ECE 445

SENIOR DESIGN LABORATORY

FINAL REPORT

Robotic Arm Integrated into wheelchair
with MR Interface

Team #12

YINUO YANG (yinuoy4@illinois.edu)
YILIN WANG (yilin14@illinois.edu)
YUNYI LIN (yunyiy3@illinois.edu)
XINGRU LU (xingrul2@illinois.edu)

TA: Yun Long

May 18, 2025

Abstract

Wheelchair users often face substantial challenges when interacting with objects or per-
forming tasks outside of their immediate reach. Furthermore, wheelchair users may ex-
perience limited situational awareness due to a primarily forward-facing field of view.
This highlights the urgent need for innovative solutions that improve both accessibility
and autonomy, allowing wheelchair users to interact more effectively and conveniently
with their surroundings independently. In this project, we proposed and developed a sys-
tem that offers wheelchair users an assistive, real-time robotic arm system with a mixed
reality (MR) interface, as a solution to improve their independence.

ii

Contents

1 Intr 10n

|2 De31gn|

2.1 Design Procedure]

1.2 Block Diagram|
1.3 High-Level Requirements List]

211 Customized End Effector
212 OpenMANIPULATOR-P RoboticArm|.

B13

DepthCameral.

.14 Mixed Reality Interface System|

215 MobilePlatforml. oo
22 DesignDetails| o oo
2.1 mized End Effector]
@mm
223 DepthCameral.

2.2.4 Mixed Reality Interface System|

2.25 Mobile Platform|

3 Verification|

1 rifi

ion of R ic Arm Function

n

r MR T ntroll

3.2 Verification of Profile Box and Wheelchair Integration|

B.3 Verification of Pressure Sensor and Communication Functionality]

4 Costs|

5 Conclusionsl

. Futur
5.4 Safety|
5.5 Ethicsl

B5.1

Privacy and Data Protection|.

b.5.2 User Autonomy and Accessibility]

1ii

22

23
23
23
23
23
24
24
24

25

1 Introduction

Wheelchair users face significant challenges when reaching for objects or performing
tasks beyond their immediate reach, compounded by limited situational awareness from
their fixed forward-facing perspective. Our proposed solution integrates a robotic arm
with a mixed reality (MR) interface into a wheelchair platform. The system enhances
users’ daily living by assisting with object retrieval and button activation, while simul-
taneously expanding their field of view through a camera, enabling more effective and
independent environmental interaction.

1.1 Function

Our solution integrates a depth camera that streams real-time visuals to a Mixed Reality
(MR) interface, allowing wheelchair users to gain visual awareness of their surround-
ings, including blind spots behind them. Additionally, a robotic arm mounted at the back
of the wheelchair can be controlled through MR, enabling users to perform assistive ac-
tions such as pressing buttons and interacting with objects beyond their physical reach.
This system enhances both situational awareness and independent mobility, providing a
more intuitive and convenient way for users to navigate and interact with their environ-
ment.

1.2 Block Diagram

Our solution is divided into 3 modules as shown in Figure (I} the robotic arm module
for precise object manipulation, the mixed reality module for intuitive human-robot in-
teraction, and the mobile platform module for autonomous navigation. Together, these
modules form a complete assistive system that improves wheelchair users” independent
interaction with their surroundings.

Robotic Arm Module

' 24V15A Customized

i Power End Effector

E Power Supply E

: Y _ Connected To i

5 0 :
Connected Td _k| M P Attached To '

anipulator-P
’ Robotic Arm

Mixed Reality
Interface Lt Wheel Chair
System

Depth Camera
(Rear View)

Hand Position

Mobile Platform Module
Data

Apple Vision

Pro

Mixed Reality Module

Figure 1: Block Diagram

* Robotic Arm Module: This module consists of a customized end effector and the
OpenMANIPULATOR-P robotic arm, powered by a 24 V-15 A power supply. The
function of this module is to interact with the environment, such as to press but-
tons. It is physically mounted on the Mobile Platform Module (Wheelchair) and
connected to the Mixed Reality Module for feedback and control.

* Mixed Reality Module: This module consists of the Apple Vision Pro, the Depth
Camera, and the Mixed Reality Interface System, the core processor for interpreting
inputs provided by the user and information regarding the surroundings. It sends
precise commands to the Robotic Arm Module via joint data, enabling intuitive and
adaptive control. The Depth Camera expands the system’s field of view, and the
Mixed Reality Interface System maps the motion of the user’s hand for intuitive

1.3

interaction with the robotic arm.

Mobile Platform Module: This module consists of the wheelchair and an alu-
minum profile box, connected by suitable fasteners. The top of the aluminum profile
box is designed with a rail structure, allowing the robotic arm to achieve a larger
reach along the rail. This part completes the connection between the robotic arm
and the wheelchair, forming the main physical structure of the entire system.

High-Level Requirements List

Precision: The robotic arm should reliably press buttons with a diameter of at least
35 mm, which is a common size of elevator buttons. The force applied must be
sufficient to activate buttons without excessive pressure that could cause damage or
failure.

