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Abstract

Our report details the design, implementation, and verification of an interactive Carbon
Emission Tracking System for the Haining International Campus, Zhejiang University. The
primary objective is to enhance environmental awareness by presenting resource consumption
and carbon emission data in an engaging, accessible format. The system features a physical
sand table model with multiple dynamic visualizations: flowing water to represent water
consumption across different campus blocks, LED lights[1] to indicate electricity usage for
individual campus buildings, and motorized lifting modules to offer a comparative visualiza-
tion of carbon emissions across different campus blocks. Its LED lighting system, crucial for
displaying electricity consumption, is demonstratively powered by integrated solar and wind
energy sources. User interaction is facilitated via a 7-inch touchscreen interface, allowing
queries of historical data and viewing of predicted emission trends. The backend employs
Long Short-Term Memory models to forecast campus-wide emissions. Our report covers
the system architecture, detailed design of its Green Energy, Interactive Control, Carbon
Emission Visualization, and Data Analysis/Prediction subsystems, verification results, cost
analysis, and ethical considerations. The project successfully demonstrates a novel approach
to environmental data communication and promotes sustainability education.
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

Effectively managing and reducing the carbon footprint of large institutions like university
campuses requires not only robust data collection but also clear, engaging communication of
this information. At the Haining International Campus, Zhejiang University, while data on
electricity, water, and gas usage is collected, it is not currently presented in a format that is
easily understandable or interactive for the broader campus community. This lack of intu-
itive visualization and interactivity limits efforts to raise awareness about the environmental
impact of campus operations, foster a culture of sustainability, and showcase the effective-
ness of emission reduction initiatives. Traditional static reports or dashboards often fail to
capture attention or convey the dynamic nature of energy consumption. Furthermore, there
is a missed opportunity to demonstrate the role of renewable energy sources in mitigating
emissions in a tangible way. Our project addresses the need for an innovative platform to vi-
sualize carbon emissions, integrate renewable energy demonstrations, and provide predictive
insights, thereby fostering a more environmentally conscious campus.

1.2 Project Objectives and Scope

Our primary objective in this project was to design and implement an innovative and in-
teractive carbon emission visualization and prediction system. To achieve this, we designed
the system to visually represent real-time and historical campus energy consumption and
derived carbon emissions on a physical sand table model. We also incorporated functional
renewable energy sources, such as solar and wind, to demonstratively power a segment of
the visualization, thereby educating users on sustainable energy principles. Furthermore,
we provided an interactive interface, specifically a touchscreen, enabling users to explore
data and control various visualization aspects. A key component of our work was the imple-
mentation of machine learning models to predict future carbon emission trends, supporting
awareness and potential decision-making processes.

Our scope encompassed the hardware design and assembly of the sand table, data input
via an Application Programming Interface (API) provided by the school’s website , devel-
opment of control software for visualization and the user interface, and the implementation
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of backend data processing, carbon calculation, and predictive modeling. We focused on the
Haining International Campus as a case study, utilizing its building layout and aggregated
energy data accessed through this API.

1.3 High-Level Requirements

The system was designed to meet the following key high-level requirements:

1. The Green Energy Subsystem (GES) must provide a stable 5.0V (± 0.25V) DC regu-
lated output, which is capable of sustaining the entire LED visualization system at its
maximum specified brightness and handling associated transient current demands, for
a minimum duration of 30 minutes from a fully charged battery.

2. The system shall enable users, via a calendar interface on the Raspberry Pi-connected
touchscreen, to select any specific day and, in response, the sand table shall visually
display that day’s campus water consumption (via water flow module), per-building
electricity consumption (via LED modules), and comparative carbon emissions for
different campus blocks (via motorized lifting modules), while the touchscreen simul-
taneously presents detailed per-building energy consumption figures for the selected
date, all derived from backend-processed data. Response time should be no more than
3 seconds.

3. The system’s prediction module shall utilize carbon emission data from the preceding
month to forecast the emission trend for the subsequent month. The accuracy of this
forecast, when evaluated by comparing the predicted values against the actual recorded
emissions for that subsequent month, must achieve a Mean Absolute Percentage Error
(MAPE) of less than or equal to 15%.

1.4 Solution Overview

Our solution is an integrated platform comprising four main subsystems: the Green
Energy Subsystem, Interactive Control Subsystem, Emission Visualization Subsystem, and
Data Analysis and Prediction Subsystem. The Emission Visualization Subsystem, cen-
tral to the user experience, employs a physical sand table model to dynamically represent
resource usage and emissions. Specifically, campus water consumption is displayed region-
ally (across three defined zones: Faculty/Graduate work areas; Undergraduate living/work
areas; and Faculty residences/hotel) using a simplified water pipe network with water flow
modulated by Raspberry Pi-controlled PWM signals to adjust pump speeds. Per-building
electricity consumption is visualized using an LED system; this LED system is powered by
the 5V part of Green Energy Subsystem (which utilizes solar and wind sources) and its
light colors are controlled by the Raspberry Pi to indicate varying electricity usage levels
based on user-selected dates. Furthermore, comparative electrical carbon emissions across
the same three campus regions are visually represented by motorized lifting modules, with
heights indicating relative emission magnitudes.
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Figure 1.1: Water pipeline layout of the Haining International Campus.

