
ECE 445

SENIOR DESIGN LABORATORY

FINAL REPORT

Grasping Any Object with Robotic Arms
with Language Instructions

Team #10

JUNZHOU FANG

(junzhou5@illinois.edu)
JUNSHENG HUANG

(jh103@illinois.edu)
ZIXIN ZHU

(zixinz6@illinois.edu)
ZIXUAN ZHANG

(zixuan21@illinois.edu)

TA: Tianci Cai, Tielong Tang

May 17, 2025

Contents

1 Introduction 1
1.1 Problem . 1
1.2 Solution . 1

2 Design 3
2.1 ASR (Wave2Vec 2.0) . 3
2.2 CV (YOLOE-V8L) . 4
2.3 6D-Pose Generator (Open-3D) . 4
2.4 PCB Display . 6
2.5 Path Translator . 7
2.6 Robotic Arm . 10

2.6.1 Depth Camera . 11
2.6.2 Microphone . 11
2.6.3 STM32 . 11
2.6.4 Motor . 11
2.6.5 End Effector . 11

3 Verification 13
3.1 ASR (Wave2Vec 2.0) . 13
3.2 CV (YOLOE-V8L) . 13
3.3 6D-Pose Generator (Open-3D) . 14
3.4 PCB Display . 15
3.5 Path Translator . 15
3.6 Robotic Arm . 16

3.6.1 Depth Camera . 16
3.6.2 Microphone . 16
3.6.3 STM32 . 16
3.6.4 Motor . 16
3.6.5 End Effector . 16

4 Cost Analysis 18

5 Conclusion 19
5.1 Accomplishment . 19
5.2 Impact . 19
5.3 Ethics and Safety . 19

5.3.1 Ethics . 19
5.3.2 Safety . 20

References 21

Appendix A YOLOE Analysis 22

ii

Appendix B Requirement & Verification Tables 24
B.1 ASR (Wave2Vec 2.0) . 24
B.2 CV (YOLOE-V8L) . 25
B.3 6D-Pose Generator (Open-3D) . 25
B.4 PCB Display . 26
B.5 Path Translator . 26
B.6 Robotic Arm . 27

B.6.1 Depth Camera . 27
B.6.2 Microphone . 27
B.6.3 STM32 . 27
B.6.4 Motor . 27
B.6.5 End Effector . 28

iii

1 Introduction

1.1 Problem

Patients who are bedridden or have severe mobility impairments—whether from stroke,
spinal cord injury, or neuro-degenerative disease—often struggle with simple tasks such
as reaching for water, medication, or personal devices. Their reliance on caregivers re-
duces autonomy and increases workload in clinical settings. Meanwhile, recent studies
show that assistive robots have begun to ease this burden and improve outcomes [1]
[2]. However, most current devices cannot parse natural language or operate reliably
amid the clutter and tight spaces at a bedside. A next-generation system must combine
accurate speech understanding, real-time object recognition, and precise manipulation
while generalizing to many everyday objects without lengthy retraining. Such an ad-
vance would restore greater independence to patients and lighten the demands placed
on caregivers.

1.2 Solution

Our expected solution is a smart robotic arm equipped with a well-designed recogni-
tion system based on computer vision (CV) and natural language processing (NLP). The
block-diagram of our design is shown in Figure 1. To be more specific, our design accepts
three input: a human language instruction from microphone or keyboard, a RGB image
and a depth image taken by the depth camera, and gives two outputs: the destination
angle of each of the six motors and target label of the object printed on printed circuit
board (PCB). Eventually, the destination angles can guide the robotic arm moving to the
correct place.

Figure 1: High-level block diagram of our design

Our design is divided into six major modules: automatic speech recognition (ASR), CV,

1

6d-pose generator, PCB display, path translator, and robotic arm. The performance re-
quirement of each modules are:

• ASR: Translate human-language input into a string and identify the name of the
target object. We use Wave2Vec 2.0 as the ASR model and add a NLP model after
this to extract the label.

• CV: Use the RGB image taken from the depth camera, identify the target object
using a detection box of pixel-level coordinate. We use YOLOE-V8L.

• 6D-Pose Generator: Utilize both RGB image and depth image from the depth cam-
era, determine the 6D coordinate, [x,y,z] and three Euler angles for the object in the
detection box. We use Open-3D.

• PCB Display: Display the name of the target object on a 0.96-inch OLED screen.

• Path Translator: Use the 6D coordinate of the target object to choose the optimal
grasping position, and map the position to a set of destination angles of the motors.

• Robotic Arm: Use YahBoom DOFBOT SE robotic arm with six motors driven by an
STM32 controller to grab objects based on the output of the path translator.