Safety and Stability: Users should be able to see both the front and rear environ-
ments through Vision Pro, while also adjusting the robotic arm’s perspective to gain
a broader field of view.

Reach: The robotic arm should be able to reach a height from 110cm to 160 cm.

2 Design

2.1 Design Procedure
2.1.1 Customized End Effector
Form Factor Design

For the integration of the robotic arm with the wheelchair, multiple design options were
evaluated to balance safety, flexibility, and usability.

¢ Direct Mounting onto the Wheelchair Frame
One option was directly mounting the robotic arm onto the wheelchair frame. While
this approach minimizes additional structures, it compromises safety by introduc-
ing mechanical loads directly onto the wheelchair, potentially affecting stability.

¢ Fixed Mounting Platform without Sliding Capability
Another option was using a fixed mounting platform without sliding capability.
Without the ability to reposition the base, the arm cannot effectively interact with
objects located at various positions relative to the user.

The final design adopts a modular aluminum-profile platform with a sliding mechanism.
This platform is constructed using standard 20x20 mm aluminum profiles for high struc-
tural strength and ease of assembly. Four wheels are installed at the bottom, provid-
ing mobility and enabling the system to be positioned alongside or detached from the
wheelchair as needed.

Sliding blocks are mounted on the top aluminum frame. The robotic arm is fixed onto the
sliding blocks. This design significantly increases the effective reach of the robotic arm
without the need for a larger or more complex arm structure.

End Effector Control

For the end-effector gripper (including the force sensing resistor), we use an individual
Arduino board to receive input from force sensing resistor and control the motor that
enables the opening and closing of the gripper. There are two main pathways in the
overall design of this component:

* Make the end-effector an individual component solely controlled by Arduino, cre-
ating an automated process where the gripper opens and closes for certain seconds
after the FSR (force sensing resistor) detects force that generated from contact with
object to be gripped.

¢ Transmit data between Arduino and Unity and design control procedures in Unity.

We chose the second one because the first one means hard-coding the gripper control,
which is less flexible and introduces certain manipulation difficulties in real-world test-

ing.

The force sensed by the front-end of the gripper will be converted to voltage value and
sent to Unity as a variable value. We set a threshold for the voltage, halting the robotic
arm once the threshold is reached to prevent potential damage to objects and the gripper.
In Unity, the voltage value could be visualized, providing the user with more intuition of
the robotic arm operation. More importantly, after establishing communication between
Unity and Arduino, the user could control the opening and closing of the gripper via
hand gesture at any time, without conforming to hard-coded procedures.

Design Tools:
¢ SolidWorks & Fusion 360: Models end effector and connection parts.

e Bambu Lab: Performs slicing on the modeled STL files and exports G-code for 3D
printing.

¢ Creality 3D Printer: Prints our end effector and connection parts.

* Arduino IDE: Programs the microcontroller. It allows the user to write and up-
load code that reads analog data from a pressure sensor, calculates the correspond-
ing voltage, sends the voltage over a serial port to Unity, receives commands like
“"OPEN" or "CLOSE” from Unity, and controls the servo motor or LED accordingly.

¢ Unity: Receives voltage data from the FSR and integrating it to the whole system.

* System.IO.Ports: Library used for establishing bidirectional communication between
Arduino and Unity.

2.1.2 OpenMANIPULATOR-P Robotic Arm

For the selection of the robotic arm system, two primary options were evaluated based
on mobility requirements, functional capabilities, and integration complexity.

* The UR3 industrial robotic arm has an external control box weighing about 15 kg,
creating significant integration challenges for wheelchair mounting and movability,
while the industrial-grade capabilities exceed our application requirements.

¢ The OpenMANIPULATOR-P provides integrated electronics and lightweight con-
struction (5.76 kg total weight).

The final selection adopts the OpenMANIPULATOR-P system based on three key consid-
erations: First, the self-contained design simplifies wheelchair integration by eliminating
peripheral components. Second, the reduced weight minimizes impact on wheelchair
maneuverability. Third, the sufficient functional performance covers essential tasks in-
cluding lightweight object retrieval and interface activation. However, the official main-
tenance of this robot is likely outdated, and the compatibility issues between its ROS
packages and our other subsystems have caused integration challenges.

Design Tools:

e Ubuntu 18.04 LTS (Virtual Machine)
¢ ROBOTIS OpenMANIPULATOR-P e-manual [1]

¢ ROS Kinetic Kame with core packages (package dependencies are shown in Fig-
ure2)

¢ Official ROBOTIS repositories [2]:
— open_manipulator_p
— open_manipulator_msgs

* ROS-TCP-Endpoint is a ROS-side communication bridge provided by Unity’s Robotics
Hub.

DynamixelSDK

ROS-TCP-Endpoint

‘ open_manipulator_msg‘ L launch

[
msg
|
‘ open_manipulator_p ‘

open_manipulator_p_control_gui

open_manipulator_p_controller

open_manipulator_p_description

open_manipulator_p_libs

open_manipulator_p_teleop

robotis_manipulator l

m.

