development process followed a progressive shift from embedded local in-
ference to a cloud-assisted, modular architecture. Initially, we aimed for on-device infer-
ence using YOLO-based[2] models, but later moved to a hybrid deployment model, bal-
ancing low-power front-end data acquisition and robust server-side computation.

At the early development stage, we verified the feasibility of YOLO-based posture recog-
nition using PC simulations. Although the model produced accurate results, we ob-
served significant latency and FPS degradation when attempting embedded inference.
This prompted us to test alternative solutions.

Next, we introduced MediaPipe as a potential inference engine. We tested MediaPipe
Pose locally on the server and found its lightweight nature and excellent keypoint res-
olution (33 landmarks) well-suited for our fitness action recognition tasks (see Table 1).
MediaPipe’s Python API made it easier to perform keypoint extraction and extend func-
tionality with custom angle-based rule logic.

Table 1: Comparison of YOLOv7, YOLO11, and MediaPipe

Attribute YOLOv7 YOLO11 MediaPipe

Release Year 2022 2025 2020

Keypoints Supported 17 17 33

Model Size 70 MB 45 MB 7.5 MB

Primary Use-case Object detection Pose estimation Pose tracking

Platform Support GPU, edge NPU, GPU, edge CPU, Web, Native

2

Once the backend model was stabilized, the front-end acquisition module was switched
to our PCB camera module. This low-cost, Wi-Fi-enabled microcontroller was programmed
to periodically capture images and transmit them via HTTP POST to the backend server.

Server development then focused on building a RESTful API using Flask, with endpoints
to accept uploaded frames, return keypoints and action status, and support future logging
extensions. The POST /upload endpoint became the primary communication channel,
handling image decoding, preprocessing, and inference.

Figure 2: App Index

Finally, we implemented the front-end application using UniApp, a Vue3-based cross-
platform framework. This decision allowed us to target Android, iOS, and H5 with a
single codebase. The frontend displayed feedback such as posture correctness, repetition
count (see Figure 2), and historical records (see Figure 3 and Figure 4) by polling the
backend or processing real-time responses.

This procedure was iterative and collaborative, involving multiple cycles of testing, inte-
gration, and debugging across all software modules.

2.1.3 Physical Design

Initially, we designed with the goal of multi-functional integration, hoping to create the
best product. The initial design adopts a composite structure of waterproof ABS plastic
and anti-slip silicone coating. The surface of the shell is covered with an IP52 protection
level, making it suitable for high-humidity environments such as gyms. The back is de-
signed with a foldable stand that supports angle adjustment from 0° to 45°. It integrates

3

Figure 3: App Dashboard I Figure 4: App Dashboard II

a 5-inch IPS touch screen and physical buttons inside, allowing users to operate the de-
vice directly. The camera module adopts a 1080P wide-angle lens and is equipped with
a sliding lens hood to reduce the interference of ambient light. However, this complex
design exposed the problems of high cost and high manufacturing complexity in actual
tests. This version of the design is difficult to implement.

Based on the verification results, we decided to simplify the design. The waterproof de-
sign was removed, and the shell material was ordinary ABS plastic. The foldable bracket
is changed to a fixed mortise and tenon structure, and the stable connection of the pan-tilt
base is achieved through the geometric self-locking feature, avoiding the risk of loosen-
ing during movement. Touch screens and physical buttons have been eliminated, and
user operations completely depend on mobile phone apps. This move not only reduces
hardware costs but also decreases circuit complexity and failure points. The camera mod-
ule is simplified to a basic configuration, with the lens hood design removed. Through
simplification, we successfully achieved the basic functions required by the project while
saving a significant amount of costs.

2.2 Design details

2.2.1 Subsystem of Hardware Setup

Below are the Hardwares required for our project. Figure 5 shows the block diagram for
the project.

4

Figure 5: System block diagram of PCB

5

• Power Supply
This power supply module is designed to accept power from a USB-Mini connector
and deliver a stable 5V DC output.

• Control Unit
The control unit is responsible for coordinating the operations of all components
and executing application-level logic. It sends the signal to control the angle regu-
lator.

• Camera
A mounted RGB camera captures user movements during workouts. Stable frame
acquisition is the key to realize accurate attitude key point recognition.

