
ECE 445

SENIOR DESIGN LABORATORY

FINAL REPORT DRAFT

A Smart Glove for HCI

Team #34
HONGWEI DONG (hd2@illinois.edu)
SHANBIN SUN (shanbin3@illinois.edu)
JINHAO ZHANG (jinhaoz2@illinois.edu)

ZHAN SHI (zhans6@illinois.edu)

TA: Yu Yue

May 13, 2025

Abstract

This project presents the design and implementation of a smart glove system for intuitive
human-computer interaction (HCI), offering a wearable alternative to traditional input
devices. The glove integrates six ICM-42688-P inertial measurement units (IMUs) to cap-
ture finger and hand movements, paired with an ESP32-S3 microcontroller for real-time
gesture processing. Hardware subsystems include a compact power management unit
with Li-ion battery charging, dual communication via USB and Bluetooth Low Energy
(BLE), and a custom PCB for sensor integration. Software components feature SPI-driven
IMU communication, a dynamic time warping (DTW) algorithm for gesture recognition,
and BLE-based HID profile emulation to map gestures to mouse/keyboard commands.
Verification demonstrated over 70% gesture recognition accuracy, real-time response un-
der 0.5 seconds, 5+ hours of wireless operation, and a total device weight below 0.5 kg.
The system’s modular design supports scalability for AR/VR applications, validating its
feasibility as a low-latency, energy-efficient HCI solution.

Keywords: Smart Glove, Human-Computer Interaction (HCI), Inertial Measurement Unit
(IMU), Gesture Recognition, ESP32 Microcontroller, Bluetooth Low Energy (BLE), Power
Management System, SPI Communication, HID Profile Emulation

ii

Contents

1 Introduction 1
1.1 Purpose . 1
1.2 Functionality . 1
1.3 Visual Aid . 2
1.4 Subsystem Overview . 2
1.5 High-level Requirement List . 3
1.6 Block Diagram . 3

2 Design 4
2.1 Hardware Design . 4

2.1.1 ICM-42688-P Sensor Description . 4
2.1.2 ESP32 Extension Board Design . 5
2.1.3 Power Management System . 6

2.2 Software Design . 9
2.2.1 Overview . 9
2.2.2 SPI Driver and IMU Driver . 10
2.2.3 Bluetooth Low Energy Driver . 11
2.2.4 Gesture Recognition System . 12

2.3 Design Alternatives . 14
2.3.1 Power Supply Board Design . 14
2.3.2 Selection for Different IMUs . 14

3 Requirements and Verification 16
3.1 Requirements and Verification . 16
3.2 Quantitative Results . 16

3.2.1 Software Design . 16
3.2.2 Hardware Design . 16

4 Conclusion 17
4.1 Accomplishments . 17
4.2 Uncertainties . 17
4.3 Future Work . 17

5 Cost and Schedule 18
5.1 Cost Analysis . 18
5.2 Project Schedule . 19

6 Ethics 20
6.1 Ethics and Safety . 20

References 21

Appendix A Supplementary Figures for Project Design 22
A.1 ESP32 Extension Board Supplementary . 22

iii

A.2 Sensor Design Supplementary . 22
A.3 Power Supply Supplementary . 23

Appendix B Supplementary Figures for Verification 24

Appendix C Supplementary Requirements and Verification Table 25

iv

1 Introduction

1.1 Purpose

In today’s society, with the popularity of electronic devices such as laptops and smart-
phones, people’s demand for efficient and convenient human-computer interaction is
increasing[1]. However, traditional human-computer interaction methods (such as key-
boards, mice, and touch screens) are often inefficient or limited in usage scenarios under
some condition, and it is difficult to meet the current needs of multiple devices and mul-
tiple environments. For example, with the development of emerging technologies such
as AR/VR, people require more natural and flexible gesture- and motion-based interac-
tions[2]. As a new type of human-computer interaction device, smart gloves can capture
and identify the curvature, movement trajectory and spatial orientation information of
fingers in real time, map gestures to various quick operations, thereby realizing conve-
nient control of smart devices such as laptops, smartphones, and even AR/VR systems,
providing users with a convenient and efficient interactive experience. There are many
application scenarios. While working, users no longer need to switch frequently between
their computer and presentation device. Instead, they can operate PowerPoint or doc-
uments with simple gestures. In our product, we decided to focus on the most basic
function - using smart gloves as a ”mouse/keyboard replacement” for laptops. Specifi-
cally, the glove can collect information about finger gestures, and map this information
to mouse operations such as cursor movement, clicks or scroll wheels, or keyboard input.
Although the scope of this project is relatively limited, we fully considered the scalability
of the system during design and implementation so that it can be further expanded to
more application scenarios in the future.

1.2 Functionality

Considering factors such as product performance and user experience, our smart glove
offers the following functionalities:

• The glove can function as a mouse and keyboard to interact with the computer. It
allows mouse movement through hand tilting, and maps finger taps to actions such
as mouse clicks, double-clicks, and keyboard input.

• The glove supports both wired and Bluetooth connections with a computer. The
USB module provides a UART interface, and the ESP32 [3] supports low-power
Bluetooth LE. These two connection methods make functionality debugging and
user operation more convenient.

• We have implemented battery-powered operation and charging functionality. The
power supply section uses a voltage conversion circuit to provide a stable 3.3V out-
put, while the charging section ensures that the glove can be fully charged when not
in use, meeting the user’s need for long battery life.

1

1.3 Visual Aid

Figure 1: Visual Aid[4][5][6]

1.4 Subsystem Overview

To implement the smart glove as a novel human-computer interaction device that re-
places traditional mouse and keyboard operations, our system is architected into several
interrelated hardware and software blocks.

