
Four-Axis Vacuum Stage for
Advanced Nano-Manufacturing

ECE 445 Senior Design Report

Group 5

Songyuan Lyu

Yanjie Li

Xingjian Kang

Yanghonghui Chen

TA:

Boyang Shen

Supervisor:

Oleskiy Penkov

Abstract
As the development of nanotechnology, there is a requirement for nanocoating with higher pre-
cision. Currently, nanocoating has been applied in a variety of fields, such as surface engineer-
ing, aero-engineering and material science. The coatings are used to enhance the mechanical
properties of the materials, reduce the friction of different surfaces, and provide some reagents
for some enzyme reactions to increase the reaction efficiency. However, although nanocoat-
ing on a flat surface or a 2D frame has been deeply studied, there is a lack of research on
nanocoating performed on irregular objects. This limits the progress and restricts the use of
artificial joints and dental implants in biomedical industries. Thus, a four-axis vacuum stage
for advanced nano-manufacturing has been designed and fabricated to realize nanocoating in
3D frame with high uniformity and quality. The vacuum stage is a four degrees of freedom
(DOF) robotic arm made of aluminum. It is composed of four electrical motors, four reduc-
ers, a microcontroller, four motor controllers, a wireless control module and other aluminum
structural components. The vacuum stage will be integrated into the nanocoating machine in
Advanced Nanocoating Lab, and coating experiments and tribo-testings will be performed to
prove the superiority of the vacuum stage.

1

CONTENTS CONTENTS

Contents

1 Introduction 3
1.1 Current Nanocoating Techniques . 3
1.2 Economic Benefit & Demand . 4
1.3 Motivation & Objective . 4

2 Design 5
2.1 Design procedure . 5

2.1.1 Mechanical System . 5
2.1.2 Control System . 6
2.1.3 PCB Design . 7
2.1.4 User Interface . 8

2.2 Actuator . 9
2.3 Design details . 9

2.3.1 Control System . 10
2.3.2 PCB Design . 11
2.3.3 User Interface . 13
2.3.4 First Edition of Mechanical Design 15
2.3.5 The Design of the First Link . 16
2.3.6 The Design of the Third Joint . 17
2.3.7 The two Versions of the Robotic Arm 17

3 Verification 19
3.1 Control Module . 19

3.1.1 Microcontroller Unit (MCU) . 19
3.1.2 Stepper Motor Controller . 19

3.2 Actuator Module . 19
3.2.1 Stepper Motor . 19
3.2.2 Reduction Gear . 20

3.3 Mechanical Arm Structure . 20
3.4 PCB Design . 20
3.5 Interface Module . 20

3.5.1 button . 21
3.5.2 TFT touch screen . 21

3.6 Circuit Connection . 21
3.6.1 CF63 Conflat Flang Interface . 21
3.6.2 Teflon Insulated Cable . 21

4 Costs 22
4.1 Prototype . 22
4.2 bulk . 22

5 Conclusion 23

2

1 INTRODUCTION

1 Introduction

1.1 Current Nanocoating Techniques
Nanocoating, as a critical technique in nanotechnology, can be used to control the morphology
of a material and achieve enhanced or multifunctional properties of the material [1]. It promotes
progress in many different fields, such as surface engineering, aero-engineering, and material
sciences. The working principle of nanocoating is to form a membrane that has a shape similar
to the initial template. The nanocoating film is defined to have a thickness smaller than 100
nm, or the second phase nanoparticle is spread to the first phase matrix [1].
In industry, there are many advantages of nanocoating. For example, it can enhance the me-
chanical properties of some materials. These materials can be used to manufacture some struc-
tural components. In addition, the coating film can also increase the corrosion resistance of
some materials. These materials can be used to produce some medical devices and increase the
lifetime of these instruments [2] [3].
With the development of nanotechnology, a variety of nanocoating methods are studied to pro-
duce high-quality coatings. Some conventional nanocoating methods include spray coating and
direct precipitation [4]. However, these coating methods may result in extra residual stresses
and delamination. Thus, they will not retain strong mechanical stability. In comparison to
these traditional nanocoating methods, the mainstream nanocoating technique is the physical
vaporization deposition (PVD) method. One of the most popular PVD methods is magnetron
sputtering. This method can achieve better coverage and adhesion of the coating film [5]. Dur-
ing the operation of magnetron sputtering, firstly, inert gas such as Argon will be input into
a vacuum system. Then, a voltage will be applied to the electrodes, and the plasma will be
formed. The inert gas will be ionized and be accelerated to sputter onto the cathode, which is
composed of the target material. The target material will become versatile and be transported
to deposit on the substrate, as shown in Fig. 1.

Figure 1: A schematic of magnetron sputtering process

The magnetron sputtering method allows the utilization of a small amount of materials to de-

3

1.2 Economic Benefit & Demand 1 INTRODUCTION

posit the film. The film has enhanced mechanical properties and uniformity.
Integrating a multi-axis stage into the magnetron sputtering process is an innovative attempt.
The vacuum stage should be able to operate normally in a high vacuum and high temperature
environment, and it should not affect the operation of other steps during the coating process.

1.2 Economic Benefit & Demand
The nanofilm market represents a dynamic segment within the advanced materials industry,
characterized by the production and application of ultra-thin films at the nanoscale. These films,
typically measuring just a few nanometers in thickness, are designed to deliver unique proper-
ties such as enhanced barrier protection, optical clarity, and improved mechanical strength. As
industries increasingly seek innovative solutions to their challenges, nanofilms have emerged as
a critical technology across various applications, including electronics, packaging, and health-
care. This growing interest reflects broader trends toward miniaturization and efficiency in
product design. Thus, the nanofilm market size reached 5.1 billion US dollar in 2023 and
is projected to grow to 12.4 billion US dollar by 2030, with a compound annual growth rate
(CAGR) of 12.1 Percent from 2024 to 2030. [6]

Table 1: Nanofilm Market Size and Growth Projections

Indicator Value Notes
2023 Market Size US$5.1 billion Base year data
2030 Projected Market Size US$12.4 billion Forecast (2024–2030 compound growth)
Compound Annual Growth Rate (CAGR) 12.1% Period: 2024–2030

1.3 Motivation & Objective
Currently, most nanocoating methods are performed in a 2D frame (on a flat surface), specif-
ically for a sample with regular shape. Although some popular nanocoating methods such as
magnetron sputtering are also used to coat irregularly shaped objects, it takes a long time to
perform the operation, and the coating film has low uniformity. It is a critical disadvantage
when magnetron sputtering is used to perform nanocoating for some medical implants such as
artificial joints. [7].
The objective is to design a structure to achieve magnetron sputtering in a three-dimensional
frame in a vacuum environment. After investigation, implementing a robotic arm in the nanocoat-
ing machine can realize movement in a 3D frame with different postures [8]. Thus, the aim is
to integrate a robotic arm into the nanocoating machine, and the robotic arm should satisfy the
requirement to operate in a vacuum and high-temperature environment.

4

2 DESIGN

2 Design

2.1 Design procedure

2.1.1 Mechanical System

This section outlines the iterative design, key decisions, and engineering principles for the Four-
Axis Vacuum Stage robotic arm, covering two main iterations that addressed early prototype
deficiencies.