• PCB
A PCB is designed to integrate all modules combining AI-M61-32S which integrates
Wi-Fi radio transceiver with a camera and can be programmed through Arduino
IDE. // The camera interface connects to OV2640 camera to captures the postures
of users. Figure 6 shows the schematic of the camera in PCB.

Figure 6: Camera

The Processor serves as the central control logic processor for peripheral communi-
cation. Besides, it accepts the video data captured by send the video stream to the
website through Wi-Fi. Figure 7 shows the schematic of the camera in PCB.

• Angle Regulator
The motor unit adjusts the camera angle using two SG-90 servo motors (see Figure
8) to ensure optimal field of view during workouts. The servos are controlled by
PWM signals from the microcontroller, enabling precise angular positioning. This
subsystem includes the servo motors and a motor control interface to coordinate
smooth adjustments.
We need the servo motors to operate within a 0–180° range.The SG90 servo motor

6

Figure 7: Processor

7

position is controlled by a PWM signal, where the pulse width directly determines
the angular position.
Given the signal frequency is 50HZ. The pulse width (tpulse) is linearly proportional
to the target angle (θ)[3]:

tpulse(θ) = 500µs +
(

θ

180◦

)
× 2000µs

= 500 + 11.11θ (µs)

So, when the pulse width is 0.5ms, the angle is 0° and when the pulse width is 2.5ms,
the angle is 180°.

Figure 8: Servo Motors

2.2.2 Software Overview

The Smart Fitness Coach system adopts a decoupled architecture composed of three
core components: a Wi-Fi-enabled PCB camera module for image acquisition, a Flask-
based backend with MediaPipe for pose estimation and SQLite for session storage, and
a UniApp (Vue 3) cross-platform frontend. This design enables real-time posture analy-
sis via REST and WebSocket APIs, ensures responsiveness across Web and mobile plat-
forms, and supports independent development of sensing, inference, and user interface
layers.

8

2.2.3 Software Components

The software system consists of three major components: the stream uploader, the back-
end inference server, and the UniApp mobile frontend.

PCB Image Upload System The PCB is programmed with Arduino C/C++ to period-
ically capture images (default resolution 640×480) and transmit them via HTTP POST in
JPEG format. It includes features such as retry-on-failure logic, local buffering to prevent
frame loss, and dynamic LED control for low-light compensation.

Backend Flask Inference API The backend, built with Flask and Python, hosts a Me-
diaPipe Pose estimator. Its core endpoint POST /upload handles incoming images, ap-
plies preprocessing (decoding/resizing), performs inference, and responds with 33 key-
points, posture classification (e.g., squat good), and joint angles. Additional endpoints
like GET /status and GET /data are used for system monitoring and result retrieval.
CORS is enabled to support cross-origin requests from frontend clients.

UniApp Mobile Frontend The frontend, built with Vue 3 and UniApp, provides a re-
sponsive, cross-platform interface. Users interact through screens like: Index (navigation
hub), Live Workout (real-time feedback with skeleton overlay), Profile, History,
and dashboard. It uses axios for API communication, localStorage for caching, and in-
cludes animations and progress rings for user engagement. A modular design ensures
maintainability across platforms.

2.2.4 Implementation Specifics

The implementation of the Smart Fitness Coach software is divided into two primary
sections: the Python-based backend server and the Vue 3-based UniApp frontend. Table 2
summarizes the core backend responsibilities and modules, while Table 3 outlines the
structure and logic of the major frontend components.

Backend implementation The backend centers around a single entry file, app.py, which
initializes the Flask application, manages image ingestion, invokes pose inference, and
handles communication with clients. As shown in Table 2, image frames are received
through the POST /upload endpoint in JPEG format. Each frame is validated and stored
in an in-memory queue before being processed by a worker thread running the Medi-
aPipe Pose model. Keypoints and angles (e.g., knees, elbows) are extracted and published
to a Redis-backed message bus.

For real-time visual feedback, the server exposes a /video feed MJPEG endpoint and
a WebSocket interface exercise status, which transmits inference results at approxi-
mately 20 frames per second. The system also maintains persistent workout summaries,
stored in data/workouts.json, and generates dashboard metrics from historical logs.
Additional reliability features include CORS handling, structured logging, health checks
via GET /health, and automatic camera re-initialization on failure.