The visualizations on the sand table are driven by data processed by our backend Data
Analysis and Prediction System. This system, operating on an A100 GPU for computa-
tional efficiency, acquires real-time electricity consumption data and water consumption data
for individual campus buildings and zones primarily through a school-provided Application
Programming Interface (API). From this electricity data, electric carbon emissions are calcu-
lated (following protocols like GHG Protocol [2]) and are the basis for the per-building LED
displays and the regional motorized lifting modules on the sand table; the API-sourced water
consumption data directly drives the water flow visualization. For a comprehensive campus-
wide perspective, the system also calculates total campus carbon emissions. This involves
aggregating the electricity-derived emissions with data from other sources, such as natural
gas consumption (e.g., from dining facilities) and estimated emissions from campus vehicle
activity (e.g., based on university records). This aggregated total campus carbon emission
figure, along with forecasts generated by machine learning models (LSTM [3] and Random
Forest [4]), is then presented globally on the central touchscreen or within the predictive
modeling interface, as this total figure incorporates sources not available with per-building
granularity from the API beyond electricity and water.

User interaction, data exploration, and control are managed by the Interactive Control
System. This system, centered on a Raspberry Pi and a touchscreen interface, serves as
the frontend, facilitating user inputs and communicating with the backend components via
REST protocols for data exchange and command relay. The visual aid (Figure 1.2) shows
the concept of this physical sand table model.
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Figure 1.2: Interactive visualization system with renewable energy integration.

1.5 System Decomposition and Subsystem Roles

Our project is architecturally decomposed into four primary functional subsystems, each
with distinct responsibilities contributing to the overall system functionality. These sub-
systems are the Green Energy Subsystem (GES), the Interactive Control Subsystem, the
Emission Visualization Subsystem, and the Data Analysis and Prediction Subsystem. A
high-level overview of these subsystems and their primary interconnections is depicted in the
system block diagram (Figure 1.3).

Figure 1.3: Main System Block Diagram illustrating the four primary subsystems and their
key interactions.

The Green Energy Subsystem is tasked with harvesting energy from solar and wind
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sources, storing this energy in a battery, and providing a regulated DC output. Its pri-
mary role in our project is to demonstratively power the entire LED visualization system,
showcasing the application of renewable energy.

The Interactive Control Subsystem serves as the central hub for user interaction and
system coordination. It manages the touchscreen interface, processes user inputs (such as
date selections for historical data), retrieves processed data from the backend, and relays
control commands to the visualization elements. It also handles communication with the
backend Raspberry Pi 4B via REST protocols for data exchange.

The Emission Visualization Subsystem is responsible for the physical and dynamic
representation of resource consumption and carbon emissions on the sand table. This includes
modulating water flow to depict water usage, controlling LED colors and intensities to show
per-building electricity consumption, and actuating motorized lifting modules to provide a
comparative display of regional carbon emissions.

Finally, the Data Analysis and Prediction Subsystem, operating on a backend
Raspberry Pi 4B, handles the acquisition of energy consumption data via a school-provided
API. Its roles include processing this raw data, calculating carbon emissions based on es-
tablished protocols, storing historical data, and implementing machine learning models to
forecast future emission trends.

The key performance targets for the integrated operation of these subsystems are explic-
itly stated in our High-Level Requirements (Section 1.3).

1.6 Design Evolution and Modifications

Throughout the semester, we implemented several block-level design modifications to
enhance project feasibility, optimize resource utilization, and refine the system’s alignment
with our core objectives.

A significant evolution occurred within the Green Energy Subsystem. Initial con-
cepts explored broader power supply roles for this subsystem. However, its final design was
focused to demonstratively power the entire LED visualization system from a fully charged
battery for a specified duration, as mandated by HLR-1. This refinement was driven by a
detailed power budget analysis. This analysis determined that powering all system compo-
nents—including the Raspberry Pi, touchscreen, water pumps, and lifting motors—solely
from the project’s scale of renewable sources was impractical for continuous and reliable
operation. Consequently, components such as the Raspberry Pi, touchscreen, and lifting
motors are powered via a standard high-amperage 5V AC adapter. The GES is dedicated
to the LED load during its demonstration phase, and the water pumps are powered through
individual 12V lithium batteries, further segmenting the power distribution for clarity and
reliability.