A. Joint 1 (Base Interface)
Function: Primary interface with the coating machine’s central axis, providing stable base
rotation. Chosen Approach (V1 & V2): Custom aluminum alloy assembly with integrated
stepper motor and reducer. Alternatives: Direct motor mount with high-precision bearing;
off-the-shelf vacuum rotary stage. Justification: Aluminum was selected for its vacuum com-
patibility and strength-to-weight ratio. A custom, CNC-machined design ensures precise inte-
gration with the coating machine and arm, optimized motor/reducer placement, and adequate
torque, proving more cost-effective than specialized off-the-shelf stages for this application.
Design relied on CAD (e.g., Fusion 360) and material selection. Circuit Function: [Block

Diagram: MCU -> Driver -> Stepper -> Reducer -> Joint1 Output]

Function: Controller signals drive the motor via a driver; the reducer increases torque for arm
base rotation.

B. Link 1 (J1 to J2 Connection)
Function: Transmits motion/forces; supports subsequent arm sections. Chosen Approach
(V1 & V2): Standard 2020 aluminum extrusion. Alternatives: Custom CNC aluminum link;
carbon fiber tube. Justification: 2020 extrusion offers modularity via T-slots, sufficient stiff-
ness for the loads, and is highly cost-effective and available compared to custom CNC or carbon
fiber. Design considered beam deflection (δ ∝ PL3/EI, Eq. B.1) and bending stress (σ =My/I,
Eq. B.2) using CAD and FEA.

C. Joint 2 (Shoulder Pitch)
Function: High-torque pitch motion for lifting the main payload. V1 Design: Aluminum
frame, stepper motor with PLA gearing/direct drive, and a synchronous belt (which failed due
to slippage and material degradation in vacuum/temperature). V2 Chosen Approach: Re-
tained aluminum frame but upgraded actuation to a screw motor (lead screw mechanism).
V2 Alternatives: High-ratio metal gearbox; Harmonic Drive. V2 Justification: The screw
motor provides high torque, stability, and self-locking capability (eliminating V1’s slippage is-
sues), and allows manual torque adjustment. It offered a better cost/performance balance than
a harmonic drive. Design utilized lead screw mechanics (Faxial ∝ Tmotor/p; Tjoint = Faxial · reff)
with CAD/FEA for the redesigned components. Circuit Function (V2): [Block Diagram:

MCU -> Driver -> Stepper (Lead Screw) -> Nut -> Linkage -> Joint2 Output]

Function: Stepper rotates lead screw; linear nut motion converts to angular joint motion.

5

2.1 Design procedure 2 DESIGN

D. Joint 3 (Elbow Pitch)
Function: Pitch motion for the end-effector section. Chosen Approach (V1 & V2): Alu-
minum housing, actuated by a geared stepper motor, suitable for the lower end-effector mass.
Alternatives: Direct drive motor; miniature screw drive. Justification: A geared stepper of-
fers a good balance of torque, size, and cost for this joint. Torque calculations (Treq ∝ mgl ·SF,
Eq. D.1) confirmed adequacy. Circuit Function: [Block Diagram: MCU -> Driver ->

Geared Stepper -> Joint3 Output]

Function: Controlled angular motion for the final arm segment.

E. Drivetrain System (Overall)
V1 Approach: PLA gearing and synchronous belts (failed due to slippage and material degra-
dation). V2 Chosen Approach: Upgraded to robust metal gear-driven mechanisms (often in-
tegrated into steppers) and a specialized screw motor for Joint 2, enhancing torque, reliability,
and environmental resistance.

F. Braking System (V2)
Function: Prevent unintended arm movement on power-off. Chosen Approach (V2): Motor-
integrated electromagnetic braking system. Alternatives: Mechanical brakes; reliance on self-
locking gearboxes. Justification: Electromagnetic brakes offer fail-safe operation (engage on
power loss), provide an integrated/compact solution, allow controlled engagement, and en-
hance safety. Circuit Function: [Block Diagram: Motor Power -> Control Signal

-> Brake Coil]

Function: Brake coil energized to release during operation; de-energizes to engage brake on
power loss/hold.

2.1.2 Control System

In order to reach the control of the robotic arm to hold up the substrate to move the position and
adjust the attitude to receive the proper coating, it is necessary to control at least four degrees
of freedom. At first, one Arduino board connect with four motors is considered and tested.

Figure 2: One Unit of Stepper Connection

6

2.1 Design procedure 2 DESIGN

Due to the lack of performance and protection, this design was eliminated. In the second
iteration, many industrial-level features were considered:

1. RS485 Protocol: Widely used in industrial signal transmission, long transmission dis-
tance, strong anti-interference.

2. Optical Coupler: Optocouplers are characterized by mutual isolation between inputs and
outputs, unidirectional transmission of electrical signals, and thus have good electrical
insulation and anti-interference capability.

STM32 was chosen for its widely use and high stability to be the upper computer in the control
system. The ”ZhengDianYuanZi STM32F407IG Industrial Control Development Board” was
considered for it internal TTL to RS485 converter and built-in optical coupler. Normal stepper
controller uses ENA, DIR, PUL to control. But a controller with built-in RS485 processing ca-
pability was prefered in this design. So ”ZDT Emm42 stepper controller” with optical coupler
version was chosen.

2.1.3 PCB Design

As shown in Figure 4, close-up view of the pin interface of the EM42 motor driver and STM32
MCU board, critical connections with high lighting (e.g., power (A +, G) and RS485 A / B
signals).

Figure 3: Close-up View of MCU and Motor Driver

At the top level, our PCB must serve two functions: distribute 24 V power to four EM42 motor
drivers with minimal noise or voltage drop, and carry a robust, half-duplex RS-485 differential
bus from the STM32 MCU to those same drivers. For each function we examined two archi-
tectures. For power we compared a centralized bus (one 4-way block feeding all drivers in
parallel) versus individual point-to-point regulators on each motor-driver connector; we chose
the former because the motors draw up to 2 A each only briefly and the single regulated 24 V

7

2.1 Design procedure 2 DESIGN

rail—with properly sized copper pours and decoupling—yields lower cost, smaller board area,
and simpler thermal management. For communication we evaluated a linear “daisy-chain”
bus topology against our star-style, four-port breakout with parallel termination; the star ap-
proach on PCB—with a single A/B entry followed by four equal-length, controlled-impedance
traces—ensures equal signal delay and minimal stub reflections, and allows us to integrate both
120Ω end-of-line termination resistors directly at the farthest connector blocks.

2.1.4 User Interface

Buttons: Figure 5 shows the physical buttons built into the STM32 MCU board. We plan to
use the buttons to trigger a series of movement sets of the stepper motors.

Figure 4: Physical Buttons

TFT screen:

• Open-Loop vs. Closed-Loop Display

Choice: We are using an open-loop motor control architecture, so we cannot rely on
real-time feedback of actual motor states (position or velocity).

Consequence: The screen must show the commanded values—set velocity, target posi-
tion, and the state machine’s phase—instead of actual readings.