Hardware Subsystem. The hardware subsystem is centered around the ESP32 micro-
controller, which coordinates data collection, communication and Power Management.
The glove is equipped with six ICM42688 IMU sensors (Five on the fingertips, one on
the back of the hand.), each of whcih is responsible for specific functions, and these sen-
sors communicate with the ESP32 via the SPI bus. For glove-computer data transmission,
the system includes both CP2102/CH340 USB modules for wired UART communication
(suitable for high-bandwidth or charging scenarios) and a Bluetooth module for wireless
interaction, enhancing user mobility. A dedicated power management system regulates
power delivery using USB Type-C input, battery charging circuitry, and voltage regula-
tion modules to ensure a stable 3.3V supply for all components.

Software Subsystem. The software subsystem handles SPI communication, gesture recog-
nition and command mapping. The sensor interface on the ESP32 communicates with
IMUs to collect angular velocity and acceleration data. The gesture recognition block
uses this data for mouse movement and shortcut mapping through a gesture recognition
model. Finally, the command mapping module translates recognized gestures into HID-
compatible mouse or keyboard inputs, and serializes these commands in either binary or
JSON format for efficient transmission to the host system. In addition, we developed a
user interface for customizing shortcut mappings.

2

1.5 High-level Requirement List

1. The main function of this project is to use an Inertial Measurement Unit to map the
position of the palm to the mouse pointer on the screen, enabling natural movement.
At the same time, gestures such as clicking are used as user commands, mapped
to actions like left-click, double-click and keyboard input, ensuring stability and
reducing gesture misinterpretation or repeated commands.

2. The local gesture recognition system on the chip utilizes a dynamic time warping
model to implement shortcut key mapping. To ensure real-time performance, our
gesture recognition model must be fast and efficient, ensuring that each gesture
command can be recognized and executed by the computer within 0.5 seconds.

3. As a wearable electronic device, we want this device to be portable and lightweight.
Therefore, the proposed device weight will not exceed 0.5 kilograms to ensure that
users can easily carry it during the HCI experience. To guarantee a long wireless
usage experience for users, the glove should be able to operate for over 5 hours
under normal usage conditions.

1.6 Block Diagram

There are 4 components in our system, lithium battery and voltage regulator circuit,
ICM42688 sensors, ESP32 MCU and the host device. The block diagram of the entire
system is shown as follows 2.

Figure 2: Block Diagram of System Design

3

2 Design

2.1 Hardware Design

2.1.1 ICM-42688-P Sensor Description

The ICM-42688-P [7] is a state-of-the-art six-axis MEMS motion-tracking IC integrating
a three-axis gyroscope (configurable full-scale ±15.6 to ±2000 /s) and a three-axis ac-
celerometer (±2/4/8/16 g), featuring on-chip digital signal processing that fuses sensor
data at sampling rates up to 32 kHz and outputs full-scale 20-bit inertial measurements
via SPI (up to 3 MHz) or I2C (up to 1 MHz) interfaces. Housed in a compact 14-pin
LGA package (2.5mm × 3mm × 0.98mm), it draws only 0.88mA in low-noise mode,
achieving a gyroscope noise density of 2.8mdps/

√
Hz and an accelerometer noise den-

sity of 70µg/
√
Hz. These characteristics satisfy the stringent requirements of wearable

gesture-recognition gloves, including miniaturization, high energy efficiency, and precise
dynamic tracking.

In our glove-based IMU array, six ICM-42688-P sensors are deployed—five on the fin-
gertips and one on the back of the hand. By leveraging the SPI bus, the MOSI, MISO,
SCLK, and FSYNC lines (analogous to SDA/SCL/AD0 in I2C mode) are shared across all
devices, while each sensor is addressed via its own CS, INT1, and INT2 lines.

In the 14-pin ICM-42688-P package, pin 1 (AD0) selects the I2C address (low = 0x68, high
= 0x69); pin 2 (SDA/SDI) functions as the I2C data line or SPI MOSI; pin 3 (SCL/SCLK)
serves as the I2C clock or SPI clock input; pin 4 (SDO) is the SPI data-out (MISO) pin;
pin 5 (CS) is the SPI chip-select (active low) and must be held high when using I2C; pin 6
(INT1) outputs primary interrupts (e.g., data-ready, FIFO-overflow) to the host controller;
pin 7 (INT2/FSYNC/CLKIN) provides a secondary interrupt output, frame-sync input,
or external clock input; pin 8 (GND) is ground; pins 9, 11, 12, and 14 are reserved and
should remain unconnected; pin 10 (VDD) is the main power supply (1.71–3.6 V) and
must be bypassed with 0.1 µF and 2.2 µF capacitors; and pin 13 (VDDIO) is the digital
I/O supply (1.71–3.6 V) requiring a 10 nF bypass capacitor.

Figure 3: ICM42688 schematic, ESP32 extension Schematic

4

2.1.2 ESP32 Extension Board Design

Because we chose SPI communication for the ICM-42688, the ESP32 can select which sen-
sor to talk to via each module’s CS pin. In our final design we therefore eliminated
the external multiplexers and instead developed a custom ESP32 expansion board that
routes the ESP32’s GPIOs to FPC connectors. Since this PCB sits on the back of the hand,
we prioritized an ultra-compact footprint while still accommodating an ICM-42688 IMU
to work in concert with the fingertip sensors for capturing relative finger-to-palm posi-
tions. Each IMU requires eight signals—SDA, SCL, and AD0 can be shared across all six
sensors, while CS, INT1, and INT2 handle individual chip selection and interrupt sig-
nalling—resulting in a total requirement of 3× 6 + 3 = 21 GPIO pins. [7]

This expansion board is symmetrically laid out for both left- and right-handed gloves,
and leaves numerous unpopulated pads on the back for fly-wire connections to additional
glove-mounted peripherals, such as indicator displays.