Figure 2: ROS Package Dependencies for OpenMANIPULATOR-P System

2.1.3 Depth Camera

We selected the Intel RealSense D435i depth camera due to its excellent balance of perfor-
mance, compact size, and advanced sensing capabilities. Specifically, the D435i provides
accurate depth perception with a wide field of view, enabling reliable spatial awareness
in complex environments.

2.1.4 Mixed Reality Interface System

Pose Smoothing and Hybrid Interpolation To achieve smooth yet responsive end-effector
motion, we first evaluated applying a Kalman filter to the full 6-DOF pose (position +

6

quaternion). Although the filter effectively reduced noise, directly smoothing the quater-
nion components (w, z,y, z) disrupted the unit-norm constraint and geometric consis-
tency of rotations. Consequently, we adopted a two-stage approach:

¢ Position Smoothing: Apply a standard Kalman filter to the 3D position measure-
ment z;:
Ty = Ky 2 + (1 = Ki) Zijp—1, 1)

yielding a jitter-reduced position peitered-
* Hybrid Interpolation:

— Position Command: Blend the filtered position with the previous command pye
using linear interpolation with weight o = 0.6:

Pemd = 0.6 Pfiltered T+ O-4pprev~ (2)

— Orientation Command: Preserve quaternion integrity by performing spherical-
linear interpolation between the previous orientation g, and the newly mea-
sured orientation gye.s With weight 8 = 0.3:

Gemd = Slerp(Qpreva Qmeas 03) (3)

Reset-Position Function Initially, we did not include a reset-position feature, requiring
users to manually guide the robotic arm back via hand-gesture control after each grasp.
Based on our instructor’s suggestion, we added a dedicated reset-position command that
automatically returns the arm to a predefined pose, which significantly reduces user op-
eration time and improves workflow efficiency.

2.1.5 Mobile Platform

For the integration of the robotic arm with the wheelchair, multiple design options were
evaluated to balance safety, flexibility, and usability.

* One option was directly mounting the robotic arm onto the wheelchair frame. While
this approach minimizes additional structures, it compromises safety by introduc-
ing mechanical loads directly onto the wheelchair, potentially affecting stability.

* Another option was using a fixed mounting platform without sliding capability.
Without the ability to reposition the base, the arm cannot effectively interact with
objects located at various positions relative to the user.

The final design adopts a modular aluminum-profile platform with a sliding mechanism.
This platform is constructed using standard 20x20 mm aluminum profiles for high struc-
tural strength and ease of assembly. Four wheels are installed at the bottom, provid-
ing mobility and enabling the system to be positioned alongside or detached from the
wheelchair as needed.

Sliding blocks are mounted on the top aluminum frame. The robotic arm is fixed onto the
sliding blocks. This design significantly increases the effective reach of the robotic arm
without the need for a larger or more complex arm structure.

7

2.2 Design Details
2.2.1 Customized End Effector

Form Factor Design

n
sensor, sponge

Figure 3: Final Gripper Design with Extended Curved Finger

As shown in Figure |3, The final gripper adopts a parallel gripper structure driven by a
linkage transmission mechanism. This design provides a wide and adjustable gripping
range, accommodating objects of various sizes and shapes. Sponge padding is applied
to the inner surfaces of the gripper fingers to ensure uniform contact force distribution,
increase friction, and improve grip stability, while also protecting fragile items from dam-
age.

Gripper components are fabricated using nylon material through professional 3D print-
ing. Nylon offers high tensile strength, toughness, and fatigue resistance, ensuring struc-
tural integrity and durability under repeated operational stresses.

To expand practical functionality, one gripper finger is extended and designed with a
curved tip. This modification improves accessibility to recessed or hard-to-reach control
panels and enhances precision when pressing small or closely spaced buttons, supporting
assistive tasks such as elevator and door control operation.

End-effector Control
Force-to-Voltage Conversion (FSR Circuit)

The force-sensing resistor (FSR) operates as a variable resistor whose resistance Rpsr
decreases nonlinearly with applied force F'. A voltage divider circuit (Figure 1) converts
this resistance change into a measurable analog voltage V,;:

Rfi:red
‘/ou - ‘/; : 4
! Rpsp + Rfized @)

Where:
e V,,: Supply voltage (5 V from Arduino)
* Ryizeq: Fixed pull-down resistor
* Rrspr: FSR resistance

The circuit scales the FSR’s nonlinear response into a 0 - 3.3 V range voltage output.

Servo Motor Control Logic

The gripper actuation system implements position control through a servo motor with
the Arduino Uno with Servo library.

Table 1: Robotic Arm Control Parameters

Parameter Value | Description
SERVO_PIN 9 PWM output pin
OPEN_ANGLE | 0° Fully open position
CLOSE_ANGLE | 120° | Fully closed position

Arduino Pin Connection Table

Table 2: Pin Connection Table

Component Arduino Pin | Description
Pressure Sensor | AQ Analog input for voltage measure-
ment

Servo Motor D9 PWM signal to control motor angle

LED (optional) | D13 Digital output for status display

GND GND Common ground for all components

VCC (Sensor) 5V Power supply for the pressure sensor
Unity Integration

On the Unity side, we use a C# script to:
* Open a serial port connection to the Arduino
* Read sensor data (voltage) from the Arduino

* Send string commands such as "OPEN" and "CLOSE" via serial

Key Unity Functions
* SerialPort.Open () — Opens communication.
* serialPort.WriteLine ("OPEN") — Sends the open signal.
* serialPort.ReadLine () — Reads voltage data.