Workaround: We periodically poll the motor controller via RS-485 (every 20 main-loop
iterations) and timestamp each poll so that, even though it’s not truly synchronous feed-
back, we can estimate when motors should have reached their targets or detect errors via
CRC flags.

• What to Display

Global Status Bar: current state of the move-set state machine (IDLE, STEP1, . . . ,
DONE).

Per-Motor Panels: for each of the four motors, display

Motor ID and whether it’s “RUN” or “STOP.”

Commanded speed (RPM) and direction (CW/CCW).

Target position (degrees).

Message Area: transient text messages (“Running Main Program,” “STOP,” etc.) trig-
gered by button presses or errors.

• Layout and Readability

Fixed-width fields ensure that updates only overwrite old text, avoiding display artifacts.

Color Coding:

Blue for labels and normal info

8

2.2 Actuator 2 DESIGN

Green for “RUN” status

Red for “STOP” or error conditions

Font Size and Positioning: all text at 16-pixel font, with consistent X/Y offsets so each
line and panel aligns neatly.

• Timing and Refresh Strategy

Non-blocking main loop: a 1 ms “HALDelay” ensures 1 kHz loop, so User Interface
updates remain smooth without halting motor logic.

Periodic Polling: every 20 iterations (20 ms), send read-back commands (EmmV5ReadSysParams)
to each motor and then call “Translatereceiveddata()” once per poll to refresh the UI pan-
els.

2.2 Actuator
Servos was considered for its simplicity and convenience. Servomotors was considered for
high accuracy with feedback control. Stepper motors and reduction gears were considered for
step-by-step control.
After evaluating the environment in the nano-coating machine, which is high temperature and
high radiation. The Servo was negated for not enough accuracy .And the Servomotors have the
built-in control, which is likely to be destroyed in the machine. Stepper motor system is further
considered to combine with reduction gear and screw rod.

2.3 Design details

Figure 5: Block diagram of the system

9

2.3 Design details 2 DESIGN

2.3.1 Control System

Figure 6: Draft of Control System

The control system uses STM32F407IG as the upper computer to be the central of whole con-
trol. This MCU has ARM32 Cortex-M4 CPU up to 168Mhz, able to deal with the connection
with PC, touch screen, buttom and four stepper controllers. The control signals for motors uses
RS485 protocol to achieve industrial-grade long range, high interference immunity, expand-
ability.
The slave computers uses ”ZDT Emm42 stepper controller” that can deal with RS485 protocol
internally. The controller can use both velocity control and position control, provided the con-
vinience for the need of different joint. The joint 1, 2, and 3 use postion control to move the
substrate to proper position. The joint 4 uses velocity control to provide constant rotation
In the MCU, runs the main program for the system (Appendix A). The class ”Motor” was built
for simple storage of motor parameters and quick call-up of actions.

10

2.3 Design details 2 DESIGN

A Finite State Machine is used in the main sequence of program to drive the system moving to
the correct position in the correct time.

• MS1 IDLE: Idle state waiting for start

• MS1 STEP1, first step of movement that moves the substrate from idle to the sputtering
position

• MS1 WAIT1, a duration of time waiting for step1 to finish

• MS1 STEP2, second step of movement that adjusts the angle constantly so that substrate
is coated uniformly

• MS1 WAIT2, a duration of time waiting for step2 to finish

• MS1 STEP3, move the substrate back to home position

• MS1 DONE: movment finished

2.3.2 PCB Design

As shown in Figure 7, this PCB schematic integrates a power supply and multiple RS485
communication buses. And Figure 8 shows the PCB layout diagram. Within each block, our
general circuit forms are:

• Power-input block: a 1×2 pluggable terminal for 24 V in, feeding an internal 40 A copper
pour, decoupled by 10 µF/50 V MLCCs placed within 5 mm of each connector.

• RS-485 breakout block: an onboard MAX3485 half-duplex transceiver drawn into a
differential-pair fanout—four equal-length branches—with A/B signal control via the
STM32’s GPIO.

• Connector blocks: four 1×8 right-angle headers (we populate only four pins: V+, GND,
A, B) arranged so that the two outer pins carry termination resistors when installed.

11

2.3 Design details 2 DESIGN

Figure 7: PCB Schematics

Figure 8: PCB layout

12

2.3 Design details 2 DESIGN

2.3.3 User Interface

(1) Buttons:

• Key 0 is assigned to execute the first complete motor-drive routine, which includes a
sequential sweep of Arm 1 through Arm 4 along their full travel ranges, followed by
a coordinated return to the home positions. This preset motion profile is optimized for
coating cylindrical or regularly shaped specimens.

• Key 1 triggers the second distinct motor-drive routine, in which each arm follows an
alternating oscillation pattern at differing amplitudes and phases—ideal for non-uniform
or irregularly shaped objects requiring more complex nano-coating trajectories.

• Key 2 serves as an immediate “panic” or interruption command: upon pressing it, all
ongoing motor movements are halted safely and the system enters an idle state until a
new motion command is issued.

(2) TFT Screen Display: Figure 9 shows the TFT sreen display in a physical setup. Here are
the detailed code implementations.

Figure 9: TFT Screen Display in the Physical Setup

13

2.3 Design details 2 DESIGN

• Message Area

– Function: displayMessage(const char* msg)

– Region: defined by

1 #define MSG_X 30

2 #define MSG_Y 150

3 #define MSG_W 500

4 #define MSG_H 100

– Implementation: Each new message overwrites the previous one within a fixed 20-
character box.

1 char buf[32];

2 snprintf(buf, sizeof(buf), "%-20s", msg);

3 lcd_show_string(MSG_X, MSG_Y, MSG_W, MSG_H, 16, buf, BLUE);

• Global State Display

– Buffer:

1 char stateBuf[16];

2 snprintf(stateBuf, sizeof(stateBuf), "MS1:%-6s", MoveState1Names

[(int)move1_state]);

3 lcd_show_string(10, 10, 200, 16, 16, stateBuf, BLUE);

– What shows: “MS1:STEP1 ” (always exactly 6 chars for the state) at the top-left.

• Per-Motor Status Panels

– Class Method:

1 void Motor::displayStatus(int baseX, int baseY) const {}

– Panel Layout:
First line: motor label and “RUN”/“STOP”

1 snprintf(buf, , "M%02X:", addr);

2 lcd_show_string(baseX, baseY, 60,16,16, buf, BLUE);

3 // then status:

4 snprintf(buf, , "%-4s", (velocity!=0)?"RUN":"STOP");

5 lcd_show_string(baseX+offset, baseY, 60,16,16, buf, color);

Second line: “SPEED:” label + direction+value

14

2.3 Design details 2 DESIGN

1 lcd_show_string(..., "SPEED:", BLUE);

2 // dirStr = "CLW"/"CCLW" based on sign, velocity

3 snprintf(displayBuf, , "%-4s%3d␣", dirStr, abs(velocity));

4 lcd_show_string(..., displayBuf, BLUE);

Third line: “TARGET:” label + target angle

1 lcd_show_string(..., "TARGET:", BLUE);

2 snprintf(buf, , "%5d", (int)tgt_degree);

3 lcd_show_string(..., buf, BLUE);

• Periodic Poll and Update

– Trigger:

1 static uint8_t t = 0;

2 if (++t >= 20) {

3 t = 0;

4 // send read commands:

5 for (addr=1 4) {

6 Emm_V5_Read_Sys_Params(addr, S_VEL);

7 Emm_V5_Read_Sys_Params(addr, S_CPOS);

8 Emm_V5_Read_Sys_Params(addr, S_FLAG);

9 }

10 }

– Decode Refresh:
In “Translatereceiveddata()”, we parse incoming RS-485 frames and update each
motor’s readvelocity, readdegree, and reachpos, then immediately call each motor’s
displayStatus() to repaint that panel.