Our previous design used a full-size ESP32 module that was too large and lacked suf-
ficient I/O, so we switched to the Waveshare ESP32-S3-Tiny development board. The
ESP32-S3-Tiny is a highly integrated, miniature MCU board featuring a split-module de-
sign that separates the USB and button circuitry to reduce overall PCB thickness and
footprint, while still exposing 34 GPIOs. It integrates a dual-core Xtensa® 32-bit LX7 pro-
cessor running at up to 240 MHz, 512 KB SRAM, 384 KB ROM, 16 KB RTC SRAM, 2 MB
PSRAM, 4 MB Flash, Bluetooth LE and 2.4 GHz Wi-Fi, offering excellent RF performance.
At just 18× 23.5 mm, it perfectly meets our size and performance requirements.[8]

Figure 4: Schematic of Waveshare ESP32-S3 Tiny[8]

5

2.1.3 Power Management System

Figure 5: Power Management System Flowchart

As shown in Figure 5, the power management system is divided into two main sections:
the battery charging section and the processor power supply section.

1. Battery Charging Section

• The system receives a 5V power supply via the USB TypeC/Type-C interface,
with a fuse added for overcurrent protection.

• The charging module uses a CC-CV mode charging IC from the LTH series to
manage the battery charging process.

• Two charging indicator LEDs are included to display charging status.

• A charging protection chip is added to prevent overcharge and overdischarge,
ensuring charging safety.

• The use of a USB TypeC connector helps simplify later software integration and
coding.

2. Processor Power Supply Section

• The power board first boosts the lithium battery voltage to 5V with a tolerance
of ±1V. This 5V output is then fed into the ESP32 board, where an onboard
linear regulator steps it down to 3.3V with a tolerance within 15%.

6

• The regulated 3.3V supplies power to the ESP32 as well as its connected pe-
ripherals and sensors.

The following section provides a detailed description of the power supply mod-
ules

Figure 6: Power board schematic

The power supply board consists of seven functional sections: Lithium-ion Battery,
Charging Protection, Charging Circuit, Voltage Transfer, Switches& LED Indicator, The
detailed schematic is included in the main text as Figure 6, while the PCB layout
and the assembled board are provided in the appendix (Figures 9, and 15).

Also, to reduce the size of the ESP32 controller board and facilitate battery charg-
ing and debugging, the USB download circuit is integrated directly onto the power
board. All necessary indicator LEDs—including those for power status, charging
in progress, and charging complete—are also incorporated. Additionally, multiple
power control switches are provided to flexibly toggle between battery, USB, and
charging modes. The power board and lithium battery are housed together in a
compact, 3D-printed enclosure designed for wearable use on the wrist, which is
shown in the the appendix (Figure16).

7

• Charging Circuit: The TP4056 (U7) is used to implement a constant-current/constant-
voltage (CC-CV) charging scheme. The charging current is set by the resistor
R28 according to the formula I = 1V

R28
× 1200, yielding approximately 100 mA

for R28 = 12 kΩ, which is within the recommended 0.2C–0.5C range for the
selected lithium battery (300mAh, as shown in Figure17 in the appendix). Dur-
ing charging, the red LED (LED4) connected to CHRG# is lit; once charging
completes, the green LED (LED5) connected to STDBY# turns on.

• Charging Protection: The IP3003A (U8) provides battery protection features,
including overcharge, over-discharge, and short-circuit protection. The battery
is connected via BAT+ and BAT-, and the protected output is provided through
VBAT.

– Overcharge protection: 4.28 V; recovery: 4.1 V

– Over-discharge protection: 2.5 V; recovery: 3.0 V

These fixed thresholds align with lithium-ion battery specifications and effec-
tively prevent unsafe voltage excursions, thereby improving battery longevity
and safety.

• Voltage Transfer (3.7 V → 5 V → 3.3 V): To ensure a stable 3.3 V output, a two-
stage voltage conversion scheme is adopted. First, the MT3608 boost converter
(U2) raises the battery voltage (typically 3.7 V) to 5 V. The output voltage is set
using the feedback formula:

VOUT = 0.6V ×
(
1 +

R1

R2

)
With R1 = 73kΩ and R2 = 10kΩ, the output is regulated near 5 V.

The second stage was implemented on the ESP board, wich uses a linear regu-
lator to step down 5 V to 3.3 V.

• USB TypeC Interface: The USB connector provides both power supply and
data communication for the system. To protect the downstream battery and
circuits, a fuse (F4) is added to limit the current below 290 mA. If the current
exceeds this threshold, the fuse will blow, effectively preventing potential dam-
age caused by overcurrent conditions

• Download Circuit & Working Indicator: An onboard USB-to-serial circuit
with a built-in reset and boot button allows firmware download to the ESP32
via a single click.

Additional LEDs indicate system activity and operation status. Specifically,
the blue LED indicates that the power supply circuit is functioning properly,
the red LED lights up during battery charging, and the green LED turns on
when charging is complete. These indicators help monitor system behavior in
real time.

8

• Switches: The board includes three control switches for flexible power man-
agement:

– SW15 controls the start and stop of battery charging

– SW16 toggles between USB Type-C input and 5 V direct power output

– SW17 enables or disables power output from the battery

• FPC Connector: An 8-pin, 0.5 mm-pitch FPC connector is used to interface with
the ESP32 board, providing both data communication and power supply. This
flexible connector simplifies integration and ensures reliable transmission be-
tween the main control board and the ESP module.

2.2 Software Design

2.2.1 Overview

Our software design has three main parts, SPI and IMU driver, gesture recognition mod-
ule and BLE driver. In order to maintain the high performance and reproducibility of our
projects, we adhere to the following guidelines in the design of our software.

1. Zero Runtime Overhead Principle. Any template class is designed to maximize
the benefits of C++’s template programming, such as compile-time derivation using
constexpr.