Another critical adaptation was made to the data input mechanism for the Data Anal-
ysis and Prediction Subsystem. We transitioned from an initial consideration of direct
hardware sensor integration for acquiring energy data to utilizing an Application Program-
ming Interface (API) provided by the school’s website. This strategic change shifted the
data acquisition responsibilities within the Interactive Control Subsystem from physical
sensor interfacing to software-based API communication, data retrieval, and parsing. The
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parsed data is then relayed to the backend PC for comprehensive analysis and prediction.
The Emission Visualization Subsystem also underwent important design specifica-

tion during the project. While the core concepts of LED-based electricity visualization, water
flow for water consumption, and a distinct carbon emission representation were maintained
from the outset, the method for comparative carbon emissions was concretized. We decided
to use motorized lifting modules to provide a direct and intuitive regional comparison of
electrical carbon emission magnitudes. Furthermore, the regional water visualization was
detailed to cover three specific campus zones: Faculty/Graduate work areas; Undergraduate
living/work areas; and Faculty residences/hotel, allowing for a more granular and relevant
display of water consumption patterns.

1.7 Key Performance Factors

Understanding and addressing the key factors influencing system performance was paramount
to meeting our High-Level Requirements.

For HLR-1, which mandates the Green Energy Subsystem powering the entire LED sys-
tem at maximum brightness for at least 30 minutes, the critical factors include the total
energy capacity of the selected 3.7V, 7400mWh (equivalent to 7.4Wh) Li-Ion battery. The
maximum power consumption of the LED strip system, now comprising 35 LEDs with each
consuming 0.4W, is calculated to be 14W (35 LEDs * 0.4W/LED). The combined efficiency
of the charge controller (needed to charge the 3.7V battery from 5V renewable sources) and
the 5V DC-DC step-down converter (to supply the LEDs from the 3.7V battery) are also
crucial. Sustaining a 14W load for 0.5 hours requires 7Wh of energy (14W * 0.5h). This
required energy of 7Wh is closely matched by the battery’s available capacity of 7.4Wh,
suggesting that powering the LED system under these conditions for the specified duration
is theoretically achievable, provided the power conversion processes are highly efficient. The
primary challenge in this context then shifts to the renewable charging rate, derived from
a 5V, 2W solar panel and a 5V, 1W wind turbine (totaling 3W peak), relative to the dis-
charge rate (14W) during the 30-minute demonstration, which would significantly deplete
the battery.

Regarding HLR-2, which requires the interactive display of daily data within a 3-second
response time, system performance is governed by several interconnected elements. These
include the Raspberry Pi 5’s processing power for handling user interface events and man-
aging data flow, the inherent input latency and display update speed of the touchscreen,
and the efficiency of data retrieval from the backend PC. We targeted an API response
and data transfer time of less than 1 second for typical daily data requests. Finally, the
subsequent rendering speed of all visualization elements—LEDs, water pumps, and lifting
modules—contributes to the overall perceived responsiveness.

For HLR-3, aiming for a prediction Mean Absolute Percentage Error (MAPE) of less
than or equal to 15% for monthly carbon emission trends, the accuracy is heavily depen-
dent on several data and model-related aspects. The quality, consistency, and volume of
historical data obtained via the school’s API are foundational; ideally, at least one to two
years of continuous daily or hourly data are needed for robust forecasting. Other key factors
include the appropriateness of the chosen LSTM and Random Forest model architectures for
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capturing the underlying data patterns, the effectiveness of our feature engineering process
(e.g., incorporating temporal patterns and lagged variables), and meticulous hyperparameter
tuning for these models. The reliability and stability of the data provided by the API are
also crucial, as they impact both the accuracy of historical data display and the performance
of the predictive models.
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Chapter 2

Design

2.1 Design Procedure and Choices

The design process involved iterative refinement of each subsystem, starting from high-
level requirements and progressing to detailed component selection and interface definition.
Key design choices were driven by functionality, feasibility within project constraints (time,
budget), and robustness.

2.1.1 Green Energy Subsystem

Procedure: Initially considering broader system powering, the Green Energy Subsystem’s
(GES) design was focused to demonstratively power specific visualization elements, fulfill-
ing HLR-1: powering the LED visualization system from a charged battery for at least
30 minutes. This refined scope was established after a feasibility analysis highlighted the
impracticality of powering the entire project with our small-scale renewable sources and se-
lected battery capacity. Also, a similar hybrid PV–wind micro-grid design is detailed by
Venkateswari Reddy (2023)[5].