2.3.4 First Edition of Mechanical Design

A specialized aluminum alloy (Al) joint assembly has been designed to interface the robotic
arm with the coating machine’s central axis. Leveraging Al’s high strength-to-weight ratio
and vacuum compatibility, the joint features precision-machined surfaces for coaxial alignment
with both the machine’s axis and the arm’s structural components. Engineered to withstand
multi-axis dynamic stresses while maintaining dimensional stability under vacuum, the joint
undergoes surface treatments to enhance corrosion resistance and minimize particle generation,
ensuring compliance with nanocoating purity requirements. This component enables seamless
torque transmission and precise specimen positioning relative to the sputtering source, while
its design prioritizes CNC manufacturability for cost-effective production.

15

2.3 Design details 2 DESIGN

Figure 10: The Design of The First Joint

Building upon the primary structure design of the first joint, its assembly integrates a reducer
and a stepper motor. This configuration not only facilitates CNC machining but also delivers
sufficient torque to actuate the second joint, its connecting link, and subsequent aluminum
components.

2.3.5 The Design of the First Link

Figure 11: The Design Of The First Link

To connect the third joint while meeting strength and cost requirements, the linkage must sup-
port motor, joint, and specimen weights without excessive expense. CNC machining is unsuit-
able due to high costs for the required length, so a 2020 aluminum extrusion tube is optimal.
This modular AL tube offers sufficient stiffness, a 20x20mm profile, and pre-engineered T-slots
for easy assembly, balancing structural integrity and affordability. The Design of the Second
Joint

Figure 12: The Design Of The Second Joint

16

2.3 Design details 2 DESIGN

The second joint’s primary structure adheres to a design philosophy similar to the first, featur-
ing a stress-optimized aluminum alloy frame. However, the perpendicular arrangement of the
first and second links necessitates a mirrored configuration for the stepper motor and reducer,
which are mounted on opposing lateral faces of the main body. This layout optimizes torque
transmission, balances inertial loads, and facilitates modular assembly, ensuring high-precision
operation across all motion profiles.

2.3.6 The Design of the Third Joint

Figure 13: The Design Of The Third Joint

This component is designed to secure 2020 aluminum profiles and enable rotation of the coat-
ing platform mounted at the distal end. Given the low mass of the end-effector platform, the
connection does not require a torque-enhancing reducer, allowing for a simplified structural
design.

2.3.7 The two Versions of the Robotic Arm

(a) The first generation of the robotic arm

(b) The first Generation of the Robotic Arm in
real world

Figure 14: Physical Design of the robotic arm 1

After fabricating the three-joint robotic arm prototype, manual range-of-motion testing identi-
fied critical structural and mechanical flaws:

17

2.3 Design details 2 DESIGN

1.Excessive Flexure in Links: Significant horizontal deflection and instability in Link 2 and
Link 3 were observed, caused by the inadequate cross-sectional modulus of 2020 aluminum
extrusions. This flexure undermines positioning accuracy and induces vibrations during dy-
namic operation.

2.Torque Deficiency in Joint 2: A payload test at the end-effector caused immediate slippage
in the PLA gearing system at Joint 2 (shoulder). Analysis shows the direct-drive configuration
lacks sufficient torque multiplication to overcome inertial forces.

3.Environmental Degradation of Belt Drives: Synchronous belts exhibited premature wear and
material degradation in magnetron muttering’s vacuum and high-temperature environment, re-
quiring a shift to chemically inert materials or sealed transmission systems.

(a) The second Generation of the Robotic Arm (b) The second generation of the robotic arm
in the real world

Figure 15: Physical Design of the robotic arm 2

In response to the identified issues, a second-generation robotic arm prototype has been devel-
oped. Key modifications include replacing the synchronous belt drive system with a gear-driven
mechanism to enhance torque transmission reliability, and integrating a motor equipped with an
electromagnetic braking system to prevent unintended movement during power outages. While
structural components from the first iteration—such as aluminum extrusion profiles and joint
mounting interfaces—were retained for design continuity, critical drivetrain elements were up-
graded to address mechanical deficiencies, like the joint 2, the original stepper motor has been
replaced with a screw motor, which not only delivers more stable force but also eliminates
slipping caused by the robotic arm’s weight. The new design additionally enables manual ad-
justment of torque at the second connection. This phased redesign approach balances cost ef-
ficiency with performance improvements, ensuring compatibility with existing sub assemblies
while resolving primary failure modes observed in initial testing.

18

3 VERIFICATION

3 Verification

3.1 Control Module

3.1.1 Microcontroller Unit (MCU)

Requirement Verification
Work as the upper computer for the sys-
tem. Can send RS-485 signals to stepper
controllers and drive a TFT touch screen

Run a set of test programs for computation
and control provided by the manufacturer,
check the functionality.
A. Run the ”Light and speaker test”, the light
should turn on and off sequentially.
B. Run the ”Touchscreen test”, the screen
should work as a drawing board that can be
drawn by fingers.

3.1.2 Stepper Motor Controller

Requirement Verification
Receive RS-485 signals from the MCU and
control motors correctly.

Install in the system and run test programs,
the motor should be controlled to the velocity
or the position we assigned.
A. Send ”01 F6 01 00 64 0A 00 6B”, the mo-
tor should run at 100RPM.
B. Send ”01 FD 01 05 DC 00 00 00 7D 00
00 00 6B”, the motor should run 10 rounds.

3.2 Actuator Module

3.2.1 Stepper Motor

Requirement Verification
Three 42 stepper motors and one screw mo-
tor are needed. They need to actuate the
robotic arm stably (The torque should be
able to bear the weight of the robotic arm)

A. Running the simulations in MATLAB and
Fusion 360 to make sure that the torques of
the stepper motors should be larger than the
torques needed to bear the weight.
B. Install the system and mark the start po-
sition, run a simple up and down program
100 times, the end position should be within
1mm tolerance.

19

3.3 Mechanical Arm Structure 3 VERIFICATION

3.2.2 Reduction Gear

Requirement Verification
The reduction gear need to bear the weight
of the robotic arm and exert enough torque
to actuate the manipulator when combined
working with the stepper motors.

A. Theoretical calculation to make sure the
Torqueis enough.
B. Install the reduction gears on the arm.
Set the motor to run at half the rated cur-
rent(redundancies). The motor can move
smoothly within the set range of motion.