In Unity, we define two hand gestures to signal close and open. Upon detection of ges-
ture, Unity sends commands via serial port to Arduino and the gripper responds accord-

ingly.
2.2.2 OpenMANIPULATOR-P Robotic Arm
Robot Operation

An controller ROS program is provided to control each joint of OpenMANIPULATOR-P
and check states of OpenMANIPULATOR-P through messages. Some key parameters for
launching the controller are listed in table:

10

Table 3: Robotic Arm Control Parameters

Parameter Value Description
use_robot_name open_manipulator_p « Defines the ROS namespace for
message routing
® Determines the manipulator’s
identifier
d ixel usb_port dev/ttyUSB*
yREmEReS-ushpot /dev/tty e U2D2 board: /dev/ttyUSB*
* OpenCR: /dev/ttyACM*
e (* = port number, eg.
/dev /ttyUSBO)
dynamixel baud rate 1000000 (default) « Default: 1 MBd (optimal)
ult: 1 MBc i
* Range: 9600-3 000 000 baud
trol- iod 0.010s (default
combrotperio s (default) e Standard: 10 ms
¢ Lower values increase CPU load
_platf t fal
Hee-pratrorm Tue/false e true: Physical hardware mode
¢ false: Gazebo simulation
it fal
Hsemoves e e Enable Movelt! planning when
true
* Requires additional configuration
planning_group_name arm Defines kinematic chain for Movelt!
trajectories
moveit_sample_duration | 0.050s Trajectory point interpolation interval

Topics & Services

The open_manipulator_p_controller has a list of published topics for checking the status
of the robot regardless of the robot’s motion. For us, the important point is to control the
robot and several most common used services are listed in table 2.

11

Table 4:

Robotic Arm Control Services

Service Msg Type Description
/goal_js_path SetJointPosition
J 5P) FK: Direct joint control
Input: Target angles + time
Controls all 6 joints
/goal_js_to_pose SetKinematicsPose .
IK solution
Input: EE pose + time
Auto-calculates joints
/goal_ts_path SetKinematicsPose .
Cartesian control
Input: Target pose + time
Straight-line motion
/goal_js_from_present | SetJointPosition
goad P J Relative FK
Input: Angle A + time
From current position
/goal_ts_frompresent | SetKinematicsPose

Relative Cartesian
Input: Pose A + time
Offset from current

12

ROS-Unity Integration

Unity Scene ROS Network
 ——
ROS Service Script < [F!OS Node} [HOS Node} [HOS Node}
.~/
S ——

ROS Subscriber Script |¢

Publish/Subscribe
.
L 4
Ty

Server Endpoint
.~/

TJ

YYY¥Y

ROS Publisher Script

F'Y

ROS
Serialized
Messages

Figure 4: ROS-Unity Communication Structure

The ROS-Unity communication bridge plays a critical role in our system because the pose
information used to control the robotic arm is generated within the Unity environment.
However, the services that execute these pose commands and control the physical robotic
arm reside on the ROS side, running on an Ubuntu system. Therefore, real-time commu-
nication is necessary to ensure that Unity can request and receive robotic actions from the

ROS backen.

The structure of this bridge is shown in Figure 4f.Communication between ROS nodes fol-
lows the traditional ROS Publish/Subscribe model, allowing for decoupled and scalable
message passing. Unity interacts with this system in real time, sending commands and
receiving feedback, making it possible to simulate, visualize, and control physical robotic
systems directly from a Unity-based application.

This architecture enables effective and synchronized bidirectional communication be-
tween Unity and ROS, essential for applications involving real-time robotic control, sim-
ulation, and user interaction through immersive interfaces like VisionPro. The communi-
cation between Unity and ROS is facilitated through a structured interface composed of
publisher, subscriber, and service scripts on the Unity side, and corresponding nodes and
a server endpoint on the ROS side.

Within the Unity Scene, three types of scripts are responsible for exchanging data with
the ROS system:

* ROS Publisher Script: Sends messages from Unity to ROS, such as robot control
commands or object positions.

* ROS Subscriber Script: Receives messages from ROS, including sensor data and
robot status, and makes them available to the Unity environment for visualization
or feedback control.

13

* ROS Service Script: Initiates service requests (e.g., SetKinematicsPoseRequest)
and processes responses from ROS, enabling more structured and request-response-
type communication.

These scripts communicate with a centralized Server Endpoint in the ROS Network,
which acts as a gateway, handling the serialization and deserialization of ROS messages.
The server endpoint further interfaces with various ROS Nodes, each responsible for
specific robotic tasks such as inverse kinematics, motion planning, or sensor integra-
tion.

2.2.3 Depth Camera

Real-time visual feedback from the robotic arm’s end-effector significantly improves user
perception and enhances precision during manipulation tasks. To achieve this functional-
ity, we mounted a high-resolution camera on the robotic arm’s end-effector and connected
it directly to the control computer using a USB 3.0 cable, ensuring reliable and low-latency
video transmission.

