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Abstract

We have developed a non-contact respiratory monitoring and visualization system that
harnesses commodity Wi-Fi channel state information (CSI) to detect and display human
breathing patterns in real time. Our prototype comprises two tightly integrated subsys-
tems. The Wi-Fi sensing module uses Intel AX200 adapters to capture raw CSI, then
applies a cascade of signal-processing steps—including CSI extraction, antenna-ratio dy-
namic extraction, histogram-based phase correction, and Savitzky–Golay smoothing—to
isolate inhale and exhale cycles with minimal environmental interference. The display
module employs a Raspberry Pi to map extracted respiratory waveforms onto two chest
models equipped with LED (one driven by CSI-derived predictions, the other by a wear-
able belt ground truth) via 1kHz PWM, producing smooth fade-in/fade-out transitions
synchronized with each breath.

In a laboratory trial against a commercial piezoelectric respiration belt, our system achieved
a Pearson correlation coefficient of 0.92 and an RMSE of 0.4bpm for respiratory-rate esti-
mation. This work demonstrates the feasibility of low-cost, non-contact breathing moni-
toring with intuitive visual feedback and lays the groundwork for future enhancements in
analog pre-amplification, real-time streaming, and multimodal vital-sign recognition.

Keywords: Wi-Fi CSI; Non-Contact Sensing; Respiratory Monitoring; Signal Processing;
LED Visualization
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1 Introduction

1.1 Problem & Solution Overview

1.1.1 Problem Description

With fertility rates falling and young people under increasing pressure to work, more and
more older people are now living at home alone. In other words, many elderly people are
currently in a state of unattended care at home, and if they faint at home due to a sudden
illness, the consequences are incalculable. Therefore, a big challenge of the elderly care
problem today is how to accurately monitor the health of the elderly in the home envi-
ronment and timely feedback when problems occur and then take appropriate measures.
Nowadays, most monitoring systems rely on specialized hardware like wearable sensors
or cameras. These subjects, however, could be costly and inconvenient for older people
to use. In that case, WiFi signal, as a ubiquitous object around our lives, is a good choice
to provide non-contact sensing which cannot be achieved by traditional monitoring sys-
tems. Despite the convenience that WiFi signals convey, it is still a problem that extracting
and interpreting Channel State Information (CSI) accurately and making use of them to
detect subtle human activities such as breathing and heartbeats with the interference from
the outside environment.
To be specific, two main problems appear in the traditional systems. One is unavoidable
physical contact like the chest straps it contains. Although the existing medical technol-
ogy has minimized the discomfort caused by such contact, they are unsuitable for some
certain applications and people. Another issue that conventional methods have is the
cost and limited accessibility. Some wearable health monitoring devices are often ex-
pensive and even if they can afford it. Taking a burden on the body always affects and
restricts their normal activities. Then for the WiFi-based sensing method, the major prob-
lem is concentrated on the environmental interference. The signal might be influenced
by noise and dynamic surroundings easily, making it hard to extract exact physiological
signals.

1.1.2 Solution

Respiratory diseases are one of the biggest threats to the health of the elderly. Real-time
acquisition of human respiratory information is extremely important for health manage-
ment and risk warning and helps to diagnose respiratory diseases. The aim is to achieve
accurate, real-time, non-contact monitoring of human respiratory conditions in the home
environment and provide convenience for health management and old-age care.
The approach will extract fine-grained CSI data from a WiFi transmitter-receiver setup.
The signal will reflect subtle physiological activities like breathing and heartbeats. By an-
alyzing the amplitude and phase variations of signals when they interact with the human
body, we can infer the breath or heartbeat rates. To make it visually intuitive, we will
map the data to some LED indicators lying on a chest model and these lights could flash
in sync with the measured activities frequency. Moreover, a ground truth measurement
system is employed to enable accurate comparison. This system will use a respiration or
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Figure 1: Visual aid

heartbeat belt to provide accurate physiological data for validation with another group of
LED indicators.
To implement our system, a WiFi sensing network is needed. We will equip this network
with AX200 cards for both transmitter and receiver to achieve CSI extraction. During
the experiment process, the receiver will take the CSI data by Ubuntu 22.04 LTS and Pi-
coScenes software and then apply filtering and signal processing algorithms to reduce
environmental noise. The processed activity frequency will then be used to modulate
LED flashing frequency, making the experiment visual. In addition, a ground truth that
serves as a control group will exist and it will use the belt data to ensure reliability.

The whole process without ground truth is shown in Figure 1. A WiFi transmitter (Sender)
will emit signals, and then these signals will be affected by the movements of the tester
before being accepted by a WiFi receiver (Receiver). The receiver will then process the CSI
to analyze the tester’s behavior patterns. Finally, this extracted data will be mapped onto
a chest model with some LED indicators, visually representing the behavior rate.

1.2 Functionality

• The system should detect and report breathing waveforms using Wi-Fi CSI data
with an end-to-end latency not exceeding 200 milliseconds, ensuring responsive
behavior visualization. Real-time performance is essential to support non-contact
and continuous respiration monitoring.

• The system should correctly identify inhalation and exhalation cycles and reflect
them through synchronized LED brightness changes, as verified against ground-
truth signals. This ensures accurate visual expression of actual breathing activity.