3.3 Mechanical Arm Structure

Requirement Verification
1. The jack screw mechanism should be
compatible with the other three step motors.
During the prismatic motion of connector
along the slideway of the jack screw, the sec-
ond link of the robotic arm should revolute
smoothly around the first joint.
2. The weight of the robotic arm should be
uniformly distributed. This is to decrease
the required torque to actuate the manipula-
tor and avoid fracture or cracks.
3. The length of each link of the robotic arm
should be carefully considered. It should be
guaranteed that there is no interference be-
tween the trajectory of the robotic arm and
the working space.

1. A CAD model will be constructed in Fu-
sion 360, and the compatibility of the steo
motors and jack screw can be verified by
conducting the actuation simulation of the
whole robotic arm.
2. The weight distribution of the robotic arm
and the resultant torques, followed by safety
factor, concentrated stress can be guaranteed
by finite element analysis(FEA)
3. The robotic arm will be modelled in Mat-
lab Simulink. The trajectory of the robotic
arm will be visualized using Simulink to
see if there is interference with the working
space

3.4 PCB Design

Requirement Verification
1.Deliver a stable 24 V line capable of 3 A
continuous per branch with less than 0.1 V
drop at the farthest connector.
2.Maintain a half-duplex RS-485 differen-
tial pair between the STM32 and each motor
controller, with proper DE/RE control and
120Ω termination at both ends.

1. Apply 24 V at 3 A into each branch in
turn and measure the voltage at every motor-
driver connector to confirm the drop stays
below 0.1 V.
2. Hook the A/B lines from the MCU to
a single motor controller, transmit a known
test frame (e.g. a CRC-checked position or
velocity command), and confirm correct re-
ception and response on the controller side.

3.5 Interface Module

20

3.6 Circuit Connection 3 VERIFICATION

3.5.1 button

Requirement Verification
1. Start Button: Pressing the button initiates
the robotic arm’s planned trajectory.
2. Stop Button: Pressing the button immedi-
ately halts all robotic arm motion.

1. Power on the system, press the start but-
ton and observe robotic arm motion. Robotic
arm is expected to begin moving along the
predefined trajectory if the start button is
working properly.
2. Start the robotic arm, press the stop but-
ton during motion and observe robotic arm
behavior. Robotic arm is expected to stop all
motion immediately (no residual movement)
if the stop button is working properly.

3.5.2 TFT touch screen

Requirement Verification
1. Display text correctly
2. touch works

1. Run the ”Text Display test”,
2. Run the ”Touchscreen test”, the screen
should work as a drawing board that can be
drawn by fingers.
A. The line should be generated at a position
where the finger touches.
B. All areas of the screen can be touched and
lines can be generated.

3.6 Circuit Connection

3.6.1 CF63 Conflat Flang Interface

Requirement Verification
The 4*4 cables needed by 4 motors are con-
nected through the interface, signaling well.

Connect cables through it, resistor should be
below 1Ω f oreverycable.

3.6.2 Teflon Insulated Cable

Requirement Verification
Carry signals and power from CF63 to mo-
tors safely, not being damaged by the sput-
tering or signal interfered.

A. The technical specs will be checked to
match the nano coating machine before buy
it. The cable should be resistant to more than
300 degrees.
B. Install it in the sputtering machine, con-
trol the motor during the sputtering process.
Check the cables after one coating process,
the cable should not have visual impairment.

21

4 COSTS

4 Costs
Development cost can be estimated to be 50 RMB/hour. Four members in the group work from
Dec/2024 to May/2025, 5 hours/week for first 3 months, 12 hours/week for last 3 months.

50[RMB]∗ (5[hrs]∗12[weeks]+12[hrs]∗13[weeks]) = 10800

4.1 Prototype

Part Price(RMB) Quantities Cost (RMB)
Arduino UNO R3 169 1 169
Stepper controller 90 4 360

STM32F407ZGT6 Development Board 658.52 1 658.52
”Emm42” stepper controller 60 6 360

42mm Stepper motor 38 2 76
42mm reduction gear (1:50) 120 1 120
42mm reduction gear (1:10) 100 1 100

28mm Stepper motor 45 2 90
28mm reduction gear (1:10) 145 1 145

screw motor 598 1 598
2020 aluminum profile N/A 5 21.62

Half moon shaped cast aluminum base 7.45 1 7.45
Customized aluminum parts N/A N/A 2591

24V power supply 118.9 1 118.9
CF63 connector 1200 1 1200

Teflon insulated cable 5.68 1 56.8
In the process of prototype development, we tried different components to get better perfor-
mance. Some materials that are already available in the laboratory, such as cables, high tem-
perature tape, and aluminum foil, were used in the development process, so they were not
included in the cost.

4.2 bulk
For the mass production, the cost will be lower.

22

5 CONCLUSION

Part Price(RMB) Quantities Cost (RMB)
STM32F407ZGT6 Development Board 658.52 1 658.52

”Emm42” stepper controller 60 4 240
42mm Stepper motor 38 1 38

42mm reduction gear (1:50) 120 1 120
28mm Stepper motor 45 2 90

28mm reduction gear (1:10) 145 1 145
42 screw motor 598 1 598

2020 aluminum profile N/A 2 5
Half moon shaped cast aluminum base 7.45 1 7.45

Customized aluminum parts N/A N/A 2591
24V power supply 118.9 1 118.9
CF63 connector 1200 1 1200

Teflon insulated cable 5.68 10m 56.8
Regular cable NA 18*5m ≈ 50

The Development Board can be replaced with a board designed only for this use, so that cost
can be even lower.

5 Conclusion
The iterative design culminated in a robust system featuring four motors, reducers, a micro-
controller, and custom mechanics, including a screw-driven joint for enhanced torque and sta-
bility. Verification of mechanical, control (STM32-based with RS-485), and interface modules
confirmed operational functionality, preparing the stage for definitive coating and tribo-testing
experiments to demonstrate its superiority.
Key accomplishments include the full mechanical and control system design (including a cus-
tom PCB), assembly, and initial functional verification. The project effectively iterated from
initial concepts to a refined V2 design, overcoming early prototype limitations like torque defi-
ciency and material degradation. The system now offers precise multi-axis manipulation within
a vacuum, controlled via a TFT screen and button interface.
While core functionality is proven, comprehensive long-term vacuum endurance and extensive
coating trials on diverse geometries are the next steps to fully quantify performance gains and
optimize motion profiles. Contingency plans for material outgassing or payload limitations in-
volve sourcing UHV-specific components or refining mechanical elements. Cost reduction for
potential scaling is also feasible through more specialized PCB design.
Ethical Considerations: Adherence to the IEEE Code of Ethics was central, particularly en-
suring public welfare by aiming to improve nanocoated product quality (e.g., biomedical im-
plants) and designing for safe lab operation. Claims regarding system capabilities are based
on available data and iterative testing, reflecting honesty and realism in design and reporting.
Broader Impacts: This four-axis vacuum stage significantly impacts nano-manufacturing by
enabling efficient, high-quality coating of complex 3D objects. Economically, this can reduce
costs and improve product performance in biomedical, aerospace, and advanced materials sec-
tors. Environmentally, precise coating can minimize material waste. Societally, it advances
nanotechnology applications, contributing to technological progress and improved material so-
lutions. In summary, this design project delivered a functional and innovative four-axis vacuum
stage, demonstrating a practical solution for advanced 3D nanocoating and setting the stage for
impactful experimental validation.