Within Unity, we leveraged its built-in Webcam functionality to seamlessly capture and
integrate the live video stream from the end-effector camera. The video feed was pro-
jected onto the MR interface’s canvas, allowing users wearing the Apple Vision Pro head-
set to observe real-time images directly within their Mixed Reality view.

This integrated visual feedback provided users with a precise understanding of the robotic
arm’s environment and task conditions. Consequently, it significantly enhanced the sys-
tem’s usability, accuracy, and the overall immersion experience during robotic manipula-
tion tasks.

2.2.4 Mixed Reality Interface System

To enable intuitive human-robot interaction, we designed a Mixed Reality (MR) interface
utilizing Unity along with Apple Vision Pro’s XR hand-tracking capabilities.

* Hand Skeleton Coordinate

In the Mixed Reality (MR) interface, accurately capturing the user’s hand posture
is crucial. We utilized Unity’s XR Hand Subsystem plugin, integrated with the Ap-
ple Vision Pro headset, to achieve real-time hand skeleton tracking based on visual
feedback from the MR device. This subsystem accurately identifies and tracks de-
tailed skeletal joint positions and orientations of the user’s hand. Throughout our
development process, we specifically extracted and utilized the coordinates of crit-
ical anatomical landmarks, including the wrist joint and the tips of all five fingers:
thumb, index, middle, ring, and little fingers. These skeletal joint coordinates serve
as the fundamental input to our MR interface, enabling precise gesture recognition
and subsequent robotic manipulation.

* Gesture Recognition
In order to achieve intuitive control of the robotic system, our MR interface focuses

14

on recognizing two primary hand gestures from the user: pinch and fist.

— Pinch Gesture Recognition

To accurately detect the pinch gesture, we extracted the positions of the thumb
and index fingertips obtained from the XR Hand Subsystem. Using Unity’s
built-in function, Vector3.Distance, we calculated the real-time distance
between these two fingertip coordinates. A pinch gesture is recognized only
when this calculated distance falls below a predefined threshold value, termed
PinchDistanceThreshold. This method ensures robust and responsive ges-
ture detection, enabling precise interaction such as object selection or fine ma-
nipulation in our robotic control interface.

— Fist Gesture Recognition

The fist gesture is identified by examining the positions of all five fingertips rel-
ative to the wrist position. We computed the individual distances between each
tingertip (thumb, index, middle, ring, and little fingers) and the wrist joint po-
sition using Vector3.Distance. The system recognizes the fist gesture only
when all these fingertip-to-wrist distances are simultaneously below a prede-
tined threshold. This approach ensures reliable fist gesture detection, suitable
for commands such as grasping or executing a reset function within the robotic
manipulation process.

* Pose Mapping Between User’s Hand and End-Effector
A critical challenge in developing the Mixed Reality interface was ensuring accu-
rate pose mapping between the user’s hand and the robotic end-effector, especially
considering the differences between coordinate systems used in Unity and robotic
control. We encapsulated this logic in a HandEyeMapper class with the following
steps:

— Initialization:

ho = initialHandRot, 7, = robotInitialRot, hy' = (ho)fl. (5)

— Relative Hand Rotation: Given the current hand quaternion h,,, compute

hrel = hcur & hal (6)

— Target End-Effector Rotation: Apply this relative rotation to the robot’s base ori-
entation:
T'target = Pret & 0. (7)

— Normalization: Finally normalize to avoid drift:

Ttarget (8)

Gemd = .
H T'target | ’

In addition, to reconcile left-handed Unity coordinates with the robot’s right-handed
system, we apply a component swap:

15

Wy = Wy,

Loy = Yr,

9)
Yu = —Zp,
Zy = — Ty,

ensuring that both orientation and position mappings remain consistent across co-
ordinate conventions.

Arm Control Algorithm

To ensure smooth and responsive robot motions, we first apply a Kalman filter to
the raw 3D hand-position measurements, reducing jitter and noise. The filtered
position is then blended with the previous command via linear interpolation:

Pemd = 0.6 Dfiltered T 0.4 Pprev- (10)

For orientation, we perform a spherical-linear interpolation (slerp) between the pre-
vious end-effector quaternion and the newly filtered quaternion with a weight of
0.3:

Gemd = slerp <Qpreva Gfiltered 03) (11)

This combination of Kalman smoothing and weighted interpolation strikes a bal-
ance between stability and responsiveness, yielding smooth yet timely arm move-
ments.

Gripper Control

To realize intuitive grasping and manipulation capabilities in our Mixed Reality in-
terface, we established direct communication between Unity and the robotic grip-
per’s control system through an Arduino microcontroller. Specifically, Unity was
configured to communicate with the Arduino via serial port COM16.

The control logic for the robotic gripper was implemented based on real-time de-
tection of the user’s left-hand gestures. When a pinch gesture was detected by
the Unity MR interface (indicating a grasping intent), Unity transmitted the com-
mand "CLOSE" to the Arduino over the established serial connection, triggering
the robotic gripper to close and securely grasp objects. Conversely, when the pinch
gesture ended (the user released the grasp), Unity immediately sent the "OPEN"
command, prompting the Arduino to open the gripper and release the object.