• The LED control module must maintain a 3.3V (±10%) output under load when
driving the LEDs, guaranteeing electrical stability for reliable visual feedback. Sta-
ble voltage is necessary for consistent system operation and safety.

• The system should demonstrate observable fade-in and fade-out LED transitions
in real time that correspond to inhalation and exhalation phases. Smooth visual
transitions make breathing states easily distinguishable.

2



1.3 Block Diagram and Subsystem Overview

Our system is organized into two major components: the Wi-Fi Sensing System and the
Display System, each of which contains several interconnected subsystems that collabo-
ratively enable real-time non-contact respiration monitoring using Wi-Fi signals.

The Wi-Fi Sensing System consists of three core subsystems: the Wi-Fi Signal Trans-
mission Subsystem, the CSI Extraction Subsystem, and the Human Action Recognition
Subsystem. The Wi-Fi Signal Transmission Subsystem includes a Wi-Fi chipset and a
tester, forming the communication path through which raw Wi-Fi signals are transmit-
ted and perturbed by human movement. These perturbed signals are then captured and
processed by the CSI Extraction Subsystem, which performs time-domain filtering, digi-
tal intermediate frequency channel filtering, inverse OFDM transformation, and channel
equalization to extract meaningful CSI signal. The resulting CSI data is passed to the
Human Action Recognition Subsystem, where dynamic decomposition and rule-based
classification are applied to detect human respiration patterns. This entire signal flow
and functional decomposition is illustrated in Figure 2, the top-level system block dia-
gram.

Figure 2: Block Diagram

The Display System comprises the Power Subsystem and the Chest Model Subsystem.
The Power Subsystem supplies regulated 3.3V power to the entire hardware chain, in-
cluding the PCB and LED arrays. The Chest Model Subsystem includes two LED-equipped
chest models: one driven by the predicted signal extracted from CSI and the other dis-
playing ground-truth data from a respiration sensor. This enables a clear visual compar-
ison between real and predicted breathing activity, enhancing evaluation accuracy. The
interconnection between CSI output and the chest models is also shown in Figure 2.
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2 Design

2.1 Physical Design

The physical design of our team is shown in Figure 3. The main components include a
transmitter and receiver equipped with WiFi signal amplifiers. The Raspberry Pi con-
troller receives both the CSI-derived respiratory features from the WiFi sensing subsys-
tem and the ground truth signals, and translates them into real-time LED control signals
for visualizing respiratory activity. At the same time, two chest models are placed in
the surroundings, with LED lights and counters to visualize the results. The figure does
not depict the specific experimental device of ground truth, which needs to tie a belt to
the tester’s body and then plug the USB flash drive into the Receiver to output the im-
age.

As shown in the figure, the receiver is connected to the Raspberry Pi controller, which
receives both the WiFi-based sensing signal and the ground-truth respiratory signal. The
controller processes these inputs and controls the blinking behavior of the LED lights
to reflect the tester’s breathing rate in real time. To ensure the reliability of the test re-
sults, the ideal testing environment should be free from surrounding interference. Specif-
ically, other individuals should not be close to the tester, as this may affect the accuracy of
the WiFi sensing. Additionally, the distance between the tester and the test table should
be maintained at 2–5cm. During the testing process, the tester should avoid large body
movements and speaking loudly, and should maintain a natural breathing rhythm under
normal resting conditions. These precautions help ensure more accurate and consistent
signal acquisition.

Figure 3: Physical Design
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2.2 WiFi Sensing System

2.2.1 WiFi Signal Transmission Subsystem

The WiFi Signal Transmission Subsystem forms the foundation of the entire wireless sens-
ing infrastructure, establishing a stable and high-fidelity communication channel that is
essential for accurate signal acquisition and processing. To support flexible deployment
in diverse indoor environments, the system is designed to operate in both 2.4GHz and
5GHz dual bands, offering resilience against interference and improving overall signal
quality. In order to guarantee the accuracy of channel state information (CSI) acquisi-
tion, the subsystem must maintain a minimum signal-to-noise ratio (SNR) of 20dB, en-
suring that minor environmental perturbations—such as those caused by human motion
or breathing—can be captured reliably.

Moreover, real-time performance is a critical requirement for this subsystem, especially
in latency-sensitive applications like respiratory monitoring. As such, the end-to-end sig-
nal transmission latency is constrained to be under 100 milliseconds, enabling the rapid
delivery of CSI data to downstream processing units.

To safeguard data integrity, it is imperative that the operating environment remains free
from extraneous wireless interference, which could distort the raw Wi-Fi signals or in-
troduce unwanted noise into the CSI. This includes minimizing the presence of active
devices on the same channel and controlling the electromagnetic environment.

Equally important is the subject control during measurements. To ensure that the ex-
tracted CSI patterns are solely attributed to the target individual’s micro-movements (e.g.,
chest displacement due to breathing), the environment should have less interference. This
restriction is vital for reducing cross-subject interference and ensuring that the resulting
data reflects a clean, interpretable signal profile corresponding to a single individual’s
actions.

Together, these stringent requirements enable the WiFi Signal Transmission Subsystem
to provide high-precision, low-latency, and interference-resilient CSI streams—laying the
foundation for subsequent modules in the Wi-Fi sensing system to perform accurate sig-
nal decomposition and human activity recognition.