23

References

[1] R. A. Caruso, “Nanocasting and Nanocoating,” in Colloid Chemistry I, A. De Meijere,
H. Kessler, S. V. Ley, J. Thiem, F. Vögtle, K. N. Houk, J.-M. Lehn, S. L. Schreiber, B. M.
Trost, H. Yamamoto, and M. Antonietti, Eds. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2003, vol. 226, pp. 91–118.

[2] W. Bao, Z. Deng, S. Zhang, Z. Ji, and H. Zhang, “Next-Generation Composite Coating
System: Nanocoating,” Frontiers in Materials, vol. 6, p. 72, Apr. 2019.

[3] D. H. Abdeen, M. El Hachach, M. Koc, and M. A. Atieh, “A Review on the Corrosion
Behaviour of Nanocoatings on Metallic Substrates,” Materials, vol. 12, no. 2, p. 210, Jan.
2019.

[4] G. Choi, A. H. Choi, L. A. Evans, S. Akyol, and B. Ben-Nissan, “A review: Recent ad-
vances in sol-gel-derived hydroxyapatite nanocoatings for clinical applications,” Journal
of the American Ceramic Society, vol. 103, no. 10, pp. 5442–5453, Sep. 2020.

[5] I. Shishkovsky and P. Lebedev, “Chemical and physical vapor deposition methods for
nanocoatings,” in Nanocoatings and Ultra-Thin Films. Elsevier, 2011, pp. 57–77.

[6] V. Falikman, “Nanocoatings in modern construction,” Nanotechnologies in Construction A
Scientific Internet-Journal, vol. 13, no. 1, pp. 5–11, Feb. 2021.

[7] O. V. Penkov, V. E. Pukha, S. L. Starikova, M. Khadem, V. V. Starikov, M. V. Maleev, and
D.-E. Kim, “Highly wear-resistant and biocompatible carbon nanocomposite coatings for
dental implants,” Biomaterials, vol. 102, pp. 130–136, Sep. 2016.

[8] K. Kruthika, B. Kiran Kumar, and S. Lakshminarayanan, “Design and development of a
robotic arm,” in 2016 International Conference on Circuits, Controls, Communications and
Computing (I4C). Bangalore: IEEE, Oct. 2016, pp. 1–4.

24

Appendix A - Main Program

1 #include "./c_bindings.h"

2 #include <math.h> // #include <cmath>

3
4
5 //

6 enum MoveState1 {

7 MS1_IDLE = 0,

8 MS1_STEP1, //

9 MS1_WAIT1, // 30s

10 MS1_STEP2, //

11 MS1_WAIT2, // 60s

12 MS1_STEP3, //

13 MS1_DONE //

14 };

15
16 static MoveState1 move1_state = MS1_IDLE;

17 static uint32_t move1_lastTick = 0;

18
19 const char* MoveState1Names[] = {

20 "IDLE",

21 "STEP1",

22 "WAIT1",

23 "STEP2",

24 "WAIT2",

25 "STEP3",

26 "DONE"

27 };

28
29 //

30 #define MSG_X 30

31 #define MSG_Y 150

32 #define MSG_W 500

33 #define MSG_H 100

34
35 //

36 void displayMessage(const char* msg) {

37 // 20

38 char buf[32];

39 snprintf(buf, sizeof(buf), "%-20s", msg);

40 // "%-20s" 20

41
42 lcd_show_string(MSG_X, MSG_Y, MSG_W, MSG_H, 16, buf, BLUE);

43 }

44
45

25

46
47
48
49
50 class Motor {

51 private:

52 uint8_t addr; // Motor address

53 uint8_t set_dir; // Set forward direction (0 or 1)

54 uint8_t dir; // Current direction bit sent to the motor

55 uint8_t redu_ratio; // Reduction ratio of the motor gearbox

56 uint8_t acc; // Acceleration parameter for the motor

57 uint16_t vel; // Target velocity (raw value to be sent to

motor)

58
59 public:

60 int velocity; // User-defined speed (RPM)

61 double tgt_degree; // Target angle (degrees)

62 int32_t read_velocity; // Real-time read velocity (RPM)

63 int32_t read_position_raw;// Real-time read raw position count (

signed)

64 double read_degree; // Real-time read angle (degrees)

65 bool reach_pos;

66
67 // Initializes the motor address, direction, reduction ratio, and

acceleration

68 void init(uint8_t address, uint8_t direction = 0, uint8_t

reduction_ratio = 1, uint8_t acc_val = 10) {

69 addr = address;

70 set_dir = direction;

71 redu_ratio = reduction_ratio;

72 acc = acc_val;

73 velocity = 0;

74 tgt_degree = 0;

75 read_velocity = 0;

76 read_position_raw = 0;

77 read_degree = 0;

78 }

79
80 // Calculates the absolute position count value after setting the

target angle

81 uint32_t read_tgt_pos() const {

82 return static_cast<uint32_t>(tgt_degree * (3200.0 * redu_ratio) /

360.0);

83 }

84
85 // Sets the target position (in degrees) and optionally the velocity

, then sends the position control command

26

86 uint32_t tgt_position(double degree, int velocity_val = 1) { //

[/3200 = round] - Comment likely referring to a rounding aspect

in the underlying implementation

87 tgt_degree = degree;

88 velocity = velocity_val;

89 if (degree < 0) {

90 dir = set_dir ? 0 : 1; // Reverse direction if the degree is

negative

91 degree = -degree; // Store the absolute value of the degree

92 } else {

93 dir = set_dir;

94 }

95 uint32_t position = degree * (3200 * redu_ratio) / 360; // [/3200

= round] - Comment likely referring to a rounding aspect in

the underlying implementation

96 if (velocity_val!=0) {

97 vel = static_cast<uint16_t>(velocity_val); // [RPM] - Set

velocity if a velocity value is provided

98 }

99 Emm_V5_Pos_Control(addr, dir, vel, acc, position, 0, 0); // [

degree] - Send position control command to the motor

100 return position;

101 }

102
103 // Sets the velocity and direction based on the input velocity value

, without sending a command

104 void set_velocity(int velocity_val) {

105 velocity = velocity_val;

106 if (velocity < 0) {

107 vel = static_cast<uint16_t>(-velocity); // Store the absolute

value of the negative velocity

108 dir = set_dir ? 0 : 1; // Reverse direction if the

velocity is negative

109 } else {

110 vel = static_cast<uint16_t>(velocity); // Store the positive

velocity

111 dir = set_dir; // Maintain the set

forward direction

112 }

113 }

114
115 // Sends the constant speed control command to the motor

116 void constant_rorate() {

117 Emm_V5_Vel_Control(addr, dir, vel, acc, 0);

118 }

119
120 void constant_rorate(int velocity_val) {

121 set_velocity(velocity_val);

27

122 Emm_V5_Vel_Control(addr, dir, vel, acc, 0);

123 }

124
125 // Returns the reduction ratio of the motor

126 uint8_t get_reduction_ratio() const { return redu_ratio; }

127
128 // Displays the current status (speed, target angle, working status)

on the TFT screen

129 void displayStatus(int baseX, int baseY) const {

130 char buf[32];