9

Table 2: Backend Functional Modules and Responsibilities

Module / Respon-
sibility

Description

app.py Main entry point; initializes Flask application and
registers routes.

Image Ingestion POST /upload receives JPEG frames, validates
content-type, and queues them for inference.

Pose Inference MediaPipe Pose model runs in a worker thread; cal-
culates joint angles (e.g., knees, elbows) and sends
results to a Redis-backed message queue.

Real-Time Stream-
ing

/video feed serves MJPEG stream;
exercise status WebSocket emits real-time
JSON packets at 20 FPS.

Persistence Inference results are logged in workouts.json;
dashboard aggregates weekly stats from logs.

Reliability Fea-
tures

Supports CORS, exposes GET /health for moni-
toring, enables structured logging and auto camera
re-initialization on failure.

Frontend implementation The client is developed using Vue 3 and UniApp, enabling
deployment to multiple platforms including H5, Android, and WeChat Mini Programs.
Table 3 presents the main components of the frontend and their associated responsibili-
ties.

The index.vue file serves as the primary live workout interface, where the video stream
is displayed, WebSocket messages are parsed, and skeleton overlays along with repetition
counters are rendered in real time. The dashboard.vue component retrieves exercise
history from /api/dashboard data and visualizes trends using the uCharts library.
The exercise.vue component provides an interface for configuring workout parame-
ters, such as set size, rest interval, and repetition sensitivity.

The frontend further employs axios interceptors to log HTTP traffic and display toast no-
tifications upon network failure using global mixins. Pinia is used for state management,
allowing local caching and synchronization of user preferences across sessions.

API Surface & Environment Table 4 summarises the public REST endpoints; Web-
Socket events mirror the same semantics for live sessions.

As shown in the table 5, the back-end relies on the combination of Flask-SocketIO and
MediaPipe to achieve real-time pose reasoning and WebSocket state push. The same table
also lists the front-end Vue 3 and UniApp, explaining the role of each package in cross-
platform interface rendering.

10

Table 3: Frontend Pages and UI Logic (UniApp Vue 3)

Component File Functionality Description

index.vue Main workout interface. Opens MJPEG video
stream, subscribes to WebSocket feedback, overlays
skeletons, and tracks repetitions in real time.

dashboard.vue Fetches data from /api/dashboard data and
visualizes statistics using uCharts, including
weekly frequency, exercise distribution, and activ-
ity streaks.

exercise.vue Provides session configuration options such as set
size, rest intervals, and auto-count sensitivity.

Global logic Axios interceptors log all HTTP traffic. Global
mixins display fallback toasts when disconnected.
Pinia is used for local state persistence and synchro-
nization.

Table 4: Essential REST API endpoints

Route Method Description

/api/exercises GET List available exercise types

/api/start exercise POST Begin a workout session

/api/stop exercise POST Terminate the current session

/api/status GET Poll current workout state

/api/dashboard data GET Aggregated training statistics

/api/health GET Liveness / readiness probe

11

Table 5: Core tool-chain with roles

Layer Package / Version Primary purpose

Backend

Flask 2.0.1 HTTP routing and REST API framework

Flask-SocketIO 5.1.1 WebSocket transport for real-time status push

Werkzeug 2.0.1 WSGI utilities powering Flask under the hood

flask-cors 3.0.10 Cross-origin resource sharing for mobile clients

MediaPipe 0.8.9.1 Pose estimation (33 landmarks)

OpenCV 4.5.3.56 Frame capture / image preprocessing helpers

NumPy 1.21.2 Numeric backend for angle computation

Frontend

Vue 3.4.21 Reactive UI core for all pages

UniApp 3.0.0 Cross-compile Vue code to H5 / WeChat Mini-App

Vite 5.2.8 Fast dev server & production bundler

uCharts 3.x Canvas-based charts for dashboard analytics

socket.io-client 4.8.1 WebSocket client that mirrors Flask-SocketIO events

vue-i18n 9.1.9 Internationalisation for multi-language UI

Sass 1.89 (+ loader 16.0.5) Pre-processing for modular, theme-able styles

Current strengths and future work Planned enhancements include streamlining the
/video feed path with HLS, introducing JWT-based authentication, and extending the
exercise library to cover lunges and plank postures.