Reset Position Function

To enhance the usability and safety of the Mixed Reality robotic manipulation sys-
tem, we implemented a dedicated reset function triggered by a specific user gesture.
When the user’s right hand forms a fist gesture—detected through our Unity-based
gesture recognition system—the robotic arm automatically returns to a predefined
“reset” position.

16

This functionality is particularly beneficial upon completion of a grasping task, as it
swiftly moves the robotic arm back into a safe, easily reachable area for the user. As
a result, users can conveniently retrieve objects held by the robot without needing
complex manual repositioning or multiple gestures. By incorporating this intuitive
reset capability, we improved overall efficiency, user-friendliness, and operational
safety within our MR-based robotic manipulation system.

¢ Safety
Ensuring safe operation of the robotic system within a Mixed Reality interface was a
fundamental priority in our design. To achieve this, we implemented multiple com-
prehensive safety measures, specifically targeting potential risks associated with
robotic movements and human-robot interactions:

— Workspace Constraints: The robot’s workspace was carefully restricted through
software-defined boundaries, explicitly preventing the robotic arm’s end-effector
from entering any area occupied or reachable by the user. This ensured a clear
separation between robot operations and user activity, significantly reducing
collision risk.

— Joint Angle Movement Limits: We imposed strict limits on the allowed change
of robotic joint angles within each single command cycle. By constraining rapid
joint movements, the risk of abrupt, unsafe motions was substantially miti-
gated.

- Sequential Path Planning: Motion planning was implemented incrementally.
Only after the robotic arm closely approached its current motion planning goal
would the system compute the subsequent motion trajectory. This approach
reduced the accumulation of positional errors, thereby preventing large correc-
tive movements and enhancing overall operational stability.

Together, these multi-layered safety measures created a robust operational frame-
work, effectively minimizing risks and ensuring user safety during interactive robotic
manipulation tasks in the Mixed Reality environment.

2.2.5 Mobile Platform

The final mounting platform is constructed using 20x20 mm aluminum profiles, form-
ing a rigid rectangular frame with overall dimensions of 80 mm x 760 mm x 610 mm.
Four M6 caster wheels are installed at the base, providing both mobility and stability as
needed.

The horizontal sliding mechanism utilizes the T-slots of the aluminum profiles along the
760 mm length. Four small sliding blocks are inserted into the T-slots, and the robotic
arm’s base is fixed onto these blocks.

The platform is connected to the wheelchair using and L-shaped aluminum brackets,
ensuring secure attachment while allowing for quick and convenient removal.

17

3 Verification

3.1 Verification of Robotic Arm Functions under MR Gesture Control

To verify the functionality of the robotic arm under Mixed Reality (MR) gesture control,
we conducted a series of controlled experiments simulating typical user interactions. The
goal was to ensure that all intended functions of the robotic arm could be successfully
triggered and executed through MR hand gestures in real time.

Verification Scenarios

* Basic Positioning: Verified that the robotic arm can accurately move to target posi-
tions in 3D space based on the user’s hand movement tracked via MR.

* Grasping and Releasing: Tested the gripper’s response to pinch gestures for object
grasping and automatic release upon pinch termination.

* Orientation Adjustment: Assessed the accuracy of end-effector orientation control
through natural wrist rotations.

* Reset Function: Verified that performing a fist gesture reliably triggered the reset
behavior, returning the robotic arm to its predefined safe position.

* Safety Constraints: Confirmed that workspace boundaries and joint movement
limits effectively prevented unsafe motions during rapid hand movements.

Verification Procedure

* The user performed predefined gestures (pinch, fist, open hand) while wearing the
MR headset.

¢ Corresponding commands were transmitted to the robotic system in real time.

* Robotic arm movements, gripper actions, and system safety mechanisms were mon-
itored and logged for correctness.

Verification Results

¢ The robotic arm accurately followed hand trajectories with minimal delay and ac-
ceptable positional accuracy.

* The gripper reliably closed and opened upon detecting pinch and release gestures,
successfully performing object manipulation.

* Orientation mapping remained stable, and no abrupt or unsafe movements were
observed.

¢ The reset function consistently returned the arm to a safe position without manual
intervention.

18

* Safety measures such as workspace constraints and joint limits were successfully
enforced throughout the tests.

These results demonstrate that the robotic arm responds accurately and reliably to MR-
based gesture controls, meeting the design requirements for intuitive and safe human-
robot interaction.

3.2 Verification of Profile Box and Wheelchair Integration

To validate the effectiveness and stability of the aluminum profile box integrated with
the wheelchair, we performed dedicated structural and functional tests, focusing on en-
hancing the robotic arm’s operational reach and ensuring safe, stable interactions during
real-world use.

Verification Scenarios

* Reach Extension Test: Verified that the sliding mechanism on the profile box allows
the robotic arm base to smoothly move along the 80 cm rail, effectively extending
the arm’s reachable workspace without requiring the wheelchair to reposition.