131 const int offsetX = 10; // Horizontal spacing

132 int currentY = baseY;

133 int currentX = baseX;

134
135 // --- First line: Motor label and status (STOP/RUN) ---

136 // Output status with a fixed width of 4 characters

137 snprintf(buf, sizeof(buf), "M%02X:", addr);

138 lcd_show_string(currentX, currentY, 60, 16, 16, buf, BLUE);

139 currentX += 60 + offsetX * 2;

140
141 const char* status = (velocity != 0) ? "RUN" : "STOP";

142 uint16_t color = (velocity != 0) ? GREEN : RED;

143 // Fixed width of 4 characters, padded with spaces on the right

144 snprintf(buf, sizeof(buf), "%-4s", status);

145 lcd_show_string(currentX, currentY, 60, 16, 16, buf, color);

146
147
148 // --- Second line: SPEED and DIRECTION or STOP "0" ---

149 currentY += 20;

150 currentX = baseX;

151 lcd_show_string(currentX, currentY, 60, 16, 16, "SPEED:", BLUE);

152 currentX += 60 + offsetX;

153
154 // --- Second line: SPEED and DIRECTION or STOP "0" ---

155 currentY += 20;

156 currentX = baseX;

157 lcd_show_string(currentX, currentY, 60, 16, 16, "SPEED:", BLUE);

158 currentX += 60 + offsetX;

159
160 char displayBuf[10];

161 if (velocity > 0) {

162 const char* dirStr = (set_dir == 0) ? "CLW" : "CCLW";

163 // 8 4 + 3 +

1

164 snprintf(displayBuf, sizeof(displayBuf), "%-4s%3d␣", dirStr,

velocity);

165
166 } else if (velocity < 0) {

28

167 const char* dirStr = (set_dir == 0) ? "CCLW" : "CLW";

168 snprintf(displayBuf, sizeof(displayBuf), "%-4s%3d␣", dirStr, -

velocity);

169
170 } else {

171 // 0 8

172 snprintf(displayBuf, sizeof(displayBuf), "␣␣␣␣0␣␣␣");

173 }

174 //

175 lcd_show_string(currentX, currentY, 70, 16, 16, displayBuf, BLUE);

176
177 // --- Third line: TARGET DEGREE ---

178 currentY += 20;

179 currentX = baseX;

180 lcd_show_string(currentX, currentY, 100, 16, 16, "TARGET:", BLUE);

181 currentX += 100 + offsetX;

182 // Target angle fixed width 5 digits (including sign)

183 int tgt_int = static_cast<int>(tgt_degree);

184 snprintf(buf, sizeof(buf), "%5d", tgt_int);

185 lcd_show_string(currentX, currentY, 80, 16, 16, buf, BLUE);

186 }

187 };

188
189 // Global definitions for four motor instances

190 Motor motor1, motor2, motor3, motor4;

191
192
193 //

194 static uint32_t motorStartTick[4] = {0, 0, 0, 0}; //

HAL_GetTick()

195 static uint32_t motorDuration[4] = {0, 0, 0, 0}; //

ms

196 static bool motorMoving[4] = {false, false, false, false}; //

197
198
199 // RPM

200 static uint32_t estimateTimeMs(double degrees, int rpm) {

201 // ms = |deg|/RPM * (60*1000ms) / 360deg

202 return (uint32_t)(fabs(degrees) / rpm * 60000.0 / 360.0);

203 }

204
205 void pollMotorStops() {

206 uint32_t now = HAL_GetTick();

207 for (int i = 0; i < 4; ++i) {

208 if (motorMoving[i] && now - motorStartTick[i] >= motorDuration[i])

{

209 //

29

210 switch (i) {

211 case 0: motor1.constant_rorate(0); break;

212 case 1: motor2.constant_rorate(0); break;

213 case 2: motor3.constant_rorate(0); break;

214 case 3: motor4.constant_rorate(0); break;

215 }

216 motorMoving[i] = false; //

217 }

218 }

219 }

220
221
222
223 // Parses the received RS485 data, updates the corresponding motor, and

refreshes the display

224 void Translate_received_data(uint8_t* rs485buf) {

225 uint8_t len;

226 rs485_receive_data(rs485buf, &len);

227 if (len == 0) return;

228 if (len > 8) len = 8;

229
230 uint8_t motor_addr = rs485buf[0];

231 uint8_t function_code = rs485buf[1];

232 Motor* pm;

233 switch (motor_addr) {

234 case 1: pm = &motor1; break;

235 case 2: pm = &motor2; break;

236 case 3: pm = &motor3; break;

237 case 4: pm = &motor4; break;

238 default: return;

239 }

240
241 switch (function_code) {

242 case 0x35: // Velocity feedback

243 if (len >= 6) {

244 uint8_t sign = rs485buf[2];

245 uint16_t speed_raw = (rs485buf[3] << 8) | rs485buf[4];

246 pm->read_velocity = (sign == 0x01) ? -static_cast<int32_t

>(speed_raw) : speed_raw;

247 }

248 break;

249 case 0x36: // Position feedback

250 if (len >= 8) {

251 uint8_t sign = rs485buf[2];

252 uint32_t pos = (rs485buf[3] << 24) | (rs485buf[4] << 16) |

253 (rs485buf[5] << 8) | rs485buf[6];

254 pm->read_position_raw = (sign == 0x01) ? -static_cast<

int32_t>(pos) : pos;

30

255 uint8_t rr = pm->get_reduction_ratio();

256 pm->read_degree = pm->read_position_raw * 360.0 / (3200.0

* rr);

257 }

258 break;

259 case 0x3A: // Status flag

260 if (len >= 4) {

261 uint8_t status = rs485buf[2];

262 pm->reach_pos = (status & 0x02) ? true : false; // Check

if the target position is reached

263 }

264 break;

265 default:

266 break;

267 }

268
269 // The four motors are arranged vertically, each refreshed

individually

270 int baseX = 30;

271 for (uint8_t i = 0; i < 4; ++i) {

272 int y = 210 + i * 100;

273 switch (i + 1) {

274 case 1: motor1.displayStatus(baseX, y); break;

275 case 2: motor2.displayStatus(baseX, y); break;

276 case 3: motor3.displayStatus(baseX, y); break;

277 case 4: motor4.displayStatus(baseX, y); break;

278 }

279 }

280 }

281
282 //

283 void process_move_set_1(void) {

284 uint32_t now = HAL_GetTick();

285 switch (move1_state) {

286 case MS1_IDLE:

287 //

288 break;

289
290 case MS1_STEP1:

291 //

292 motor1.tgt_position(15, 30); // [degree]

293 motorStartTick[0] = HAL_GetTick();

294 motorDuration[0] = estimateTimeMs(15, 30);

295 motorMoving[0] = true;

296 delay_ms(10);

297 motor2.tgt_position(30, 20);

298 motorStartTick[1] = HAL_GetTick();

299 motorDuration[1] = estimateTimeMs(30, 20);

31

300 motorMoving[1] = true;