2.2.5 Physical Components

The physical design is shown in Figure 9 and 10. The design has two parts. One part
is the top, the other is the bottom. The shell is modeled with SolidWorks[4] and made
by 3D printing[5], which is low-cost. There two openings on the top for connecting the
gimbal base[6]. The small openings forms a mortise and tenon structure with the base
of the pan-tilt for fixation[7]. And the bigger one is used to fix the camera. The camera
is fixed on the housing, and the housing is fixed on the base of the pan-tilt. We can use
the APP to remotely control the rotation of the pan-tilt, thereby adjusting the angle of the
camera. For the bottom, there is a bigger hole to place the pan-tilt.

12

Figure 9: Top Component Figure 10: Bottom Component

13

3 Verification

3.1 Control Unit

The control unit is based on the Ai-M61-32S module and is programmed using the Ar-
duino framework. Verification was done by uploading the compiled sketch via USB and
observing the system’s runtime behavior. Upon powering the device, the module suc-
cessfully initialized the onboard DVP camera and the Wi-Fi access point. The detailed
verification process is summarized in Table 6.

Table 6: Control Unit Verification Summary

Verification Item Method / Observation

System Boot Upload sketch via USB and observe serial logs

Camera Initialization Initialized using esp camera library; suc-
cessful config confirmed

Wi-Fi AP Creation Access point Team11 visible to client devices

HTML Interface Ac-
cess

Web interface loads successfully in browser

WebSocket Commu-
nication

Sliders control servos and LED with no delay

Frame Streaming JPEG frames sent via wsCamera.binary()

Pose Tracking Movement feedback correct in web interface

3.2 WiFi Module

The Wi-Fi module, integrated within the Ai-M61-32S, was verified by uploading the
firmware via Arduino IDE and observing the system’s behavior. Upon powering the
device, the module successfully initialized and established a Wi-Fi access point named
Team11 with the password 12345678. This access point was detectable and connectable
by various client devices.

The firmware includes an embedded web server that serves an HTML interface accessible
through a web browser. This interface lets users view live video streams from the camera
and control pan, tilt, and lighting functions via WebSocket connections. The stability and
responsiveness of the Wi-Fi connection were verified by observing uninterrupted video
streaming and real-time control without noticeable delay or connection loss.

14

3.3 Camera Module

The camera module, connected to the Ai-M61-32S, was verified by initializing it using the
esp camera library within the Arduino framework. Upon system startup, the camera
was successfully configured with the specified settings, including resolution and frame
size.

The firmware captures JPEG frames using esp camera fb get() and transmits them
to connected clients via WebSocket. The live video feed was accessible through the web
interface, displaying real-time images with acceptable quality and frame rate. The mod-
ule’s capability to perform pose-based activity tracking, such as repetition counting and
form correction, was tested and confirmed to function as intended.

3.4 Frontend

The frontend was developed using UniApp, built on a Vue 3-based architecture, and sup-
ports deployment to both H5 and WeChat Mini Program platforms. Verification was per-
formed by compiling the project for each platform and testing it on physical devices.

Real-time posture and motion feedback were successfully displayed by consuming REST-
ful APIs and WebSocket streams provided by the backend. Core features—including ex-
ercise status display, live frame updates, and training result visualization — were tested
across multiple screen sizes to ensure a responsive layout and consistent user experi-
ence.

The stability of the WebSocket connection was also verified under various network con-
ditions. Users were able to view training progress, receive real-time feedback, and in-
teract with the session through the frontend interface without noticeable lag. IP auto-
configuration and camera permission handling were confirmed to function correctly.

All frontend features were validated through end-to-end testing on supported platforms,
confirming full compatibility and seamless integration with backend services.

3.5 Backend

The backend system, built with Flask and Python, integrates pose estimation and fitness
logic modules. Verification involved launching the server and testing the full workflow
from initialization to client interaction.

The RESTful API endpoints (e.g., /get exercise, /start session, /stop session)
were tested using HTTP clients and frontend requests. Each route returned expected
JSON responses with valid structure and values under both normal and edge conditions.
Error handling was tested for invalid inputs and malformed requests.

WebSocket functionality was verified by pushing real-time posture estimation and session
updates. Using sample video inputs and webcam streams, the server was confirmed to
emit consistent posture frames and classification results. Frame latency remained within

15

acceptable bounds, and multiple simultaneous connections were handled without packet
loss.