* Locking and Stability Test: Assessed the ability to securely fix the robotic arm base
at various positions along the rail to maintain stability during operation.

* Structural Stability Test: Tested the overall stability of the profile box under static
and dynamic loading conditions while attached to the wheelchair, ensuring no sig-
nificant vibration or displacement occurs during robotic arm movements.

* Integration with Wheelchair Test: Verified that the combined system allows for
seamless mobility of the wheelchair without interfering with the profile box struc-
ture or the robotic arm’s positioning.

Verification Procedure

* The robotic arm base was manually moved along the 80 cm sliding rail to various
positions, and its maximum reachable workspace was recorded.

* The locking mechanism was engaged at multiple positions to test its effectiveness
under the full load of the robotic arm, which weighs 5.76 kg.

e Static load tests were performed by operating the robotic arm to reach various an-
gles and extensions while monitoring structural stability.

* Dynamic tests involved moving the wheelchair over different floor surfaces with the
robotic arm positioned at various locations along the rail to assess stability during
mobility.

19

Verification Results

* The sliding mechanism operated smoothly with low resistance, and the robotic
arm’s effective workspace was significantly extended when repositioned along the
rail.

* The locking system reliably held the base in place during robotic arm operations,
with no observable slippage, even when the arm was fully extended or positioned
at challenging angles.

* The profile box exhibited strong structural integrity, remaining stable and vibration-
free under the full 5.76 kg load during both static and dynamic tests.

* Wheelchair mobility was not hindered by the additional profile box structure, and
the integrated system maintained excellent stability during normal movement and
terrain changes.

These tests confirm that the profile box effectively expands the operational workspace
of the robotic arm while maintaining structural safety and seamless integration with the
wheelchair platform.

3.3 Verification of Pressure Sensor and Communication Functionality

To validate the correct functionality of the pressure sensor and ensure reliable commu-
nication between Unity and Arduino, we conducted focused experiments covering both
sensor signal acquisition and two-way serial communication.

Verification Scenarios

* Voltage Reading from Pressure Sensor: Verified that analog pressure sensor read-
ings are correctly captured by Arduino and transmitted to Unity for real-time dis-

play.
* Unity-Arduino Serial Communication: Verified reliable two-way serial communi-
cation for both sensor data transmission and gripper control commands.

Verification Procedure
¢ The pressure sensor was connected to the Arduino analog pin AOQ.

* Arduino continuously read analog voltage values, converted them to digital form,
and transmitted the data to Unity over the serial port.

¢ Unity received and displayed the real-time voltage readings in the user interface.

¢ For command verification, Unity sent "OPEN" and "CLOSE" commands to Arduino
based on user interactions or threshold triggers.

* Arduino responses were verified by both toggling onboard LEDs and controlling
the robotic gripper accordingly.

20

Verification Results

¢ Unity successfully displayed real-time voltage values corresponding to the pressure
applied on the sensor.

* Applying pressure resulted in clear and immediate changes in the displayed voltage
readings.

¢ Unity successfully sent control commands to Arduino, and the Arduino reliably
executed the "OPEN" and "CLOSE" commands.

¢ All communication functions were validated to be stable and responsive without
noticeable delays or data loss.

These tests confirm that the pressure sensor reliably captures voltage data, and the com-
munication between Unity and Arduino supports both real-time data transfer and precise
gripper control commands, meeting the design requirements of the system.

21

4 Costs

Table 5: Labor Cost Analysis

Item Description | Rate/Price (RMB) | Hours/Qty | Subtotal (RMB)
Yinuo Yang 50 (per hour) 250 12,500
Yunyi Lin 50 (per hour) 250 12,500
Xingru Lu 50 (per hour) 250 12,500
Yilin Wang 50 (per hour) 250 12,500
Total Labor Cost 50,000

Table 6: Parts Cost Analysis

Item Description Rate/Price (RMB) | Hours/Qty | Subtotal (RMB)
Wheel Chair 250 250
24V, 15 A power supply 73 1 73
Thin Film Pressure Sensor 300 1 300
Single-Channel Module 300 1 300
Robotic Arm Bracket 300 1 300
End Effector 200 1 200
USB 3.2 Data Cable 30 1 30
Total Parts Cost 1,453

22

5 Conclusions

5.1 Accomplishments

We successfully completed a workflow that enables wheelchair users to perform simple
tasks such as grabbing lightweight objects and pressing buttons. The camera provides
views from different angles through the VisionPro, while the VisionPro’s built-in camera
captures the user’s hand gestures. Based on the detected gesture types, the robotic arm
can move in real time to reach the correct end-effector pose, and the gripper opens and
closes accordingly to complete the grasping task. The pressure sensor at the end-effector
effectively signals the robotic arm to stop moving, preventing violent collisions.

5.2 Uncertainties

e ROBOTIS has stopped support of OpenMANIPULATOR-P, this can risk our sys-
tem’s long-term maintainability.

* The robotic arm may exhibit unstable behavior when encountering kinematic sin-
gularity configurations.