The block diagram changes a lot throughout the semester, as we give up running AI
models on remote servers or on Ubuntu. The reason is that we cannot establish a web
link to the remote server due to the firewall issue, and Ubuntu does not support USB
drivers for the depth camera and microphone.

2

2 Design

2.1 ASR (Wave2Vec 2.0)

The primary function of this automatic speech recognition (ASR) model is to transform
user-provided instructions (regardless of input text or speech signals) to exact object la-
bels. These labels serve as triggers for the YOLOE (CV model) to perform designated
tasks. This module acts as a critical bridge between language understanding and visual
perception in a multi-modal system, enabling instruction-driven control via natural lan-
guage. Specifically, this model would be divided into two components.

The first component is the Automatic Speech Recognition (ASR) module, which is re-
sponsible for processing incoming audio signals. This module would first improve speech
quality through noise reduction and signal enhancement. Then, The refined audio is tran-
scribed into its corresponding textual representation, thereby serving as the input for sub-
sequent natural language processing modules. We choose a lightening framework from
Meta AI: Wav2Vec 2.0 [3]. It is a self-supervised speech recognition framework that learns
powerful speech representations directly from raw audio using Transformer architectures
and contrastive learning. Figure 2 illustrates the workflow of the framework.

Figure 2: Illustration of Wav2Vec 2.0 framework

The second component is the Semantic Label Extraction module, which processes the tex-
tual instructions obtained from the ASR module or directly from the user. It employs
predefined regular expression rules to extract key terms that correspond to the target ob-
ject for grasping, serving as the label for the downstream computer vision module. Rec-
ognizing the limitations of rule-based keyword extraction in handling the diversity and
ambiguity of natural language, we also consider leveraging semantic similarity models

3

to infer potential target labels. This hybrid approach enhances the robustness and gener-
alization of instruction interpretation.

2.2 CV (YOLOE-V8L)

We use YOLOE-V8L as our visual detection model. The model is capable for recognizing
all objects in the image by extracting them from raw image and comparing them with pre-
defined vocabulary base [4]. Since we already get the instruction from ASR, we produce
a text prompt and just ask the model to select the target object accordingly. The output of
the model will be a detection box with pixel-level coordinates and confidence.

In our implementation, we integrate the code of controlling the depth camera with the
code of running YOLOE inference. As we begin reading the continuous picture in the
depth camera, we can press key C to store a frame and send the frame to YOLOE inference.
To improve the robustness, we ask the model to only return the detection box with highest
confidence. A more rigerous pseudocode is:

Algorithm 1 Run YOLOE Inference Once

Ensure: {color-image path, depth-frame array, detected box, depth-scale}
1: Initialize RealSense pipeline with color and depth streams
2: while true do
3: Capture current frames and show live color preview
4: if user presses C then
5: Save the current color and depth frames to work dir
6: Call YOLOE INFERENCE to obtain box with highest confidence
7: return collected outputs and exit loop
8: Stop the camera and close the window

There are several YOLOE models differing in size and performance. We finally choose
YOLOE-V8L, the largest YOLOE model with best performance, given that it only takes
about 5G on GTX3090 to do a single image reference. A detailed table of model differences
and performance comparison can be found in Appendix A.

2.3 6D-Pose Generator (Open-3D)

To enable the clamp on the robotic arm to successfully grasp an object, we need a 6D
coordinate that not only describes the location, but also the pose of the object. Typically,
a 6d coordinate is an array with length of six: [X, Y, Z,Roll, P itch, Y aw], where the first
three dimensions describe the location and the last three dimensions, usually referred as
Euler Angles, tell the rotation. We select Open-3D to generate the 6d coordinate. Open3D
is an open-source library designed for fast, easy manipulation of 3-D data [5]. The inputs
of this library are RGB and depth image, detection box, and some intrinsic calibration
parameters in depth camera.

4

In our project, we use an Intel RealSense D455i depth camera mounted in a fixed position.
For this depth camera, we do not need to do intrinsic calibration by ourselves. Instead, we
can directly access these intrinstic parameters using a light-weight python scripts. Table1
records the intrinsic calibration parameters for D455i.

Table 1: RealSense D455i intrinsic calibration (640× 480)

Parameter Value

Image width 640
Image height 480
fx 390.57965
fy 390.57965
cx 320.92871
cy 240.26723
Distortion model brown conrady

Distortion coefficients
[
0, 0, 0, 0, 0

]
Camera matrix K

390.57965 0 320.92871

0 390.57965 240.26723

0 0 1

We implement our 6D-pose generator based on Open-3D on our own, and the code work-
flow is summarized in pseudocode 2.