2.2.2 CSI Extraction Subsystem

The CSI Extraction Subsystem is a critical component responsible for accurately translat-
ing raw WiFi signals into precise CSI data necessary for further analysis. To achieve this,
the subsystem incorporates several sophisticated signal processing modules, including
Time Domain Filtering, Digital IF Channel Filtering, Inverse OFDM transformation, and
Channel Equalization.

Time Domain Filter

The first processing stage involves a time domain filter, which significantly enhances sig-
nal integrity by suppressing temporal noise and interference. This filter operates by se-
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Figure 4: CSI Extraction Process

lectively attenuating frequencies outside the desired band, thus preserving signal com-
ponents essential for accurate CSI extraction. Implementing such filters helps maintain
consistency in the extracted CSI, particularly under varying environmental conditions,
leading to robust and stable data acquisition for downstream processing.

Digital IF Channel Filter

Following time domain filtering, the digital Intermediate Frequency (IF) channel filter
further refines signal quality. It operates digitally to isolate the intermediate frequencies
required for channel state information extraction. The filter removes residual out-of-band
noise and interference that could distort the CSI measurements. Digital IF filtering en-
sures a high signal-to-noise ratio (SNR), critical for maintaining the precision of CSI data
in high-density signal environments.

Inverse OFDM

Orthogonal Frequency Division Multiplexing (OFDM) is fundamental to WiFi systems
due to its resilience against multipath fading. In the CSI Extraction Subsystem, Inverse
OFDM (IOFDM) plays a pivotal role. This module converts frequency-domain data re-
ceived from WiFi transmissions back to the time domain. This transformation is essential
as it facilitates detailed channel characterization by converting CSI data into a form suit-
able for precise temporal analysis, thereby enabling accurate detection of subtle variations
caused by human movements.

Channel Equalization

Channel equalization is the final yet crucial step in the CSI extraction process. Due to
multipath propagation and various hardware imperfections such as IQ imbalance, sig-
nals undergo amplitude and phase distortions. Channel equalization corrects these dis-
tortions, aligning the received signal closer to the original transmitted state. Techniques
such as Minimum Mean Square Error (MMSE) equalization are employed to minimize
error, enhancing the accuracy and reliability of the extracted CSI.
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The MMSE equalizer coefficients are calculated as follows:

WMMSE = (HHH + σ2
nI)

−1HH (1)

Where:

• WMMSE is the weight matrix for the MMSE equalizer.

• H represents the channel matrix, describing amplitude and phase distortions intro-
duced by the wireless channel.

• HH denotes the Hermitian transpose (conjugate transpose) of matrix H .

• σ2
n is the noise power.

• I is the identity matrix with the same dimensions as HHH .

Equalization ensures the fidelity of CSI data, which directly influences the subsystem’s
ability to perform sensitive human action recognition and environmental sensing tasks.

Through the seamless integration of these advanced signal processing techniques, the
CSI Extraction Subsystem reliably delivers high-quality channel state information, thus
underpinning the effectiveness of the entire WiFi sensing system.

2.2.3 Human Action Recognition Subsystem

The Human Action Recognition Subsystem is designed to transform raw CSI data into
clear and meaningful features that reveal subtle human actions such as respiration. The
system’s input, continuously captured CSI measurements, is first managed using a circu-
lar buffering mechanism that ensures low-latency storage of the most recent data. This
guarantees that the processing pipeline always operates on up-to-date CSI signals while
keeping the memory usage under control. Next, the subsystem computes the ratio be-
tween CSI readings obtained from two antennas. This operation effectively cancels out
static multipath effects and common-mode noise, isolating the dynamic component that
corresponds to small-scale movements of the human body. Given the intrinsic challenges
in commercial WiFi systems—such as abrupt phase jumps caused by hardware-induced
phase ambiguity—the subsystem employs a dedicated phase correction step. This step
uses a histogram-based method and complex rectification to resolve the two-way (bi-
nary) phase ambiguity, thus restoring the continuity of the phase information. Finally,
a Savitzky–Golay filter is applied to the CSI ratio waveform to attenuate high-frequency
noise while preserving the low-frequency, periodic characteristics inherent to respiratory
movements. As a result, the output of the Human Action Recognition Subsystem can
be either a clean, smoothed waveform that faithfully represents the underlying human
signal or an estimation of the periodic frequency of the action (e.g., the respiration rate).
This end-to-end process enables reliable detection and monitoring of human physiologi-
cal activities based solely on the analysis of commodity WiFi CSI data.
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Step1: Circular Buffering Real-time CSI Data

In this initial step, the system employs a circular buffering mechanism to manage real-
time CSI data with low latency. The primary goal of using a circular buffer is to en-
sure that the CSI management process remains both efficient and responsive. A fixed-
length buffer is continuously updated with the most recent CSI measurements, and once
it reaches capacity, newly received data immediately overwrite the oldest entries. This
design choice is critical for achieving low-latency processing, as it eliminates the need for
time-consuming memory reallocation or data shifting operations, thereby enabling rapid
access to fresh data.
The circular buffer not only provides an efficient way to continuously store incoming CSI
measurements but also maintains a stable time-window that captures the signal’s tem-
poral dynamics. This persistent update facilitates the detection of subtle low-frequency
variations. By consistently working with the most current set of CSI data, the system
can promptly capture transient events and changes in the wireless channel, ensuring that
processing modules downstream can operate on the latest information without delay.
Furthermore, the circular buffering approach optimizes memory usage by constraining
the stored dataset to a predetermined size. This controlled memory footprint prevents
excessive resource consumption while still delivering the necessary temporal context for
accurate feature extraction. In sum, the circular buffering mechanism is designed to un-
derpin real-time, low-latency CSI data management. It strikes a balance between ensuring
a timely response to signal changes and maintaining data continuity, ultimately laying a
robust foundation for subsequent steps in processing.