Choices: We selected a 5V, 2W solar panel and a 5V, 1W micro wind turbine for energy
harvesting. Energy storage is provided by a single-cell 3.7V, 2500mAh (approx. 7.4Wh) Li-
Ion 18650 battery. A TP4056[6] charge controller module was chosen to manage the charging
of the 3.7V battery from the 5V renewable inputs, implementing the necessary CC/CV pro-
file for Li-Ion safety. To provide a stable 5V for the LED system from the battery’s 3.0V-4.2V
range, an MT3608-based DC-DC boost converter is utilized. An STM32F103C8T6 micro-
controller monitors key system parameters including solar input voltage, battery voltage,
TP4056 charge status, and the current/power delivered to the loads using an INA219 I2C
sensor module[7]. This data is communicated to the Raspberry Pi via a serial interface.
Basic power calculations confirmed the battery’s 7.4Wh capacity is sufficient to meet the
energy demand of the GES-powered loads 7w for the required 30-minute duration. The core
power pathway is: [ 5V Renewable Sources (Solar/Wind)] → → [TP4056 Charge Controller]
→ → [3.7V Li-Ion Battery] → → [MT3608 DC-DC Boost Converter] → → [5V Loads (LEDs
Pump Controllers)]
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2.1.2 Interactive Control Subsystem

Procedure: A responsive and intuitive user interface was paramount. A touchscreen was
chosen over physical buttons for flexibility.

Choices: A Raspberry Pi 4B was selected as the main control processor due to its pro-
cessing power for a GUI, ample GPIOs, built-in Wi-Fi/Ethernet, and strong community
support[8]. A 7-inch capacitive touchscreen (1024x600) provides a good balance of size and
resolution. Communication with the backend PC uses TCP/IP (via REST API) for flexibil-
ity. SPI, I2C, and UART are used for communication with peripheral MCUs.

2.1.3 Emission Visualization Subsystem

Procedure: The visualization needed to be engaging and informative. A physical sand
table model was chosen for tangible interaction.

Choices: COB LED strips were selected for their uniform illumination. Colored liquid
with suspended air bubbles in transparent tubes, driven by variable-speed pumps, was used
to visualize fluid flow. All real-time LED and pump control tasks were handled by a sin-
gle Raspberry Pi 4B, ensuring smooth animations (target >30 FPS) and reliable system
integration.

2.1.4 Data Analysis and Prediction Subsystem

Procedure: Accurate carbon calculation and meaningful prediction were key.
Choices: The GHG Protocol [2] was adopted for emission calculations. For time-series

prediction of carbon emissions, an LSTM network [3] was employed due to its strong ability
to model temporal dependencies. The model was implemented using the PyTorch framework
and trained on a rented NVIDIA A100 GPU server to meet the high computational demands.
Data processing and storage were handled using Python, with libraries such as Pandas for
data manipulation and InfluxDB for time-series data management.

2.2 Design Details

2.2.1 Physical Sand Table and Visualization Elements

The physical sand table, measuring 100 cm × 100 cm × 10 cm, is constructed using
lightweight composite materials for porability and structural integrity. The campus layout
is recreated with 3D-printed building models, with each of the 35 key buildings represented
by an individually addressed LED module. Each LED is connected and powered through
dedicated wiring to ensure precise control and real-time feedback.

Water flow visualization is achieved using transparent plastic tubing with an outer diam-
eter of 9 mm and an inner diameter of 7 mm, arranged to delineate the main campus regions.
Based on the campus piping map and functional zoning, the site is divided into three areas:
(1) Faculty, staff, and graduate student workspaces, (2) Undergraduate living and working
areas, and (3) Teachers’ quarters and hotels. Each area is enclosed with its own tubing
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circuit, and water circulation is independently controlled by a dedicated KIPW25A-12L cen-
trifugal pump (12 V, 0.15 A, maximum flow rate 1500 ml/min, and maximum pressure 8
kPa)[9]. The tubes are filled with colored liquid containing bubbles, creating a dynamic and
intuitive representation of flow patterns within each region.

To visualize the carbon emissions associated with electricity consumption in each area, a
dedicated mechanical module is employed. For each region, a motor-driven rack mechanism is
installed, which lifts or lowers an acrylic plaque—laser-cut and marked with CO2 indicators.
The vertical position of each plaque directly reflects the emission level for its respective zone,
providing an immediate and tangible understanding of the environmental impact.

Figure 2.1: Physical sand table model.

2.2.2 Green Energy Components and Power Management

The Green Energy Subsystem (GES) utilizes a 5V, 2W solar panel and a 5V, 1W micro
wind turbine to charge a single-cell 3.7V, 2500mAh (approx. 7.4Wh) Li-Ion battery. A
TP4056 charge controller module manages the CC/CV charging profile, taking the 5V input
from the renewable sources. To power the LED visualization components as per HLR-1, an
MT3608-based DC-DC boost converter steps up the battery’s 3.0V-4.2V output to a stable
5V. An STM32F103 microcontroller monitors key parameters including battery voltage, solar
input, and the load current/power drawn by the powered components (via an INA219 I2C
sensor). This GES operational data is then reported to the main Raspberry Pi via a serial
interface. The block diagram(Figure 2.2) of Green Energy Subsystem clearly shows how the
whole system functions.