Algorithm 2 SavePoseFromArrays

Require: RGB file path rgb path, depth array depth path,ROI box (x0, y0, x1, y1), depth
scale s,intrinsics {fx, fy, cx, cy},output file pose path

1: rgb← CV2.IMREAD(rgb path)
2: depth← depth path ▷ 16-bit metres
3: Build binary mask with ones inside ROI
4: Convert RGB + depth to OPEN3D RGBDImage
5: Create pinhole intrinsics object using fx, fy, cx, cy
6: Generate full point cloud P from RGB-D image
7: Proi ← points in P where mask= 1
8: Remove zeros; voxel-down-sample Proi

9: Obtain oriented bounding box (OBB) of Proi

10: t← OBB centre (mm);R← OBB rotation matrix
11: ϕ← EulerXYZ(R) ▷ roll, pitch, yaw (rad)
12: Compose JSON object with position t and orientation ϕ
13: Write JSON to pose path
14: return t, ϕ

5

2.4 PCB Display

To provide a more intuitive and user-friendly interface for object identification during
grasping operations, we designed a PCB display system. This system features a 0.96-
inch ZJY096I0400BG01 OLED screen driven by a STM32F103C6T6 microcontroller, and
communicates with the PC-side ROS module via USB. This system can display the name
of the object currently being grasped, providing immediate visual feedback to the user.
Figure 3 illustrates the circuit diagram of the PCB display system.

Figure 3: Circuit diagram of the PCB display system

The system is composed of several functional modules as described below.

• STM32F103C6T6 Microcontroller
This microcontroller serves as the central control unit of the system. Based on an
ARM Cortex-M3 core running at 72 MHz, it integrates 64 KB of Flash memory and
20 KB of SRAM. Internally, the STM32 initializes the OLED with a sequence of I2C
commands on boot. It then continuously listens on the UART port. Upon receiving
a new object name (e.g., ”apple”), it clears the display and renders the new string
using a bitmap font library stored in Flash memory.

6

• OLED Module
The OLED display is a 0.96-inch ZJY096I0400BG01 monochrome screen that com-
municates with the STM32 via I2C. The SCL and SDA lines are connected to PB8
and PB9 respectively. The display shows the name of the object being grasped in
real time, serving as a key user interface.

• Power Supply Module
This module uses an AMS1117-3.3 V regulator to convert a 5 V input from the USB
into a stable 3.3 V output. The regulated voltage powers both the STM32 microcon-
troller and the OLED display. Input and output capacitors are included to filter out
voltage ripple and ensure reliable performance.

• Status LED Module
A single LED connected to GPIO pin PC13 through a 1 kΩ resistor. It is used to
indicate power or operational status. The LED lights up when PC13 is pulled low.

• Clock Module
An 8 MHz crystal oscillator provides the system clock for the STM32. It is connected
between OSC IN and OSC OUT, with two 20 pF capacitors to ground and a 1 MΩ
bias resistor. This ensures accurate timing for serial communication and internal
processing.

• Reset Module
The reset circuit includes a 10 kΩ pull-up resistor and a 0.1 µF capacitor connected to
the NRST pin, along with a push-button to manually trigger system reset. It ensures
proper initialization and recovery during firmware development or fault handling.

• SWD Debugging Header
This module provides a 4-pin interface for Serial Wire Debug (SWD). The SWDIO
and SWCLK signals are connected to PA13 and PA14 respectively, alongside 3.3 V
and GND. It enables firmware uploading and real-time debugging using external
tools such as ST-Link.

2.5 Path Translator

For control, we will go to inverse kinematics. After the image processing get the coordi-
nates and orientation of the target, relative to the robotics (α, β, γ, x, y, z), the transforma-
tion will become:

0
ET =

cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ x

sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ y

−sβ cβsγ cβcγ z

0 0 0 1

And

7

0
ET = 0

1T
1
2T · · ·

The Denavit–Hartenberg (D-H) parameters provide a standardized method to describe
the geometric relationship between adjacent links and joints of a robotic manipulator.
This method is widely used to model the forward kinematics of robotic arms.

In the standard D-H convention, the relative transformation between two consecutive
coordinate frames is characterized by four parameters:

• θi: Joint angle – the rotation about the zi−1 axis (variable for revolute joints).

• di: Link offset – the translation along the zi−1 axis (variable for prismatic joints).

• ai: Link length – the translation along the xi axis (a constant).

• αi: Link twist – the rotation about the xi axis (a constant).

By using these four parameters, a 4× 4 homogeneous transformation matrix can be con-
structed to describe the pose of each link relative to its predecessor. Chaining these trans-
formations allows for the complete forward kinematic model of the robot to be built.