2. Abstraction Without Sacrificing Performance. Abstraction of any object should
not come at the expense of performance. By using programming paradigms such as
CRTP (Curious Recursive Template Pattern), RAII (Resource Acquisition Is Initial-
ization), we can achieve zero-cost abstraction of class objects and hardware

3. Standardization and Portability. The Standard Template Library (STL) provides
a rich set of reusable components (containers, algorithms, iterators) that promote
portability and reduce the need for reinventing the wheel. By using STL, all of our
modules are header-only, providing extremely strong portability.

The relationship between the SPI driver, IMU driver and bluetooth driver is shown as
follows.

9

Figure 7: Datapath Flowchart

2.2.2 SPI Driver and IMU Driver

The spi namespace provides a robust abstraction for managing SPI communication on
an ESP32 device. It includes classes for configuring and interacting with SPI buses and
devices:

1. SPIBus: Represents an SPI bus.

2. SPIBusConstructor: A builder class for creating and configuring an SPIBus instance.
Allows customization of parameters like clock source, glitch ignore count, interrupt
priority, and internal pull-up resistors.

3. SPIDevice: Represents an SPI device connected to a bus. Provides methods for read-
ing and writing data to the device, including support for combined read-after-write
operations. Ensures proper cleanup of the device handle upon destruction.

4. SPIDeviceConstructor: A builder class for creating and configuring an SPIDevice
instance. Allows customization of parameters like clock speed, chip selection pin,
transaction event callbacks. The driver uses ESP-IDF’s SPI APIs and ensures error
handling .

The icm42688 namespace provides a high-level interface for interacting with the ICM42688
IMU (Inertial Measurement Unit) sensor. It leverages the spi driver for communication
and includes the following components:

1. Register Abstraction: The DEFINE REGISTER macro simplifies the definition of
sensor registers with bitfield structures and default values. The Reg template class
provides a type-safe way to read and write specific registers.

2. ICM42688 Class: Encapsulates the functionality of the ICM42688 sensor. Provides
methods to: Read gyroscope, accelerometer, and temperature data. Configure sam-
ple rate, full-scale ranges, sleep mode, and low-pass filters. Enable low-power mode
with customizable configurations. Reset the sensor to its default state. Internally
manages sensitivity scaling based on the configured full-scale ranges.

10

3. ICM42688Constructor: A builder class for creating and configuring an ICM42688
instance. Allows chaining of configuration methods for parameters like sample rate,
full-scale ranges, sleep mode, and low-power mode. Automatically initializes the
sensor with the specified settings upon construction.

4. Enums and Configurations: Enumerations for gyroscope and accelerometer full-
scale ranges, low-pass filter configurations, and low-power wake frequencies.

The driver provides a clean and efficient interface for working with the ICM42688 sensor,
making it easy to configure and retrieve data while abstracting low-level SPI communi-
cation details.

2.2.3 Bluetooth Low Energy Driver

We will be using built-in Bluetooth of ESP32 to transmit data between the mircoproces-
sor and our computer. ESP32 supports Bluetooth 5.0 which has both Bluetooth and BLE
(Bluetooth Low Energy), and we will use BLE for our project. Compared with classic
Bluetooth, BLE has lower connection delay and lower power consumption while provid-
ing large range of Bluetooth advertisement, it’s more suitable on low power devices such
as wearable devices. Bluetooth 5.0 has a transmission rate up to 2 Mbps and transmission
distance up to 300 meters. In practical, the effective transmission rate is usually lower
than theoretical value, which is about 1 Mbps.

The Bluetooth driver is abstracted using the ESP-IDF’s BLE (Bluetooth Low Energy) stack,
specifically tailored for HID (Human Interface Device) profiles. Here’s how the abstrac-
tion works:

1. HID Profile Initialization:

The esp hidd profile init() function initializes the HID profile environment (hidd le env)
and sets up the necessary BLE services and characteristics for HID functionality. The
HID profile includes predefined characteristics for mouse, keyboard, and consumer
control input reports.

2. Callback Registration:

The esp hidd register callbacks() function allows the application to register event
callbacks for handling HID-specific events (e.g. connection, disconnection, report
writes). These callbacks are stored in the hidd le env structure and invoked during
BLE events.

3. Report Handling: The hid dev register reports() function registers HID reports (e.g.,
mouse, keyboard, consumer control) with their corresponding IDs, types, and han-
dles. The hid dev send report() function sends HID reports to the connected BLE
client using the appropriate GATT handle

4. BLE GATT Services: The HID service and its characteristics are defined in
hidd le gatt db and include attributes for input reports, output reports, and control

11

points. The hidd le create service() function sets up the GATT database and starts
the HID service.

5. Event Handling: The gatts event handler() function handles BLE GATT server events
(e.g., registration, connection, disconnection, attribute writes) and routes them to
the appropriate handlers. Setting Up an HID Device to Simulate Input

To simulate an HID input device (e.g., a mouse or keyboard) using the BLE driver shown
as above, the following steps are performed.

1. HID Profile Initialization:

Call esp hidd profile init() to initialize the HID profile. This sets up the BLE GATT
services and characteristics required for HID functionality.

2. Register HID Reports:

Use hid dev register reports() to register the HID reports (e.g., mouse, keyboard)
with their IDs, types, and GATT handles. For example, a mouse input report is
registered with HID RPT ID MOUSE IN.

3. Send HID Reports:

Use functions like esp hidd send mouse value() or esp hidd send keyboard value()
to send HID input reports to the connected BLE client. For a mouse:
esp hidd send mouse value(conn id, mouse button, mickeys x, mickeys y) sends a
report with button states and movement deltas (mickeys x, mickeys y). For a key-
board: esp hidd send keyboard value(conn id, special key mask, keyboard cmd,
num key) sends a report with key presses.