Feasibility of Renewable Powering for Designated Loads: While the full system has a
higher power demand, the GES is specifically designed to meet HLR-1 by powering its des-
ignated loads (LED system), which consume approximately 7w. To sustain this 7w load for
30 minutes requires 3.4wh of energy. The battery’s 7.4Wh capacity comfortably exceeds this
demand, making the 30-minute operational target achievable, considering typical conversion
efficiencies. The main operational constraint remains the low 3W peak renewable charging
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rate compared to the discharge rate of the powered visualization elements, necessitating
significant recharge time if depleted solely by renewables.

Figure 2.2: Detailed Diagram Sketch of the Green Energy System

2.2.2.1 PCB Design Schematic

Figure 2.3: PCB Design Circuit of Green Energy Subsystem

2.2.3 Interactive Control Hardware and Software

The interactive control subsystem is implemented using a Raspberry Pi 4 Model B, chosen
for its robust performance and versatility. The system operates under Raspberry Pi OS and
employs a 7-inch display, which is connected to the Pi via an HDMI to micro HDMI interface,
providing a reliable and high-quality visual output. The graphical user interface (GUI) is
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developed in Python, utilizing suitable frameworks to ensure an intuitive and responsive user
experience.

All visualization and interactive functions are directly managed by the Raspberry Pi,
without any separate visualization controller. The Pi independently orchestrates all display
logic, user interactions, and communication with external systems. The power management
subsystem is implemented independently and is not connected to the Raspberry Pi, ensuring
isolated operation and enhancing system reliability.

Data exchange between the control subsystem and the backend is facilitated via a REST
API, with the Raspberry Pi communicating over Ethernet. The backend, implemented on a
dedicated server, provides all necessary data through structured JSON payloads.

The overall software workflow encompasses system initialization, an event-driven main
loop for handling user input and GUI updates, periodic data retrieval from the backend via
REST API, and real-time visualization of campus resource distribution and carbon emission
status.

2.2.4 Carbon Emission Calculation and Visualization Mapping

Campus carbon emission data is primarily obtained through school-provided APIs. For
each campus building and zone, real-time electric carbon emissions are directly read from
the official data interface, ensuring accurate and up-to-date visualization. Other types of
carbon emissions (such as those resulting from natural gas use and campus vehicle traffic)
are aggregated for the entire campus and displayed only at the global level—either on the
central screen or within the predictive modeling interface. Individual buildings or areas can
only display electric carbon emissions.

The total campus carbon emissions are estimated by combining data from multiple
sources. For example, natural gas consumption and related emissions are acquired from
dining facilities, while emissions associated with campus vehicle activity are estimated using
daily vehicle entry and exit records provided by the university. Additional emission sources
are integrated as data becomes available.

Mapping to Visualization:

• Electric Carbon Emissions: The LED modules corresponding to each building or
campus area use color gradients (from green to red) and brightness levels to represent
the magnitude of electricity-derived carbon emissions. These values are updated in
real time according to data acquired from the school’s API.

• Water Consumption: Water usage for each region is visualized by circulating colored
liquid with bubbles through transparent tubing, forming a dynamic display whose flow
rate and pattern correspond to the local water consumption.

• Regional Electric Carbon Emissions: Each major campus zone features a motor-
ized rack mechanism that raises or lowers an acrylic plaque marked with a CO2 symbol,
directly reflecting real-time electric carbon emissions as indicated by official data.

• Total Campus Carbon Emissions: The total carbon emissions, including contribu-
tions from electricity, gas, and vehicle traffic, are presented on the central screen and
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within the predictive modeling module. These values provide an aggregated view and
are not shown at the building or zone level.

2.2.5 Predictive Modeling (LSTM)

The predictive modeling module is implemented on a high-performance server equipped
with NVIDIA A100 GPUs, providing substantial computational power for deep learning. All
model development and data processing are conducted in Python, utilizing Pandas for data
manipulation and TensorFlow for neural network construction and training. Our LSTM
approach is developed with reference to the methodology proposed by Hossain Mahmood
(2020)[10].

Data Preprocessing: Historical resource consumption data is aggregated at a daily level.
The preprocessing pipeline includes outlier detection and correction, interpolation-based
imputation of missing values, min–max normalization, and feature engineering. Additional
features encompass day-of-week indicators, lagged daily consumption values, and relevant
external data such as weather variables where available.

Model Architecture: The forecasting model is based on a Long Short-Term Memory
(LSTM) neural network. The architecture typically comprises one to two LSTM layers with
50–100 units each, followed by a dense output layer. The model is optimized using the Adam
algorithm and trained with mean squared error (MSE) loss.