301 delay_ms(10);

302 motor3.tgt_position(40, 10); // [degree]

303 motorStartTick[2] = HAL_GetTick();

304 motorDuration[2] = estimateTimeMs(40, 10);

305 motorMoving[2] = true;

306 delay_ms(10);

307 motor4.constant_rorate(50);

308 delay_ms(10);

309 move1_lastTick = now;

310 move1_state = MS1_WAIT1;

311 break;

312
313 case MS1_WAIT1:

314 // 30 30000 ms

315 if (now - move1_lastTick >= 30000) {

316 move1_state = MS1_STEP2;

317 }

318 break;

319
320 case MS1_STEP2:

321 // :

322 motor1.tgt_position(5, 3);

323 motorStartTick[0] = HAL_GetTick();

324 motorDuration[0] = estimateTimeMs(5,3);

325 motorMoving[0] = true;

326 delay_ms(10);

327 motor2.tgt_position(10, 2);

328 motorStartTick[1] = HAL_GetTick();

329 motorDuration[1] = estimateTimeMs(10, 2);

330 motorMoving[1] = true;

331 delay_ms(10);

332 motor3.tgt_position(-20, 5);

333 motorStartTick[2] = HAL_GetTick();

334 motorDuration[2] = estimateTimeMs(-20, 5);

335 motorMoving[2] = true;

336 delay_ms(10);

337 move1_lastTick = now;

338 move1_state = MS1_WAIT2;

339 break;

340
341 case MS1_WAIT2:

342 // 60 60000 ms

343 if (now - move1_lastTick >= 60000) {

344 move1_state = MS1_STEP3;

345 }

346 break;

347

32

348 case MS1_STEP3:

349 // : home

350 motor1.tgt_position(-20, 30);

351 motorStartTick[0] = HAL_GetTick();

352 motorDuration[0] = estimateTimeMs(-20, 30);

353 motorMoving[0] = true;

354 delay_ms(10);

355 motor2.tgt_position(-40, 20);

356 motorStartTick[1] = HAL_GetTick();

357 motorDuration[1] = estimateTimeMs(-40, 20);

358 motorMoving[1] = true;

359 delay_ms(10);

360 motor3.tgt_position(-20, 10);

361 motorStartTick[2] = HAL_GetTick();

362 motorDuration[2] = estimateTimeMs(-20, 10);

363 motorMoving[2] = true;

364 delay_ms(10);

365 motor4.constant_rorate(0);

366 delay_ms(10);

367 move1_state = MS1_DONE;

368 break;

369
370 case MS1_DONE:

371 // IDLE DONE Key0

372 move1_state = MS1_IDLE;

373 break;

374 }

375 }

376
377 // move_set_2

378 void move_set_2() {

379 motor1.tgt_position(5, 4);

380 motorStartTick[0] = HAL_GetTick();

381 motorDuration[0] = estimateTimeMs(-5, 4);

382 motorMoving[0] = true;

383 // delay_ms(10);

384 // motor2.tgt_position(5, 10);

385 // delay_ms(10);

386 // motor3.tgt_position(-20, 10);

387 // delay_ms(10);

388 // motor4.tgt_position(20,10);

389 }

390
391 //

392 int main(void) {

393 uint8_t key, t = 0, cnt = 0;

394 uint8_t rs485buf[8];

33

395 char stateBuf[16]; // <<

396
397 HAL_Init();

398 sys_stm32_clock_init(336, 8, 2, 7);

399 delay_init(168);

400 usart_init(115200);

401 led_init();

402 lcd_init();

403 key_init();

404 rs485_init(115200);

405
406 lcd_show_string(30, 50, 200, 16, 16, "Senior␣Design:", RED);

407 //

408 lcd_show_string(

409 30, // x

410 70, // y

411 320, //

412 16, // font_size

413 16, //

414 "Four-Axis␣Vacuum␣Stage",

415 RED);

416
417 //

418 lcd_show_string(

419 30, // x

420 90, // y font_size +

421 320, //

422 16,

423 16,

424 "for␣Advanced␣Nano-Manufacturing",

425 RED

426);

427
428 //

429 motor1.init(1, 1, 100, 128);

430 motor2.init(2, 1, 30, 128);

431 motor3.init(3, 0, 10, 64);

432 motor4.init(4, 0, 1, 1);

433
434 while (1) {

435 //

436 key = key_scan(0);

437
438 if (key == KEY0_PRES && move1_state == MS1_IDLE) {

439 displayMessage("Running␣Main␣Program");

440 move1_state = MS1_STEP1; //

441 }

442 if (key == KEY1_PRES && move1_state == MS1_IDLE) {

34

443 displayMessage("Running␣Program␣2");

444 move_set_2();

445 }

446 if (key == KEY2_PRES) {

447 displayMessage("STOP");

448 //

449 motor1.tgt_position(0,0);

450 delay_ms(10);

451 motor2.tgt_position(0,0);

452 delay_ms(10);

453 motor3.tgt_position(0,0);

454 delay_ms(10);

455 motor4.tgt_position(0,0);

456
457 move1_state = MS1_IDLE; //

458 }

459
460
461 process_move_set_1(); //

462 pollMotorStops(); //

463
464 // 6 "WAIT2" "STEP1"

465 // 6

466 char stateBuf[16];

467 snprintf(stateBuf, sizeof(stateBuf), "MS1:%-6s", MoveState1Names[(

int)move1_state]);

468 // "IDLE" (4)

469 //

470
471 lcd_show_string(10, 10, 200, 16, 16, stateBuf, BLUE);

472
473 // RS485

474 if (++t >= 20) {

475 t = 0;

476 LED0_TOGGLE();

477 cnt++;

478 lcd_show_xnum(78, 130, cnt, 3, 16, 0x80, BLUE);

479 for (uint8_t addr = 1; addr <= 4; ++addr) {

480 Emm_V5_Read_Sys_Params(addr, S_VEL);

481 Emm_V5_Read_Sys_Params(addr, S_CPOS);

482 Emm_V5_Read_Sys_Params(addr, S_FLAG);

483 }

484 }

485
486 Translate_received_data(rs485buf);

487
488 //

35

489 HAL_Delay(1);

490 }

491
492 return 0;

493 }

Appendix B - Engineering Drawing

Figure 16: The Engineering Drawing of version one

36

Figure 17: The Engineering Drawing of version one

37

	Introduction
	Current Nanocoating Techniques
	Economic Benefit & Demand
	Motivation & Objective

	Design
	Design procedure
	Mechanical System
	Control System
	PCB Design
	User Interface

	Actuator
	Design details
	Control System
	PCB Design
	User Interface
	First Edition of Mechanical Design
	The Design of the First Link
	The Design of the Third Joint
	The two Versions of the Robotic Arm

	Verification
	Control Module
	Microcontroller Unit (MCU)
	Stepper Motor Controller

	Actuator Module
	Stepper Motor
	Reduction Gear

	Mechanical Arm Structure
	PCB Design
	Interface Module
	button
	TFT touch screen

	Circuit Connection
	CF63 Conflat Flang Interface
	Teflon Insulated Cable

	Costs
	Prototype
	bulk

	Conclusion