CSI Data Input Circular Buffer Processing Module
Inflow Latest Data

Overwrite

Step2: Obtaining Dynamic Component by CSI Ratio

In this step, the system exploits the ratio of CSI readings from two antennas to isolate the
dynamic component induced by subtle human motion (e.g., respiration) while suppress-
ing the static multipath effects from the environment, as proposed by [1]. Let H1(f, t) and
H2(f, t) denote the complex CSI measurements from two antennas at frequency f and
time t. These measurements can be modeled as

Hi(f, t) = e−jθoffset

[
Hs,i(f, t) + Ai(f, t)e

−j
2πdi(t)

λ

]
, i = 1, 2,

where Hs,i(f, t) represents the static multipath components, Ai(f, t) is the amplitude of
the dynamic (motion-induced) component, di(t) is the time-varying path length affected
by body movement, λ is the wavelength, and e−jθoffset is the common phase offset caused
by unsynchronized hardware.

Since both antennas share the same radio frequency oscillator, the phase offset cancels out
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Figure 5: Comparison of three amplitude waveforms when a subject moves further away.
Obviously, the ratio of amplitude outperforms the other two raw amplitude waveforms
for its clear fluctuation caused by the movements.

when the ratio is taken:

R(f, t) =
H1(f, t)

H2(f, t)
=

Hs,1(f, t) + A1(f, t)e
−j

2πd1(t)
λ

Hs,2(f, t) + A2(f, t)e
−j

2πd2(t)
λ

.

Assuming that the difference between the dynamic path lengths is approximately con-
stant,

d2(t) ≈ d1(t) + ∆d,

the above expression can be rewritten as

R(f, t) =
Hs,1(f, t) + A1(f, t)e

−j
2πd1(t)

λ

Hs,2(f, t) + A2(f, t)e
−j 2π∆d

λ e−j
2πd1(t)

λ

.

By dividing the numerator and the denominator by e−j
2πd1(t)

λ , we obtain

R(f, t) =
A1(f, t) +Hs,1(f, t)e

j
2πd1(t)

λ

A2(f, t)e
−j 2π∆d

λ +Hs,2(f, t)e
j
2πd1(t)

λ

.

This formulation effectively cancels common factors—such as the random phase offset
and shared static multipath effects—thereby accentuating the small variations in d1(t) due
to human motion. As a result, the CSI ratio R(f, t) primarily reflects the dynamic changes
(e.g., the minute chest movements during breathing) and generally appears as a circular
or arc-like trajectory in the complex plane when the displacement is small (typically a
fraction of the wavelength).

In summary, by taking the ratio of two CSI measurements, the system eliminates common-
mode noise and enhances sensitivity to the dynamic component. The amplitude of the
ratio represents the relative strength of the signals, while its phase encodes the subtle
motion-induced changes. This makes the CSI ratio a robust metric for capturing and pro-
cessing the dynamic variations associated with human respiration.

Step3: Phase Correction

As noted in [2], [3], commercial WiFi devices suffer from inherent hardware impairments
that lead to abrupt phase jumps in the measured CSI data. In particular, cards such as the
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Intel AX200 typically exhibit a binary phase ambiguity. This phenomenon arises largely
due to the behavior of the phase-locked loop (PLL) in the receiver chain. Specifically, the
PLL tends to lock onto the nearest 180° phase, leading the measured phase θ̂ to adopt one
of two values:

θ̂ = θ + kπ, k ∈ {0, 1},
where θ represents the true phase and k = 1 indicates an undesired phase jump by π.
Such discontinuities distort the trajectory of the CSI ratio in the complex plane, making it
difficult to discern the subtle phase variations caused by human motions.

To mitigate this ambiguity, the method exploited in our project utilizes a histogram-based
and complex rectification approach [4]. Over a short time window, the measured phase
differences are aggregated into a histogram. Typically, the histogram reveals a bimodal
distribution with two dominant peaks corresponding to θ and θ + π. By identifying the
valley between these two peaks, a decision boundary θv is determined. Then, each CSI
sample represented by its complex value z = Aejθ̂ is corrected by applying a simple
mapping:

z̃ =

{
z, if θ̂ ≤ θv,

−z, if θ̂ > θv.

This operation effectively “flips” the samples where a π jump has occurred, thereby restor-
ing the continuity of the phase. The corrected phase θ̃ then reflects a smoother variation
over time, which is essential for capturing the low-amplitude human motion signal.