4. BLE Connection Management: The HID device handles BLE connections and dis-
connections through the registered callbacks. For example, when a BLE client con-
nects, the HID device starts sending input reports.

2.2.4 Gesture Recognition System

1. Mouse movement.

For the mouse’s X-axis and Y-axis movements, we utilized the accelerometer data
from the ICM-42688-P mounted on the back of the hand. First, the sensor experi-
ences a downward acceleration due to gravity. We use the x-component of the ac-
celerometer as the horizontal movement speed of the mouse, and the y-component
as the vertical movement speed. In this way, tilting the back of the hand left/right
or forward/backward can control the mouse movement on the screen.

2. Data preprocessing and database construction.

Unlike simple mouse movement, gesture mapping is achieved through a dynamic
mapping model. The data output by the ICM-42688-P may be subject to noise in-
terference. By using the low-pass filter to the data from the accelerometer and gy-
roscope, the influence of noise can be effectively reduced, and the accuracy and

12

stability of pose matching can be improved. Then, to facilitate faster inference and
adapt to the NVS storage format, we quantize the original floating-point values into
integer form.

We define several commonly used mouse and keyboard commands—such as click-
ing, number inputs and so on—as gestures. For each gesture, we collect multiple
samples from multiple users and use the average as the representative data se-
quence for that gesture. Therefore, the data corresponding to each gesture has a
dimension of [6, sequence length], where 6 means the dimension of the accelerom-
eter and the gyroscope data. The entire database is stored in NVS(Non-Volatile
Storage) in the form of key-value pairs.

3. The process of gesture recognition

Figure 8: Gesture recognition procedure

Here, we use a time window approach to spot user data and perform gesture recog-
nition and the whole procedure is shown in the figure. For each window, the size
of the data we obtain is [6, window length], which is the data from one sensor mul-
tiplied by the window length. Then, we match the candidate sequence with the
database using DTW(Dynamic Time Warping) algorithm, and if the minimum cost
is below a certain threshold, the gesture is recognized. Given sequence a and b, the
DTW algorithm is as follow:

DTW(i, j) =


∥a1 − b1∥2, if i = j = 1

∥ai − bj∥2 +min


DTW(i−1, j),

DTW(i, j−1),

DTW(i−1, j−1)

 , otherwise

Cost = DTW(n,m)

In addition, to prevent a gesture from being recognized as a sub-gesture (e.g., a
double-click being recognized as two single clicks), we simultaneously sample win-
dows of different lengths and take the action recognized by the largest window.

13

Finally, the matched gesture is implemented as a mouse or keyboard shortcut via
HID. To reduce latency, we map each finger to a single shortcut key (as specified by
the user through the interactive interface).

2.3 Design Alternatives

2.3.1 Power Supply Board Design

An earlier version of the power supply and ESP32 extension PCB was fabricated but later
discarded and optimized due to several design issues. Precisely, the board had low in-
tegration, requiring multiple external connections, and the auto-download circuit was
unstable, causing upload failures. Additionally, the layout of LEDs and switches was not
user-friendly or visually coherent.

To address these problems, we redesigned the PCB with higher integration. The new
version includes a more reliable manual download circuit and arranges indicators and
switches more logically. This not only improved functionality but also enhanced the over-
all appearance and usability. The previous version is shown in Appendix A, Figure18 for
reference.

2.3.2 Selection for Different IMUs

The previously used chip MPU-6050 [9], while popular for its integrated DMP and low
cost, suffers from several drawbacks: it offers only a 16-bit data output resolution, lim-
iting its sensitivity; its gyroscope noise density is relatively high at 5mdps/

√
Hz and its

accelerometer noise density at 400µg/
√
Hz; it supports only I2C communication (100/400

kHz) which can become a bottleneck at higher sampling rates; it consumes 3.6mA in ac-
tive mode (with only a minimal 5 µA sleep current), reducing battery life in continuous-
track applications; its QFN-24 package (4mm× 4mm× 0.9mm) is larger than more mod-
ern alternatives; and its built-in temperature compensation guarantees only ±1 % stability
over –40 °C to +85 °C, which may be insufficient for precision tracking in fluctuating en-
vironments.

Although both devices provide six-axis inertial sensing, the ICM-42688-P markedly out-
performs the MPU-6050: it delivers 20-bit output (vs. 16-bit), reduces gyroscope noise
density by approximately 44 % (2.8 mdps/

√
Hz vs. 5 mdps/

√
Hz) and accelerometer

noise density by about 82.5 % (70 µg/
√
Hz vs. 400 µg/

√
Hz), supports high-speed SPI

(up to 3 MHz) in addition to I2C (up to 1 MHz) for faster data throughput, draws only
0.88 mA in low-noise mode (vs. 3.6 mA), and comes in a smaller LGA-14 package (2.5
× 3 × 0.98 mm vs. 4 × 4 × 0.9 mm), making it a superior choice for compact, low-power,
high-precision wearable gesture-recognition systems.

14

Product ICM-42688[7] MPU-6050[10]

Manufacturer TDK InvenSense TDK InvenSense

Gyroscope Range ±15.625 to ±2000 dps ±250 to ±2000 dps

Accelerometer Range ±2 to ±16 g ±2 to ±16 g

Gyroscope Noise 3.5 mdps/
√

Hz 0.01 dps/
√

Hz

Accelerometer Noise 70 µg/
√

Hz 400 µg/
√

Hz

Interface I2C, SPI I2C

Supply Voltage 1.71 to 3.6 V 2.375 to 3.46 V

Power Consumption 0.65 mA (6-axis) 3.8 mA (6-axis)

Package Size 2.5× 3× 0.91 mm 4× 4× 0.9 mm

Features

6-axis (3-axis gyro + 3-axis accel),

Advanced programmable filtering,

Wake-on-motion,

Programmable interrupts,

on-chip Motion Processing engine

for gesture recognition

6-axis (3-axis gyro + 3-axis accel),

Basic low-pass filtering,

Motion detection interrupt,

on-chip Digital Motion Processor

Table 1: Comparison of ICM-42688 and MPU6050 IMU Sensors

Based on the above comparison, we choose ICM-42688 as our IMU sensor for the smart
glove. The ICM-42688 has a lower zero-rate shift and better performance in terms of
noise and power consumption. Meanwhile, smaller package and built-in gesture recog-
nition engine make it more suitable for our application.