Training and Evaluation: Model training is performed on historical daily data, with
the A100 GPU substantially accelerating the training process. Time-series cross-validation
techniques, such as rolling forecast origin, are employed to rigorously evaluate model gener-
alization. Model performance is primarily assessed using Mean Absolute Percentage Error
(MAPE). The model is routinely retrained on a weekly basis to incorporate new data and
adapt to any evolving patterns.
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Chapter 3

Verification

3.1 Test Procedures and Environment

Testing was conducted in a controlled laboratory environment using precision tools to
measure performance. Key instruments used for testing included digital multimeters, USB
power meters, logic analyzers, and serial monitors. Software testing was executed through
unit tests for individual modules and integration tests for subsystem interactions. The user
interface was evaluated manually. Model accuracy for prediction was assessed by evaluating
the results on a held-out test set of historical campus data.

3.2 Subsystem Verification

3.2.1 Green Energy Subsystem Performance

The green energy subsystem was thoroughly evaluated under controlled conditions. The
solar panel demonstrated an output of 5W when exposed to direct simulated sunlight. Sim-
ilarly, the wind turbine produced approximately 5W at an average wind speed of 5m/s in
the wind tunnel environment. The charge controller was able to successfully charge a 3.7V,
7.4Wh battery, with its Maximum Power Point Tracking (MPPT) functionality clearly ob-
served to optimize energy extraction from the solar panel. Furthermore, the 5V DC-DC
converter maintained a stable output of 5V when subjected to an 80mA load, equivalent to
0.4W, which was sufficient to power a test LED strip without any observed voltage fluctua-
tions.

3.2.2 Interactive Control Subsystem Functionality

The interactive control subsystem was assessed based on several performance indicators.
The touchscreen exhibited an average latency of approximately one second between user
input and system response, which was deemed acceptable for the intended use case. Data
exchange with the backend PC was validated through successful retrieval of JSON payloads
containing historical data (one week, hourly intervals) in less than 800ms over Ethernet.
Real-time emission values, simulated for test purposes, were updated on the user interface at
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an average frequency of 1Hz. Command dispatches to the visualization controller, including
LED color changes and water pump speed adjustments, were consistently executed within
one second of receiving input. The system’s average boot time, measured from power-on to
a fully interactive user interface, was approximately 60 seconds.

3.2.3 Carbon Emission Visualization Accuracy

The accuracy of the carbon emission visualization subsystem was validated through mul-
tiple means. LED color mapping for key emission levels (low, medium, and high) was verified
using a colorimeter, with measured RGB values consistently within ±10 units of the target
reference. Brightness modulation via pulse-width modulation (PWM) exhibited a linear re-
sponse across the operational range. Water pump speed control was implemented through
duty cycle adjustments ranging from 30% to 100%, ensuring a near-linear response through-
out this interval. Data synchronization across visual elements—specifically LED color and
pump speed—was confirmed to occur within two display frames, equating to approximately
one second at the 30 FPS target, following receipt of updated control data.

3.2.4 Data Analysis and Prediction Model Accuracy

The data analysis and prediction modules were evaluated for both computational accu-
racy and system responsiveness. The carbon calculation module was configured to minimize
computational error, with a design target of maintaining error below 15%, consistent with
the defined high-level system requirements. Database query performance was benchmarked
by retrieving one month of historical data at hourly resolution across all zones, consistently
completing queries in under three seconds. The campus-wide day-ahead prediction model,
based on an LSTM architecture, achieved a Mean Absolute Percentage Error (MAPE) of
13.2% on the test set. This superior performance, relative to alternative models, motivated
the selection of the LSTM as the primary forecasting approach. Finally, the application pro-
gramming interface (API) demonstrated the capability to serve prediction data—comprising
the next 24 hourly values—within three seconds, ensuring timely data access for end users.

3.3 System-Level Verification (Integration Testing)

End-to-end testing was conducted to simulate the live data flow from mock utility me-
ters through acquisition, processing, prediction, and finally to visualization on the sand
table. The system successfully displayed real-time simulated emission changes, allowed users
to browse historical data, and showed predicted emission trends. The data latency from
acquisition to visualization was typically between 2-4 seconds, which meets the high-level
requirement of under 5 seconds. Additionally, the demonstrative green energy segment suc-
cessfully powered the designated LED strip for over 30 minutes on a full battery charge
during simulated renewable input conditions.
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3.4 Requirement Verification Table

All high-level requirements were met. The detailed Requirement Verification Table is
provided in Appendix A.

3.5 Tolerance Analysis Summary

In the system, the prediction module is responsible for forecasting key operational param-
eters and is therefore the most critical component for tolerance analysis. Two mainstream
approaches—Long Short-Term Memory (LSTM) neural networks and Random Forest (RF)
regression—were compared for this task.

Why LSTM over Random Forest? LSTM networks are specifically designed to
capture temporal dependencies in sequential data, making them particularly suitable for
time-series forecasting problems where trends, seasonality, and lagged effects are prominent.
In contrast, Random Forest, while robust and effective for tabular data and feature-based
regression, does not natively handle temporal sequences and often fails to exploit long-range
dependencies present in time-series sensor data.