Furthermore, when the corrected CSI data are plotted in the complex plane, they are
expected to form a continuous circular arc. Any residual discontinuities due to phase am-
biguity would interrupt this arc, but the combination of histogram division and complex
rectification ensures the recovered phase dynamics are consistent with the expected be-
havior of the dynamic component. Overall, this phase correction step is crucial for elim-
inating the distortions caused by the hardware-induced phase jumps and for enabling
reliable extraction of the subtle motion-induced signal variations.

Step4: Filter Smoothing

To suppress high-frequency noise and to robustly extract the subtle human motion signal
embedded in the CSI ratio, the system employs a Savitzky–Golay (S-G) filter. The S-G
filter is a polynomial smoothing technique that works by fitting a low-degree polynomial
to successive segments of the data using linear least squares. For each data point, the
filter computes a weighted average of its neighbors, where the weights are derived from
the fitted polynomial, thereby preserving important features (such as peak height and
waveform shape) better than simple moving average filters.

Mathematically, suppose the original signal is represented by a set of equally spaced
points yi. The S-G filter calculates the smoothed value ŷi by convolving the original signal
with a set of coefficients ck:

ŷi =
m∑

k=−m

ck yi+k,

10



Figure 6: The process of finding the division boundary through histogram dividing and
complex rectifying method, from [4]

where 2m + 1 is the size of the sliding window and the coefficients ck are computed by
fitting a polynomial P (t) of degree p to the data points in the window:

P (t) = a0 + a1t+ a2t
2 + · · ·+ apt

p.

The coefficients are chosen such that the squared error between the polynomial and the
actual data over the window is minimized. In effect, the filtering operation can be seen as
a convolution, where the filter’s impulse response is calculated from the solution of the
linear least-squares problem.

One of the key advantages of the S-G filter is its ability to preserve the essential shape
characteristics of the waveform—such as the amplitude and relative locations of peaks
and valleys—while effectively reducing high-frequency fluctuations. This property is es-
pecially critical in our application because the respiratory-induced variations in the CSI
ratio are often of very low amplitude and can be easily masked by noise. By preserving
these subtle characteristics, the filter ensures that subsequent possible steps, like peak de-
tection and motion rate estimation, can operate on a signal that accurately reflects the true
physiological motion.
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Figure 7: Flowchart of Human Action Recognition Subsystem
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2.3 Display System

2.3.1 Power Subsystem

The design of Power Subsystem revolves around a Raspberry Pi 4B, which directly con-
trols two LED indicators mounted on the chest model. These LEDs provide real-time vi-
sual feedback of respiratory activity—one reflecting measurements from a ground truth
belt sensor, and the other based on data derived from a WiFi-based sensing system.

Rather than supplying constant DC voltage through external regulators, both LEDs are
driven by the Raspberry Pi’s GPIO pins using software-based pulse-width modulation
(PWM) at 1 kHz. The Raspberry Pi receives breathing-related input signals, processes
them into normalized intensity values, and maps them to PWM duty cycles to control
LED brightness. As a result, the brightness of each LED varies over time in accordance
with the corresponding respiratory signal.

Although the GPIO pins output a peak voltage of 3.3 V, the effective voltage applied to
the LEDs depends on the instantaneous PWM duty cycle. This results in a dynamically
modulated average voltage that reflects the intensity of each breath. The typical average
current remains well within the GPIO pin’s operating limits (generally under 20 mA per
channel), eliminating the need for dedicated current-limiting hardware.

Figure 8: Power Subsystem: Raspberry Pi-controlled dual-LED breathing visualization

This simplified power subsystem enhances integration, reduces hardware complexity,
and ensures reliable long-term operation. By directly leveraging the Raspberry Pi’s na-
tive capabilities, the design achieves real-time, data-driven LED modulation without ad-
ditional power regulation circuitry.

2.3.2 Chest Model Subsystem

The Chest Model Subsystem visually represents human action through LED modules
installed on a wearable chest cavity model, providing tangible feedback for both ground-
truth (i.e., the tester’s actual physiological behavior) and predicted (i.e., the monitored
system’s recognized) signals. The LED modules are arranged to simulate human breath-
ing and are individually addressable to reflect the strength of detected respiratory activity
in real time. One module corresponds to the ground-truth belt signal, while the other is
driven by the WiFi sensing output. These two modules are independently affixed to the

13



left and right sides of the chest model, allowing clear visual comparison between actual
and predicted respiratory behaviors.

Each LED module is composed of a single high-brightness red LED, a 1 kΩ current-
limiting resistor, and a 3-pin header (IN, VCC, GND). The module receives a PWM signal
from the Raspberry Pi’s GPIO pin (IN), modulating LED brightness according to the in-
put breathing signal. The entire circuit operates at 3.3 V logic level and draws minimal
current, making it suitable for compact embedded deployments.

The schematic and PCB layout of the LED module are shown in Figure 9.

Figure 9: Schematic and PCB Layout of the LED Module

The system must update the LED brightness in precise synchronization with the detected
inhalation and exhalation events, and the LEDs should be sufficiently bright for clear
observation under typical indoor and outdoor lighting conditions.

Regarding the specific chest model, we originally intended to use 3D printing technology
to fabricate a custom enclosure (Figure 10). However, the printed model was found to be
too large for convenient use and transport. As a result, we opted for a prefabricated plastic
chest model with a controlled width and height under 40 cm to maintain portability.