15

3 Requirements and Verification

3.1 Requirements and Verification

The completeness of requirements and appropriate verification procedures are shown
in AppendixC.

3.2 Quantitative Results

3.2.1 Software Design

By declaring functions as consteval, it is ensured that they can only be called and eval-
uated at compile time, thus eliminating potential runtime costs altogether. For example,
complex parameter settings that need to be calculated during SPI driver initialization
(e.g., baud rate configuration, data frame format, etc.) can now be done directly at com-
pile time without any runtime support.
In a test scenario, we compare the performance of the SPI driver using traditional runtime
computation with that using constexpr and consteval optimizations. The results show
that over the course of processing 10,000 standard SPI transactions, the optimized ver-
sion reduces the average additional latency per transaction to 0 nanoseconds (i.e., there is
no additional runtime overhead), while the unoptimized version has an average latency
increase of about 50 nanoseconds. At the same time, the compiled assembly code is the
same as the assembly code that directly manipulates structures to set up the ESP32’s built-
in SPI controller, which saves the ESP32’s on-chip storage space while bringing about zero
runtime overhead

3.2.2 Hardware Design

In accordance with the hardware verification requirements listed in Appendix C, Table 4,
we conducted functional validation on both the LED indicators and the regulated power
outputs.

The charging process was verified by observing the red LED (LED4) turning on during
charging and the green LED (LED5) illuminating upon completion. Power supply status
was also correctly indicated by the blue LED when either the battery or USB input was
enabled, as shown in AppendixB, Figure 19. These results confirm that the LED indication
logic operates as expected.

For voltage verification, a digital multimeter was used to measure the regulated outputs.
As shown in AppendixB, Figure 20, the 5 V output was measured at 5.261 V and the 3.3 V
output at 3.2887 V. According to the design specification, the allowed tolerance is ±10%,
which corresponds to the acceptable ranges of 4.5–5.5 V and 2.97–3.63 V respectively. Both
measured values fall well within these limits, thereby confirming that the voltage regula-
tion circuit satisfies the hardware design requirements.

16

4 Conclusion

4.1 Accomplishments

The smart glove we designed fully replaces both mouse and keyboard functions through
intuitive hand and finger gestures. By sensing hand tilt, the glove drives precise cursor
movement; by detecting individual finger taps, it generates left-clicks, double-clicks, and
customizable keyboard inputs. It supports both wired USB (via CP2102/CH340 UART
bridge) and low-energy Bluetooth (BLE) connections on the ESP module, offering flexible,
reliable communication and simplifying debugging and user operations. The integrated
power system delivers a stable 3.3 V output through a dedicated voltage-conversion cir-
cuit, while the built-in charging module allows rapid recharging during idle periods, en-
suring extended battery life and uninterrupted use.

4.2 Uncertainties

Despite the system’s overall functionality, several limitations remain:

1. Limited Gesture Mapping. At present, only simple point-and-tap gestures are sup-
ported; more complex motions such as a closed fist, pinch-and-rotate, or multi-
finger swipes cannot be reliably detected or mapped to commands. Extending the
sensor suite and refining the recognition algorithms will be necessary to accommo-
date richer gesture vocabularies.

2. Industrial Design and Mounting. The current prototype exposes the PCB and elec-
tronic components, and the battery is housed in a rudimentary rectangular enclo-
sure. Both the back-of-hand module and the finger units attach via Velcro, which
can shift during use and feels unstable. A more polished enclosure design and a se-
cure mounting mechanism (e.g. integrated straps or molded housings) are required
to improve aesthetics, durability, and user comfort.

3. Battery Size and Ergonomics. The onboard battery remains relatively large and
adds significant bulk to the glove, hindering fine motor control and causing user
fatigue over extended sessions. Future iterations should focus on higher-energy-
density cells or distributed power modules to reduce weight and improve ergonomics.

4.3 Future Work

• On-device Feedback: Integrate a small display (e.g. OLED or TFT) on the glove to
show in real time which command or gesture is currently active, improving usability
and reducing confusion.

• High-Precision Recognition: Collect a much larger, more diverse dataset and train
a large-scale deep learning model (e.g. Transformer, ConvNet+LSTM) to achieve
sub-millimeter accuracy in gesture classification, including complex motions such
as pinch-and-rotate and multi-finger sequences.

17

5 Cost and Schedule

5.1 Cost Analysis

The following table summarizes the complete component cost for the project, including
both standard and custom parts. Prices are listed in Chinese Yuan (RMB, ¥) and converted
to US Dollars (USD, $) at an exchange rate of 1 USD = 7.2 RMB.