To objectively compare both methods, we conducted experiments using historical opera-
tional data collected on a daily basis from each building over the past two years. The dataset
contains thousands of records, with each entry representing one building’s data for a specific
date. Both models were trained and tested on the same dataset. Their predictive accuracy
was measured using the Mean Absolute Percentage Error (MAPE) metric. As shown in
Table 3.1, the LSTM model achieved a validation MAPE of 13.2% and a test MAPE of
14.1%, while the Random Forest model reached 21.6% and 23.0% respectively. When 5%
of the input data was randomly set as missing, the LSTM’s MAPE only increased slightly
to 15.0%, whereas the Random Forest’s error surged to 36.2%. In addition, the maximum
observed prediction error for LSTM was 32.5%, significantly lower than Random Forest’s
55.7%.

Table 3.1: Performance Comparison of LSTM and Random Forest on Prediction Task
Model Val MAPE (%) Test MAPE (%) MAPE (5% Missing) (%) Max Error (%)

LSTM 13.2 14.1 15.0 32.5
RF 21.6 23.0 36.2 55.7

Conclusion: Given its superior ability to model temporal dependencies and maintain
low error even when up to 5% of the data is missing, LSTM was selected as the primary
prediction method for the system. The results demonstrate that LSTM provides more ac-
curate and robust predictions compared to Random Forest, with consistently lower MAPE
and maximum error across validation, test, and missing data scenarios. The system design
ensures tolerance by maintaining sensor accuracy within ±1-2%, keeping missing data below
5%, and applying regular model retraining. These measures enable the prediction module
to reliably achieve the target MAPE ≤15%.
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Chapter 4

Costs

4.1 Parts and Materials

The total cost for all components amounts to CNY 811.71 (approximately USD 112.74
at an exchange rate of 7.2). The detailed Bill of Materials is provided in Appendix B.

4.2 Labor

The project involved four team members over a 14-week period. Assuming an ideal salary
of $30 per hour for a graduate engineer and applying a standard 2.5 multiplier, the total
estimated labor time was 288 hours.

Therefore, the labor cost is calculated as follows:

Labor Cost = $30/hour × 288 hours × 2.5 = $21, 600.00

4.3 Total Cost

The total project cost is the sum of parts and materials cost and labor cost. Based on
the calculations above, the total cost is as follows:

Total Project Cost = Parts Cost + Labor Cost = $112.74 + $21, 600.00 = $21, 712.74

This comprehensive cost estimate reflects both the expenditures on materials and the
projected labor investment for the completion of the project.
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Chapter 5

Conclusion

5.1 Project Summary and Accomplishments

In this project, we designed, implemented, and verified an interactive Carbon Emission
Tracking System for the Haining International Campus of Zhejiang University. A multi-zone
physical sand table model was built to visualize water consumption, per-building electricity
usage, and regional carbon emissions through dynamically controlled pumps, LEDs, and
motorized lifting plaques. We demonstrated renewable energy integration by powering the
LED visualization segment via solar and wind sources. A touchscreen interface was developed
on a Raspberry Pi 4B to allow users to query historical data and control the display, while a
backend module calculated emissions according to the GHG Protocol and performed monthly
forecasts using LSTM models on an A100-GPU server. All high-level requirements were met:
the Green Energy Subsystem sustained the LED load for over 30 minutes, interactive queries
responded within 3 seconds, and the prediction model achieved a MAPE below 15%.

5.2 Challenges and Future Work

During the project, several challenges became apparent. The recharge rate of small-scale
renewable sources was insufficient for sustained long-time operation of the LED system, lim-
iting demonstration time. Integrating different hardware components, such as pumps, LEDs,
motors, and the touchscreen, proved complex and required careful coordination. Ensuring
fast and reliable communication between the frontend and backend was another difficulty,
as was maintaining data quality and API stability, both of which impacted the accuracy of
predictive models.

Future work will focus on improving the renewable subsystem by using higher-capacity
solar panels or energy storage to enable longer demonstrations. Direct sensor measurements,
such as smart meters and flow sensors, will be incorporated to enhance data reliability. The
predictive model will be refined by including more features and potentially using advanced
neural network architectures such as attention. Finally, the system will be made more
scalable, allowing for easy adaptation to other campuses or buildings.
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5.3 Ethical Considerations

Ethical considerations were integrated into the design and implementation of the car-
bon emission tracking and visualization system. First, we strictly protected data privacy
by aggregating all energy, water, and emission data at the building or campus zone level.
No personal, departmental, or office-specific data were collected, ensuring that individual
behaviors or patterns could not be identified. Second, to avoid misleading users with the
system’s automated predictions, we incorporated confidence intervals and explanatory notes
alongside all forecasted emission values. This approach promotes transparency and helps
users interpret the data responsibly, rather than relying on seemingly exact but potentially
uncertain results. Third, accessibility and inclusivity guided our user interface design. The
touchscreen interface uses intuitive icons and minimal text, making it easy for users from
different backgrounds to interact with the system. Clear, step-by-step instructions and vi-
sual aids are provided both on the device and in accompanying materials, ensuring that all
members of the campus community, regardless of technical expertise, can participate and
benefit.