Figure 10: Chest Model
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3 Cost and Schedule

3.1 Cost Analysis

Table 1: Project Cost Breakdown

Category Parts Price (RMB)

Device Lenovo V310-15 900

Physical Model

Intel Ax200*2 115

EDUP external antenna*2 108

Aodeimao IPEX converter*4 24

Chest model*2 60

LED*3 30

Counter*2 10

Acrylic plates*5 50

Stainless steel 304 damped hinges*12 28

Power Supply Raspberry Pi 4b OpenCV 400

Labor 4 people * 80 hours * 75 RMB/hour 24000

Total 25725
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3.2 Schedule

Table 2: Project Schedule

Date Yukai Han Qiyang Wu Xin Chen Xuanqi Wang

2/21

Project back-
ground research;
study related
work in non-
contact sensing

Initial investi-
gation of CSI
extraction hard-
ware

Literature review
on CSI signal pro-
cessing techniques

Review WiFi hard-
ware interfaces
and power supply
requirements

2/28
Draft block dia-
gram and system
overview

Identify feasible
chipset (AX200)
and CSI tools

Design initial
circular buffer al-
gorithm and data
handling pipeline

Start power sub-
system schematic
and PCB planning

3/7 Prepare initial sys-
tem proposal

Test PicoScenes
CSI extraction
with testbed

Build CSI signal
simulation script
in MATLAB

Evaluate power
requirements
and LED driver
components

3/14

Contribute to vi-
sual aid and re-
fine system archi-
tecture

Validate CSI ex-
traction latency

Develop initial fil-
tering and phase
correction scripts

Design power
module block di-
agram and circuit
schematic

3/21

Refine chest model
design, start 3D
model considera-
tions

Define WiFi
sensing system
requirements

Test noise levels in
simulated CSI and
begin phase un-
wrapping method

Simulate power
supply circuit
and test voltage
stability

3/28
Finalize system
proposal submis-
sion

Configure Ubuntu
and PicoScenes on
AX200 setup

Implement basic
data smoothing
functions; begin
debugging

Create LED driver
PCB design and
footprint layout

4/4

Procure hardware
(AX200, antennas,
LED, power mod-
ule)

Test real-world
CSI data collection

Implement and
benchmark
Savitzky-Golay
filter

Finalize compo-
nent BOM and
order test boards

4/11 Finalize chest
model structure

Verify dual-band
WiFi signal stabil-
ity

Integrate buffer-
ing, filtering and
initial visualiza-
tion

Complete PCB
prototype for LED
and power system

16



Date Yukai Han Qiyang Wu Xin Chen Xuanqi Wang

4/18

Design appropri-
ate surroundings
for whole testing
system

CSI extraction sub-
system require-
ment analysis and
hardware selec-
tion confirmation

Develop and
refine scripts for

circular buffering,
phase correction,

and filtering

Construct the
power supply
subsystem and
design PCB

4/25

Construct sur-
roundings using
acrylic plates and
hinges and test the
strength

Debug and op-
timize the time
domain filters and
digital IF channel
filters

Write modules to
drive LED

5/2

Fix chest models
with LED, coun-
ters and acrylic
plates

Complete soft-
ware integration
and tuning of
CSI extraction
subsystems

Debug and
optimize the data

processing
pipeline

Help design cir-
cuits from signal
output to LED dis-
play

5/9
Clean up all the
items and lines of
the system

Complete subsys-
tem robustness
test and anti-
jamming capabil-
ity verification

Further testing of
the overall display
system

5/16

Optimize the ex-
perimental equip-
ment based on ex-
perimental results

Help design cir-
cuits from signal
output to LED dis-
play

Integrate visual
signal output with
LED display

Improve the ro-
bustness of the
display subsystem
and debug under
different scenarios

5/23 Prepare final test-
ing demo

Prepare final demo
and design testing
cases

Prepare final demo Prepare final demo
and debug
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4 Requirements and Verification

We organize our verification into two primary components: the Result of Human Breath
Pattern Identification, which quantifies the accuracy and timing alignment of the Wi-Fi
CSI–based respiration detection against a commercial wearable belt; and the Result of
Display System, which assesses the LED visualization’s responsiveness and fidelity by
observing both predicted and ground-truth signals. Table A summarizes the verification
methods and acceptance thresholds for each component.

4.1 Result of Human Breath Pattern Identification

To quantitatively assess the accuracy of our Wi-Fi CSI-based respiration monitoring, we
conducted parallel recordings using both our system and a gold-standard commercial
wearable respiration belt. The belt consists of an elastic chest strap embedded with a
piezoelectric strain sensor that directly measures thoracic expansion and contraction.

Figure 11: Commercial wearable respiration monitor belt.

The breathing trials were conducted in a standard laboratory workspace. As shown in
Figure 12, the subject sitting comfortably at a round table, facing two external Wi-Fi an-
tennas mounted on stands and connected to a laptop running our CSI-capture program.
An acrylic partition between the antennas and the laptop helped reduce multipath reflec-
tions. The wearable respiration belt was secured around the subject’s chest and plugged
into the logging PC via USB.