Internal modules, including pose estimation, exercises, and feedback, were tested
individually and as part of the full pipeline. Unit tests and manual simulations confirmed
correct rep counting, form correction feedback, and session timing logic.

16

4 Costs

The hardware and development cost of the Smart Fitness Coach prototype consists of
three main components: labor, parts and materials, and an estimate for scaled manufac-
turing.

4.1 Labor Cost Estimation

The total labor cost is calculated using the formula:

Cost = Hourly Rate × Hours Worked × 2.5

Assuming an hourly rate of ¥60 and that each of the four team members contributed
approximately 30 hours, the total labor cost is:

60× 30× 2.5× 4 = ¥18,000

4.2 Parts and Materials

The project’s shell was fabricated using 3D printing with lab resources provided by the
university, and therefore incurred no material cost. Table 7 summarizes the hardware
expenditures.

Table 7: Hardware Cost Summary (Ai-M61-32S-Based Design)

Part/Service Description Unit Price (CNY) Qty Total (CNY)

Ai-M61-32S Module Wi-Fi, camera, and SoC combo ¥35.0 1 ¥35.0

Micro Servo Motors SG90 servo for pan/tilt ¥6.0 2 ¥12.0

PCB Fabrication Custom circuit board ¥30.0 1 ¥30.0

Digital Components Resistors, capacitors, connectors ¥10.0 1 set ¥10.0

OV2640 Camera Camera to capture images ¥18.0 1 ¥18.0

3D Printed Case FDM print (university lab) ¥0.0 1 ¥0.0

Total Hardware Cost ¥105.0

17

5 Conclusion

The Smart Fitness Coach system successfully demonstrates an affordable, scalable, and
accessible real-time exercise monitoring system with an AIoT framework. The combi-
nation of a Wi-Fi-enabled PCB camera module, server-side MediaPipe inference, and in-
teractive cross-platform UniApp frontend causes the system to render wearables obso-
lete while delivering impactful posture feedback to home users. The design meets main
goals of portability, accuracy, and price, providing real-time capability at sub-200ms la-
tency and continuous detection across a range of exercise types such as squats and push-
ups.

As it matured during development, the project evolved into a feature-complete and mod-
ular system that cleanly separates sensing, inference, and user interface layers. Major
engineering feats include the implementation of MediaPipe-based pose estimation as a
component within a Flask server, real-time integration with the ESP32-CAM camera mod-
ule using HTTP and WebSocket protocols, and development of an aesthetically engaging
UniApp frontend that performs perfectly on Web, Android, and WeChat platforms. The
system was thoroughly experimented upon across various lighting and motion condi-
tions, with results indicating proper frame capture, posture classification, and user feed-
back.

Nevertheless, a few challenges and uncertainties remain. The posture detection remains
lighting-, camera-, and orientation-dependent. These limitations can be mitigated in fu-
ture work through temporal smoothing techniques or sensor fusion, longer support for
additional action types, and more advanced pose estimation logic for broader user bases.
Furthermore, on-device inference with more capable edge processors such as RK3588 can
potentially deliver full decentralization with real-time performance.

5.1 Ethical Considerations

The Smart Fitness Coach system was developed in alignment with the IEEE Code of
Ethics[8] and ACM Code of Ethics and Professional Conduct[9], with careful attention
to user safety, data privacy, and inclusivity. The camera lens is protected by a manual
plastic clamshell cover which users must open before each session. Over time, mechan-
ical wear such as hinge loosening or lens scratching may occur, and the lithium battery
compartment lacks a humidity sensor. To ensure safe operation, it is recommended that
users avoid prolonged usage (over 2 hours) in damp conditions and periodically clean
the device with a dry cloth.

From a data protection perspective, the system is designed to avoid transmitting any raw
video or skeletal pose data to external cloud services. All processing is performed locally
on the backend server. Meanwhile, the frontend application explicitly requests camera
access permissions from users at runtime, providing transparency and user control. Ad-
ditionally, the data storage interface supports fine-grained deletion, allowing users to
manage their session records with minimal friction and maximum autonomy.