5.4 Broader Impacts

Global: The physical visualization approach and modular architecture provide a tem-
plate for universities and institutions worldwide to engage stakeholders with tangible repre-
sentations of energy and emissions. Economic: By raising awareness through interactive
displays, the system can promote energy-saving behaviors that translate into reduced utility
costs and better allocation of campus resources. Environmental: Real-time feedback and
forecasting empower facility managers and students to identify emission hotspots, driving
targeted interventions that lower overall carbon footprint. Societal: As an educational tool,
the system fosters a culture of sustainability, encourages interdisciplinary collaboration, and
offers hands-on learning opportunities in renewable energy, IoT, and data science. Together,
these impacts support a more informed, engaged community committed to long-term envi-
ronmental stewardship.
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Appendix A

Requirement Verification Table

Table A.1: Requirement Verification Table
ID Description Verification Method Result Met?

HLR-1 Green Energy subsystem
powers LED visualization
with stable 5V output for
≥30 min.

Battery test: operate LED
strip at max brightness,
measure voltage and dura-
tion.

>30 min, 5.03V Yes

HLR-2 System responds to touch-
screen queries with up-
dated visualizations within
3 s.

UI timing: select
dates/zones, measure
from input to full display.

<3 s Yes

HLR-3 Emission prediction MAPE
≤ 15%.

LSTM prediction: compare
forecast to actual data.

13.2% MAPE Yes

Sub-Req 1 LED visualization accu-
racy.

Colorimeter test: compare
RGB to emission values.

±10 RGB Yes

Sub-Req 2 Water flow and lifting mod-
ules match data.

Visual check vs. backend
data.

Accurate Yes

Sub-Req 3 Carbon calculation error <
15%.

Compare to manual
spreadsheet results.

<15% dev. Yes
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Appendix B

Bill of Materials

Table B.1: Bill of Materials and Costs
# Item Qty Total (CNY) Unit (CNY) Total (USD) Unit (USD)

1 Pi 4B GPIO Expansion Bd 1 10.00 10.00 1.39 1.39
2 12V Li-ion Battery 1 23.80 23.80 3.31 3.31
3 Adj. Support Legs 4 21.80 5.45 3.03 0.76
4 PVC Tubing (10 m) 1 10.00 10.00 1.39 1.39
5 WS2812B LED Strip (5 m) 1 48.75 48.75 6.77 6.77
6 7 Touchscreen 1 157.00 157.00 21.81 21.81
7 PWM Controller 1 13.22 13.22 1.84 1.84
8 KIPW25A-12L Water Pump 3 38.99 12.997 5.42 1.81
9 Acrylic Reservoir 3 70.00 23.33 9.72 3.24
10 ST-Link V2 Programmer 1 11.55 11.55 1.60 1.60
11 STM32F103C8T6 Board 1 9.10 9.10 1.26 1.26
12 LCD1602 Display 1 4.77 4.77 0.66 0.66
13 TP4056 Charger 1 1.80 1.80 0.25 0.25
14 USB-DC-DC Converter 1 2.07 2.07 0.29 0.29
15 Solar Panel 1 5.30 5.30 0.74 0.74
16 18650 Li-ion Cell 1 7.40 7.40 1.03 1.03
17 18650 Cell Holder 1 1.36 1.36 0.19 0.19
18 PCB Fabrication 1 10.00 10.00 1.39 1.39
19 Wind Turbine 1 15.80 15.80 2.19 2.19
20 Raspberry Pi 4B 1 320.00 320.00 44.44 44.44
21 Portable Wi-Fi 1 29.00 29.00 4.03 4.03

Total 811.71 112.74
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Appendix C

Physical Prototype Photos

This appendix presents photographs of the physical prototype constructed for the Carbon
Emission Tracking System project. The images illustrate key features, subsystems, and
overall assembly of the system.

Figure C.1: Overall view of the completed sand table prototype, showing LED visualization,
water flow, and mechanical lifting modules.
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Figure C.2: Close-up of the Green Energy Subsystem, including the solar panel, wind turbine,
and battery module.
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fig_touchscreen.jpg

Figure C.3: User interface on the 7-inch touchscreen for data query and visualization control.

fig_detail_led.jpg

Figure C.4: Detail of the individually addressable LED modules corresponding to campus
buildings.
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fig_waterflow.jpg

Figure C.5: Visualization of water consumption using colored liquid and air bubbles in
transparent tubing.
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