Figure 12: Laboratory Setup for WiFi-Based Human Respiratory Monitoring.
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Each session started with three guided deep breaths to calibrate the system. Immediately
afterward, the subject resumed natural breathing while we simultaneously recorded the
processed CSI phase data and the belt’s reference signal. Afterward, both data streams
were time-synchronized in post-processing. Finally, we extracted the complete 25s of
ground-truth belt measurements alongside the corresponding CSI-derived predictions for
direct comparison.

(a) CSI-derived prediction data (b) Ground-truth belt data

Figure 13: Recorded (a) CSI-derived values and (b) reference values over 30 samples.

Figure 14: Ground-truth breathing waveform recorded by the wearable respiration belt
over a 25s trial.

Figures 14 and 15 show, respectively, the 25s breathing waveform recorded by the wear-
able respiration belt (ground truth) and the corresponding prediction derived from our
system. We can observe that the rise, plateau, and fall segments of the predicted wave-
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Figure 15: CSI-derived breathing waveform predicted by our Wi-Fi system over the same
25s interval.

form overlay the ground truth almost exactly, with only minimal ringing at transition
points.

To quantify the agreement between the wearable-belt ground truth signal Gi and the CSI-
derived prediction Pi over the 25s recording, we compute two metrics: the Pearson cor-
relation coefficient and the RMSE of instantaneous respiratory rate.

Pearson Correlation Coefficient

ρ =

N∑
i=1

(Gi − Ḡ) (Pi − P̄ )√√√√ N∑
i=1

(Gi − Ḡ)2

√√√√ N∑
i=1

(Pi − P̄ )2

, (2)

where Ḡ and P̄ are the sample means of Gi and Pi. Result: ρ = 0.92.

RMSE of Respiratory Rate Let ∆t
(G)
j and ∆t

(P )
j be the time intervals (in seconds) be-

tween successive inhalation peaks in the ground-truth and predicted signals, respectively,
for j = 1 . . .M cycles. Convert each to breaths per minute:

r
(G)
j =

60

∆t
(G)
j

, r
(P )
j =

60

∆t
(P )
j

.

Then

RMSE =

√√√√ 1

M

M∑
j=1

(
r
(P )
j − r

(G)
j

)2
. (3)

Result: RMSE = 0.4 bpm.
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Table 3: Quantitative Matching Metrics for 25s Breathing Recordings

Metric Value Target

Pearson ρ 0.92 ≥ 0.70

RMSE (bpm) 0.4 ≤ 1.5

Table 3 summarizes these results against our design targets.

These results demonstrate that our non-contact, Wi-Fi CSI–based approach can accurately
reconstruct both the temporal and frequency characteristics of human breathing, fully
meeting—and in many respects surpassing—our desired performance requirements.

4.2 Result of Display System

The display system is designed to visualize the detected respiration pattern in real time
using a pair of chest models equipped with LED. It comprises three primary components:
the surrounding structure, the chest models, and the LED indicator arrays. The surround-
ing structure is constructed from acrylic plates with reinforced hinges, forming a foldable
frame that supports the chest models. During operation, the frame is expanded to a stable
display configuration. When it is idle, it folds into a triangular shape for easy storage and
portability. The system’s foldability and structural stability were tested under multiple
setups and are visually demonstrated in Figure 16, respectively.

(a) open state (b) folded state

Figure 16: Chest model with surroundings (a) open state and (b) folded state.

Attached to the frame are two chest models representing ground truth and predicted
respiration. These models are firmly fixed using reinforced tape. Physical stress and
motion tests confirmed that the models remain securely attached during transport and
operation.

To verify the functional behavior of the LED indicators, we implemented a software-based
control algorithm on the Raspberry Pi that maps the breathing signal to LED brightness
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using PWM modulation. Based on the input waveform—whether from the ground-truth
chest belt or the Wi-Fi sensing system—the LED brightness gradually increases during
exhalation and fades out during inhalation. As shown in Figure 17, the LED remains
off when the subject inhales and lights up during exhalation, accurately reflecting the
breathing rhythm. This effect is achieved in real time and will be demonstrated visually
during the final demo.

(a) Inspiration - light off (b) Expiration - light on

Figure 17: The change of LED brightness with breathing.
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5 Conclusion

5.1 Accomplishments

Guided by our goal of non-contact respiratory monitoring, we have delivered a Wi-Fi–based
sensing and visualization prototype that satisfies every requirement laid out in the design
document.

One significant accomplishment was the development of the Wi-Fi sensing subsystem,
which reliably captures channel state information and extracts human breathing patterns
with low latency and high fidelity. The processing pipeline, from raw CSI acquisition
through noise filtering to clean waveform output, operates end-to-end as intended.

Another key achievement lies in the display subsystem: recorded breathing signal seg-
ments are seamlessly mapped to an LED array, producing smooth fade-in and fade-out
effects that intuitively reflect inhalation and exhalation cycles. This visual correspondence
meets the responsiveness and clarity targets defined in the requirements.

Finally, the integrated hardware and control framework has been assembled and vali-
dated under lab conditions. While the current prototype relies on pre-recorded data (due
to the absence of real-time Wi-Fi streaming between sensing system and display system),
it demonstrates all core functionalities specified in the design document.