In terms of fairness and inclusivity, the posture recognition algorithm has been validated

18

for equity across different body types or abilities. Users with disabilities may still be
recognized for adaptive movements. However, this remains an open area for future im-
provement.

5.2 Broader Impacts

Smart Fitness Coach can have a significant impact globally and in society. It provides a
low-cost and portable fitness solution to consumers in rural or resource-constrained envi-
ronments, where it may not be possible to have access to gyms or personal trainers. The
small hardware mitigates power consumption and environmental effect, and the flexible
software architecture allows for localized deployment irrespective of cloud infrastructure.
In an age of post-pandemic, when home fitness remains a more and more relevant topic,
the project is a timely contribution to safe, interactive, and intelligent exercise technolo-
gies.

From a commercial standpoint, the Smart Fitness Coach system offers strong potential for
integration into gym environments. By embedding the camera module directly into fit-
ness equipment—such as treadmills, squat racks, or cable machines—and pairing it with
dedicated companion software, fitness centers can provide members with real-time pos-
ture feedback, automated form correction, and personalized workout tracking without
the need for trainers to be present at all times. This enhances the overall value of gym ser-
vices while improving user engagement and safety. Additionally, such integration could
enable data-driven fitness plans and progress dashboards, offering gyms a competitive
edge in delivering intelligent, tech-enhanced experiences to their clientele.

19

References

[1] DCloud Technologies. “UniApp Quickstart (CLI Mode).” (2025), [Online]. Available:
https://uniapp.dcloud.net.cn/quickstart-cli.html (visited on 05/18/2025).

[2] Ultralytics. ““yolo11”.” Ultralytics Documentation. (2025), [Online]. Available: https:
//docs.ultralytics.com/models/yolo11/ (visited on 04/13/2025).

[3] WZH2014825. ““the stm32f103 controls the rotation of the servo”.” Servo Blog. (2020),
[Online]. Available: https://blog.csdn.net/WZH2014825/article/details/107360318
(visited on 02/10/2025).

[4] D. Systèmes. “Solidworks user guide.” (2025), [Online]. Available: https ://www.
solidworks.com/support/user-guide (visited on 04/10/2025).

[5] I. Gibson, D. Rosen, and B. Stucker, Additive Manufacturing Technologies: 3D Printing,
Rapid Prototyping, and Direct Digital Manufacturing. Springer, 2015. [Online]. Avail-
able: https://doi.org/10.1007/978-1-4939-2113-3 (visited on 04/10/2025).

[6] R. L. Norton, Machine Design: An Integrated Approach. Pearson Education, 2020. [On-
line]. Available: https://www.pearson.com/store (visited on 04/10/2025).

[7] X. Chen and Y. Zhang, “Mortise-tenon structures in modern mechanical design,”
Journal of Mechanical Engineering, 2018. [Online]. Available: https : / / doi . org / 10 .
1016/j.jmech.2018.03.007 (visited on 04/10/2025).

[8] IEEE. “Ieee code of ethics.” (2016), [Online]. Available: https : / / www. ieee . org /
about/corporate/governance/p7-8.html (visited on 04/13/2025).

[9] Association for Computing Machinery. “ACM Code of Ethics and Professional Con-
duct.” (2018), [Online]. Available: https://www.acm.org/code-of-ethics (visited on
04/13/2025).

20

https://uniapp.dcloud.net.cn/quickstart-cli.html
https://docs.ultralytics.com/models/yolo11/
https://docs.ultralytics.com/models/yolo11/
https://blog.csdn.net/WZH2014825/article/details/107360318
https://www.solidworks.com/support/user-guide
https://www.solidworks.com/support/user-guide
https://doi.org/10.1007/978-1-4939-2113-3
https://www.pearson.com/store
https://doi.org/10.1016/j.jmech.2018.03.007
https://doi.org/10.1016/j.jmech.2018.03.007
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.acm.org/code-of-ethics

	Introduction
	Deisgn
	Design procedure
	Hardware
	Software
	Physical Design

	Design details
	Subsystem of Hardware Setup
	Software Overview
	Software Components
	Implementation Specifics
	Physical Components

	Verification
	Control Unit
	WiFi Module
	Camera Module
	Frontend
	Backend

	Costs
	Labor Cost Estimation
	Parts and Materials

	Conclusion
	Ethical Considerations
	Broader Impacts

	References