5.3 Future Work

¢ Integration of Electrically Actuated Sliding Rail Controlled via Unity Hand Ges-
tures
To further enhance the system’s usability and intuitiveness, the current manual slid-
ing rail will be upgraded to an electrically actuated version. This will enable seam-
less control of the manipulator’s horizontal movement directly through hand ges-
tures recognized by the Unity interface, providing a more natural and accessible
user experience, especially for users with limited mobility.

¢ Development of a More Versatile Soft Gripper
The existing rigid parallel gripper will be replaced with a soft robotic gripper to
improve adaptability when handling objects of various shapes and materials. With
this upgrade, the manipulator will be capable of safely grasping a wider range of
irregular and fragile objects, expanding its functional applications in everyday tasks
and enhancing user autonomy.

5.4 Safety

Robotic Arm Operation Safety: Our system includes a robotic arm extending from the
rear of the wheelchair, which introduces potential risks if not properly designed. To avoid
these risks, we implement the following safeguards:

Hardware/Software Safety: The arm will remain folded when inactive, ensuring it does
not occupy additional space beyond the wheelchair and cause potential collision.

Speed Constraints: Arm motion speed will be limited to prevent high-impact collisions.

23

Safe Operation Limits: The Open Manipulator-P arm will be programmed to operate
within predefined safety thresholds for users and bystanders. Specifically, it will avoid
the space that the user occupies. Furthermore, Apple Vision Pro’s depth and spatial
awareness capabilities will be utilized to enhance situational awareness and prevent un-
intended interactions.

Privacy and Data Protection: User privacy is a critical consideration in our system, par-
ticularly given the use of real-time cameras and Mixed Reality (MR) technology. Our
system does not store or transmit user data to any external servers. All video process-
ing and interaction tracking occur locally. The rear-facing camera feed is processed in
real time solely for user awareness and robotic arm control. Similarly, Apple Vision Pro’s
hand-tracking data is processed locally, without transmitting biometric or movement data
beyond the device[3].

5.5 Ethics
5.5.1 Privacy and Data Protection
Aligning with IEEE/ACM principles, our system prioritizes user privacy:

Local Processing: No user data (camera feeds, hand-tracking biometrics) is stored or
transmitted externally.

Real-Time Use Only: Rear-facing camera data is processed locally solely for arm control
and user awareness [3].

5.5.2 User Autonomy and Accessibility

Inclusive Design: The MR interface offers intuitive controls, respecting human dignity[4],
[5]

Safety in Design: The MR interface ensures frontal visibility is never obstructed during
use.

Transparency: Users will be informed of system capabilities/limitations to manage ex-
pectations.

24

References

[1]

2]

3]
[4]
[5]

ROBOTIS. “Openmanipulator-p - specification.” [Accessed April. 22, 2025], ROBO-
TIS e-Manual. (Accessed: Mar. 14, 2025), [Online]. Available: https: / / emanual .
robotis.com/docs/en/platform/openmanipulator_p/specification/#specifications.
ROBOTIS. “ROS Packages for OpenMANIPULATOR-P.” [Accessed April. 22, 2025].
(2020), [Online]. Available: https:/ /github.com /ROBOTIS-GIT/open_manipulator_
p/tree/47b99deeb644ef94b8c96a40c63970671e4a8519.

Apple. “Apple Vision Pro Privacy.” [Accessed March. 22, 2025]. (2023), [Online].
Available: https:/ /www.apple.com/privacy/.

IEEE. “IEEE Code of Ethics.” [Accessed April. 14, 2025]. (2020), [Online]. Available:
https:/ /www.ieee.org/about/corporate/governance/p7-8.html.

ACM. “ACM Code of Ethics and Professional Conduct.” [Accessed April. 14, 2025].
(2018), [Online]. Available: https:/ /www.acm.org/code-of-ethics.

25

https://emanual.robotis.com/docs/en/platform/openmanipulator_p/specification/#specifications
https://emanual.robotis.com/docs/en/platform/openmanipulator_p/specification/#specifications
https://github.com/ROBOTIS-GIT/open_manipulator_p/tree/47b99deeb644ef94b8c96a40c63970671e4a85f9
https://github.com/ROBOTIS-GIT/open_manipulator_p/tree/47b99deeb644ef94b8c96a40c63970671e4a85f9
https://www.apple.com/privacy/
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.acm.org/code-of-ethics

	Introduction
	Function
	Block Diagram
	High-Level Requirements List

	Design
	Design Procedure
	Customized End Effector
	OpenMANIPULATOR-P Robotic Arm
	Depth Camera
	Mixed Reality Interface System
	Mobile Platform

	Design Details
	Customized End Effector
	OpenMANIPULATOR-P Robotic Arm
	Depth Camera
	Mixed Reality Interface System
	Mobile Platform

	Verification
	Verification of Robotic Arm Functions under MR Gesture Control
	Verification of Profile Box and Wheelchair Integration
	Verification of Pressure Sensor and Communication Functionality

	Costs
	Conclusions
	Accomplishments
	Uncertainties
	Future Work
	Safety
	Ethics
	Privacy and Data Protection
	User Autonomy and Accessibility

	References