Category Qty (pcs) Total (¥) Total ($)

PCB Boards (A–F) 6 387.85 52.86

Development Boards & Consumables (ESP32, solder paste, etc.) — 900.00 125.00

Connectors (FFC/FPC, Type-C, headers) 100+ 61.47 8.54

Switches (slide, tactile) 25+ 9.74 1.35

ICs (CH340, TP4056, LDO, charging IC) 30+ 39.46 5.49

Modules & Sensors (MPU6050, TCA9548A) 12 204.08 28.35

Resistors (470, 5.1k, 10k, 0, etc.) 800+ 6.68 0.93

Capacitors (0.1uF, 2.2uF, 4.7uF, etc.) 400+ 19.54 2.71

LEDs, Indicators & Misc (green LEDs, buttons, screws) 80+ 161.47 22.45

Total Parts Cost — 1,790.29 248.68

Table 2: Detailed Summary of All Components (Original + Additional)

Total Parts Cost: ¥1,790.29 $248.68

Labor Cost: 4 people × 120 hours × ¥80/hour × 2.5 = ¥96,000.00 $13,320.00

Grand Total: ¥97,790.29 $13,568.68

Note: All the components are purchased online, so the shop labor hour will not be taken
into consideration.

18

5.2 Project Schedule

Date Jinhao Zhang
(EE)

Hongwei Dong
(ECE)

Shanbin Sun
(ECE) Zhan Shi (EE)

Mar. 20–24
Design ini-
tial power
schematic.

Bluetooth test.
Define data
protocol.

Collect gesture
samples. Test
IMU stability.

Design IMU-
ESP32 I2C con-
nection. Draft
PCB layout.

Mar. 25–31
Design initial
ESP32 board
schematic.

Build prepro-
cessing pipeline
(filter, normal-
ize).

Collect standard-
ized gesture set.

Model battery
shell. Draft glove
appearance.

Apr. 1–7
Choose special-
ized chip and
implement PCB

Train gesture
model. Test
Bluetooth trans-
mission.

Build I2C bus
test routine. UI
wireframe.

Develop IMU-
ESP32 driver.
First PCB test.

Apr. 8–14 Order PCB, Sol-
dering

Improve model
accuracy. In-
tegrate with
device.

Improve UI. Add
custom gesture
mapping.

Revise PCB and
re-order. 3D
print glove.

Apr. 15–21

Test all PCB
boards (leave
room for possi-
ble revision)

Deploy model
to ESP32. Map
gestures to
shortcuts.

UI + recognition
integration test.

Assemble glove.
Polish design
and fit.

Apr. 22–24

Test all PCB
boards (leave
room for possi-
ble revision)

Write deploy-
ment scripts.
Clean up code.

UI testing and
bug fixing.

Finalize exte-
rior. Prepare for
demo.

Apr. 25-May. 1 Combine all the subsystems and do final verifications. All together

May. 2-8 Prepare for mock demo and start writing final report draft. All together

May. 9-15 Prepare for final demo and the final report. All together

19

6 Ethics

6.1 Ethics and Safety

Our project adheres to the ethical principles set forth by the IEEE and ACM Codes of
Ethics[11]. From the outset, we have committed to designing a system that upholds
public welfare, avoids harm, and operates with complete transparency. All major de-
sign decisions—ranging from sensor selection to communication architectures—are eval-
uated against these ethical standards to ensure that user safety and societal benefit remain
paramount.

We maintain rigorous documentation practices throughout the development lifecycle.
Every hardware revision, firmware update, and software algorithm is logged in detail,
with clear attributions for any third-party libraries or components. By doing so, we en-
able reproducibility, facilitate independent review, and foster a culture of responsible en-
gineering. Any discovered limitations or failure modes are reported honestly, along with
proposed mitigation strategies.

To prevent misuse and protect user data, our glove’s wireless communications are se-
cured using mutually authenticated, encrypted channels. We intentionally collect only
the minimal gesture-related telemetry required for accurate classification, and we will
not store any personally identifiable information without explicit, revocable user con-
sent. Access controls and secure boot mechanisms further guard against unauthorized
firmware tampering.

Although our system operates entirely at low voltage, it incorporates a 300 mAh lithium-
ion battery, which carries well-known risks of overcharge, over-discharge, and thermal
runaway. We have thoroughly reviewed the UIUC Safe Battery Usage guidelines[12] and
will select only cells certified to current industry standards. Each battery pack will include
an integrated protection module—guarding against over-current and over-temperature
conditions—and a resettable fuse on the main power rail.

Finally, all assembly, testing, and user trials will be conducted under national and campus
laboratory safety regulations. Experiments will occur in supervised, controlled environ-
ments, with trained personnel, emergency shutdown procedures, and appropriate per-
sonal protective equipment in place to ensure that both operators and bystanders remain
safe.

20

References

[1] Alex Roney Mathew, Aayad Al Hajj, and Ahmed Al Abri. “Human-computer inter-
action (hci): An overview”. In: 2011 IEEE international conference on computer science
and automation engineering. Vol. 1. IEEE. 2011, pp. 99–100.

[2] W Zhang et al. “Survey of dynamic hand gesture understanding and interaction”.
In: J. Softw 32.10 (2021), pp. 3051–3067.

[3] Espressif. ESP32-S3 Technical Reference Manual. Dec. 2024. URL: https : / / www.
espressif.com.cn/sites/default/files/documentation/esp32-s3 technical reference
manual en.pdf (visited on 04/18/2025).

[4] Encyclopædia Britannica. A laptop computer. 2025, Mar 14. URL: %5Curl%7Bhttps:
//www.britannica.com/technology/computer#/media/1/130429/231796%7D.

[5] Manus Meta. Quantum Metagloves. https ://www.manus- meta .com/products/
quantum-metagloves. 2025, Mar 14.

[6] Electronic Cats. MPU6050A. https://github.com/ElectronicCats/mpu6050a. 2025,
Mar 14.

[7] InvenSense. ICM-42688-P Datasheet. July 2023. URL: https://invensense.tdk.com/
download-pdf/icm-42688-p-datasheet/ (visited on 04/16/2025).

[8] Waveshare. ESP32-S3-Tiny. Waveshare Wiki, https://www.waveshare.net/wiki/
ESP32-S3-Tiny#.E5.8E.9F.E7.90.86.E5.9B.BE. Accessed: 18 May 2025. 2025.