5.2 Uncertainties

Although all high-level requirements have been met—namely, reliable extraction of respi-
ratory waveforms via Wi-Fi sensing and their faithful translation into LED “fade in–fade
out” displays—several uncertainties persist. First, the current prototype lacks a mech-
anism for real-time streaming of CSI-derived breathing signals over Wi-Fi, forcing the
display system to rely on prerecorded segments rather than true live feedback. This gap
limits the immediacy of our visualization.

Besides, the system’s robustness remains contingent on a tightly controlled environment.
Minor shifts in subject positioning, background movement, or multipath reflections can
easily degrade phase-based respiration detection, causing intermittent drops or noisy ar-
tifacts in the extracted waveform. Without adaptive calibration or environmental com-
pensation, these factors introduce variability in sensitivity and may undermine consistent
monitoring outside of a lab setting.

5.3 Future Work

Building on our prototype’s demonstrated ability to recognize and visualize respiratory
signals, we envision several key extensions to broaden functionality, improve robustness,
and move toward a truly real-time, multi-modal physiological monitoring system:

1. Analog Pre-amplification of Physiological Motions. Introduce a compact, band-limited
analog amplifier (or low-noise pre-amplifier) between the antenna and CSI extrac-
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tor. By boosting the micro-displacements caused by both chest expansion and car-
diac pulsations, this hardware stage will magnify subtle breathing and heartbeat
signatures, enabling our existing pipeline to detect and display true heart-rate wave-
forms alongside respiratory cycles without software modifications.

2. Low-Latency Streaming and Display Integration. Develop a lightweight data chan-
nels to relay CSI-derived features continuously from the sensing module to the LED
controller. Coupled with buffering strategies on the display side, this will transform
our current batch playback into seamless live visualization with low end-to-end la-
tency.

3. Expanded Behavioral and Vital-Sign Recognition. Leverage enriched CSI feature
sets to train lightweight classifiers for additional activities—such as posture shifts,
limb tremors, or gait patterns—and to extract heart-rate variability metrics along-
side respiration. This multi-modal analysis opens pathways toward wellness moni-
toring, fall detection, and non-contact stress assessment in smart-home or eldercare
applications.

5.4 Ethical Considerations

Ethics

Our project strictly follows ethical standards by prioritizing public safety, privacy protec-
tion, and responsible technology use. Since we use WiFi signals to detect physiological
activities, it inherently touches upon user privacy. We therefore ensure that no person-
ally identifiable information is collected, and that all data remains anonymous to protect
users’ privacy. In accordance with the ACM Code of Ethics, we are committed to protect-
ing the privacy and dignity of all individuals whose data may be used [5].

Furthermore, given the potential for misuse in tracking or surveillance, we design our
system to prevent unauthorized exploitation. We don’t store or display any data linked
to an individual’s identity. All data is processed locally and only for the purpose of mod-
ulating LED indicators for demonstration. Consistent with the IEEE Code of Ethics, we
seek to avoid harm and uphold the public welfare through honest disclosures and re-
sponsible engineering practices [6].

To reinforce these commitments, every participant in our tests provides informed consent
prior to data collection. The temporary data processing is clearly stated in a consent
form. During any public display, a clear disclaimer accompany our system to ensure it is
not mistaken as a medical product. These precautions help uphold ethical transparency
and prevent any misleading representation of the system’s capabilities.

Safety

Our project strictly adheres to the safety standards set forth by the ECE 445 Safety Guide-
lines from the University of Illinois [7]. Operating at a safe low voltage of 3.3V, the system
poses no risk of high power, excessive heat, or mechanical motion. However, due to the
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presence of electronic circuitry, PCBs, and soldered components, we have implemented
detailed precautions to ensure the safety of both users and developers.

All circuits are designed with current-limiting resistors and fuses to prevent overcurrent
damage. During construction and testing, all exposed electrical connections are insulated,
including the use of ESD-safe mats and wrist straps when handling PCBs. Soldering is
conducted in well-ventilated environments using heat-resistant tools as recommended by
the course’s safety documentation [7].

Prior to each lab session or demonstration, a safety checklist is reviewed to ensure sta-
ble power supply, secure wiring, and minimal electromagnetic interference in the testing
environment. In accordance with ECE 445 protocol, we follow a two-person rule during
high-risk activities such as circuit debugging or hardware testing. A formal safety man-
ual would present at the final demo, summarizing all relevant precautions and emergency
procedures, thereby demonstrating full compliance with the university’s safety standards
[7].
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Appendix A Requirement and Verification Table

Table 4: Overall Requirements and Verifications

System Requirements Verifications Results

Wi-Fi Sensing
System

The Wi-Fi sensing module
should detect and report

waveform with a total
end-to-end latency not

exceeding 200ms.

Verify by logging
timestamps at packet

emission and recognition
points, then measuring the

elapsed time.

YES

The system should detect
inhale/exhale cycles.

Compare the detected
breathing waveform with

a wearable respiratory
monitor device.

YES

Display System

The display interface
should maintain a 3.3V

output (±10%) when
driving the LEDs.

Measure the output
voltage with a calibrated

digital multimeter.
YES

The LED indicators shall
fade-in and fade-out in
precise synchrony with
the detected inhalation
and exhalation events.

Observe LED changes
while someone breathes

normally.
YES
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