[9] InvenSense. MPU-6000-Datasheet. Aug. 2013. URL: https://invensense.tdk.com/
wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf (visited on 04/19/2025).

[10] InvenSense. MPU-6000 and MPU-6050 Register Map and Descriptions. Aug. 2013.
URL: https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-
Register-Map1.pdf (visited on 04/14/2025).

[11] IEEE. ”IEEE Code of Ethics”. 2016. URL: https://www.ieee.org/about/corporate/
governance/p7-8.html (visited on 02/08/2020).

[12] University of Illinois at Urbana-Champaign. Safe Practice for Lead Acid and Lithium
Batteries. Online. Available: https : / / courses . grainger. illinois . edu / ece445zjui /
documents/GeneralBatterySafety.pdf [Accessed: Feb. 28, 2024]. 2016.

21

https://www.espressif.com.cn/sites/default/files/documentation/esp32-s3_technical_reference_manual_en.pdf
https://www.espressif.com.cn/sites/default/files/documentation/esp32-s3_technical_reference_manual_en.pdf
https://www.espressif.com.cn/sites/default/files/documentation/esp32-s3_technical_reference_manual_en.pdf
%5Curl%7Bhttps://www.britannica.com/technology/computer#/media/1/130429/231796%7D
%5Curl%7Bhttps://www.britannica.com/technology/computer#/media/1/130429/231796%7D
https://www.manus-meta.com/products/quantum-metagloves
https://www.manus-meta.com/products/quantum-metagloves
https://github.com/ElectronicCats/mpu6050a
https://invensense.tdk.com/download-pdf/icm-42688-p-datasheet/
https://invensense.tdk.com/download-pdf/icm-42688-p-datasheet/
https://www.waveshare.net/wiki/ESP32-S3-Tiny##.E5.8E.9F.E7.90.86.E5.9B.BE
https://www.waveshare.net/wiki/ESP32-S3-Tiny##.E5.8E.9F.E7.90.86.E5.9B.BE
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Register-Map1.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Register-Map1.pdf
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html
https://courses.grainger.illinois.edu/ece445zjui/documents/GeneralBatterySafety.pdf
https://courses.grainger.illinois.edu/ece445zjui/documents/GeneralBatterySafety.pdf

Appendix A Supplementary Figures for Project Design

A.1 ESP32 Extension Board Supplementary

Figure 9: ESP32 Extension Board PCB lay-
out (top and bottom view)

Figure 10: Assembled ESP32 Extension
Board

Figure 11: Waveshare ESP32-S3 Tiny[8]

A.2 Sensor Design Supplementary

Figure 12: Sensor Board PCB layout (top
and bottom view)

Figure 13: Assembled Sensor Board

22

A.3 Power Supply Supplementary

Figure 14: Power board PCB layout (top
and bottom view)

Figure 15: Assembled power board

Figure 16: Power ”Box” Mod-
ule

Figure 17: Lithium-ion battery
used in the system

Figure 18: Assembled view of the old ESP32 extension board

23

Appendix B Supplementary Figures for Verification

Figure 19: Charging (Red), Charged (Green), and Power (Blue) LED indicators

Figure 20: Voltage output measurements: 5.04 V (left), 3.28 V (right)

24

Appendix C Supplementary Requirements and Verification
Table

Category Requirement Verification Pass
(Y/N)

Hardware Charging status should be
indicated by red and green
LEDs

(a) Connect a partially discharged
battery

(b) Observe LED4 (Red) during
charging

(c) Observe LED5 (Green) after
charging completes

Y

Power supply status should
be indicated by the blue LED (a) When the battery switch is on,

the blue LED lights up
(b) When the USB switch is on, the

blue LED also lights up

Y

Voltage outputs should be
5 V and 3.3 V ±10% (a) Connect a voltmeter to the 5 V

and 3.3 V terminals
(b) Verify that voltages remain

within ±10% of nominal

Y

Software Gesture recognition accuracy
should exceed 70%

Ask user to perform a series of ges-
ture commands. Measure correct
recognition rate across trials.

Y

Mouse movement should
track hand motion direction-
ally and proportionally

(a) Direction of hand movement
matches on-screen pointer

(b) Speed of movement shows linear
scaling

Y

Relative self-test response
(STR) must be within 14%

When self-test is activated, the sen-
sor is internally actuated. The out-
put values are read and compared
to factory calibration to evaluate
STR deviation.

Y

ESP32 should receive data
from MPU sensor

Monitor angular velocity and linear
acceleration data on the serial mon-
itor.

Y

ESP32 should receive data
via USB interface

Confirm that firmware can be cor-
rectly flashed via the Type-C USB
port.

Y

Table 4: Requirements and Verifications Categorized by Hardware and Software

25

	Introduction
	Purpose
	Functionality
	Visual Aid
	Subsystem Overview
	High-level Requirement List
	Block Diagram

	Design
	Hardware Design
	ICM-42688-P Sensor Description
	ESP32 Extension Board Design
	Power Management System

	Software Design
	Overview
	SPI Driver and IMU Driver
	Bluetooth Low Energy Driver
	Gesture Recognition System

	Design Alternatives
	Power Supply Board Design
	Selection for Different IMUs

	Requirements and Verification
	Requirements and Verification
	Quantitative Results
	Software Design
	Hardware Design

	Conclusion
	Accomplishments
	Uncertainties
	Future Work

	Cost and Schedule
	Cost Analysis
	Project Schedule

	Ethics
	Ethics and Safety

	References
	Appendix Supplementary Figures for Project Design
	ESP32 Extension Board Supplementary
	Sensor Design Supplementary
	Power Supply Supplementary

	Appendix Supplementary Figures for Verification
	Appendix Supplementary Requirements and Verification Table