For transformation i
i−1T , we use D-H parameters to determine which is

i
i−1T = [Zi−1][Xi]

[Zi] =

cosϑi − sinϑi 0 0

sinϑi cosϑi 0 0

0 0 1 di

0 0 0 1

[Xi] =

1 0 0 ri,i+1

0 cosαi,i+1 − sinαi,i+1 0

0 sinαi,i+1 cosαi,i+1 0

0 0 0 1

The transformation matrix T is a 4× 4 homogeneous transformation matrix, widely used
in robotics and rigid body kinematics to describe the pose (position and orientation) of
one coordinate frame relative to another.

It has the general form:

8

T =

R p

0T 1

where:

• R ∈ R3×3 is the rotation matrix, representing orientation.

• p ∈ R3×1 is the position (translation) vector.

• The bottom row [0 0 0 1] allows translation and rotation to be combined in a single
matrix operation.

Back to codes itself, the getangles(x, y, z, roll, pitch, yaw) function is designed to compute
the six joint angles of a robotic arm based on the desired position and orientation of the
end effector, effectively performing inverse kinematics. The function first converts the
input Euler angles (roll, pitch, yaw) into a rotation matrix, and then transforms it into
the Denavit–Hartenberg (DH) coordinate system using a fixed rotation matrix. Using the
end effector position (x, y, z) and the Z-axis direction from the rotation matrix, the func-
tion calculates the wrist center position, which is essential for solving the first three joint
angles. With the help of the robot’s geometric parameters and trigonometric relations, it
derives q1, q2, and q3 through geometric methods. Then, it computes the rotation matrix
R36 from the wrist to the end effector and extracts the remaining three joint angles q4, q5,
and q6. All joint angles are finally converted from radians to degrees, and negative values
are adjusted to fall within the valid actuator range. Overall, this function accurately maps
a spatial pose into joint commands, serving as a core component in robotic arm control
and motion planning.

However, the above codes doesn’t work. We spent completely two weeks testing it and
trying to find what’s wrong. We also try other ways, including Moveit in ROS, and
Jacobian-Based Method. The biggest problem is we can’t ensure what’s the relationship
between points in calculation from codes and in real world. In other words, we met prob-
lem in coordinate transformation. Our visual model can successfully find the target and
its position, and give the robot arm x, y and z coordinates. We tried to set x, y and z
to zero separately, in order to find where (0, 0, 0) is in real world. Therefore, we don’t
use inverse kinetics in the end, and our robotic arm can’t grasp the object from arbitrary
place. It can only grasp objects from certain place.

What we use is hard code. We put 14 sample points in the paper. Each time we pull the
robotic arm to the sample points one by one, and read the angles of 6 motors. The path
planning portion relies on the id parameter, where each ID (from 1 to 14) corresponds to
a predefined target position. These positions are represented by specific sets of six joint
angles, defining a motion path for the robotic arm. These angles are precomputed using
forward or inverse kinematics to ensure that the arm’s trajectory is reachable and free
from collisions. The motion is controlled in stages: the arm first moves above the target
object, then closes the gripper to grasp it, moves to the drop-off location, and finally opens
the gripper to release the object.

9

After each motion step, the program uses time.sleep() to ensure the action completes fully
and the arm remains stable without misalignment. At the end of the function, the robotic
arm returns to a default standby pose to prepare for the next operation. Overall, the
main function integrates object-to-gripper mapping and ID-to-path mapping, combining
kinematic modeling and sequential control to complete the full process of detection, path
execution, precise grasping, and object placement. Each time visual model will detect the
object, find its center, and calculate which sample point is the nearest. Then the robotic
arm can go to the point directly.

2.6 Robotic Arm

We use the YahBoom DOFBOT SE Robotic Arm, which is driven by the STM32 controller.
This robotic arm has 6-degree-of-freedom serial bus servo motors and is controlled by the
ROS operating system. By using a computer microphone and a depth camera installed at
a fixed position, we have equipped the robotic arm with visual and auditory perception
capabilities. For the end effector, we design a mechanical claw with a maximum opening
width of 6 cm and a maximum load of 200 g, so that it can grasp common small objects.
Figure 4 shows the specifications of this robotic arm [6].

Figure 4: The specifications of the robotic arm

10

2.6.1 Depth Camera

In our project, we use an Intel RealSense D455i depth camera mounted in a fixed posi-
tion to provide synchronized RGB and depth images to the perception system. The RGB
images are processed by the YOLOE-V8L model to detect objects based on the labels ex-
tracted from the voice command. The depth images are passed to the Open-3D module
to calculate the 6D spatial coordinates of the target object. The D455i depth camera is
equipped with a stereo depth perception system that can provide accurate measurements
at a range of up to 6 meters and has a wide field of view (approximately 90° × 65°) to en-
sure full coverage of the robot’s workspace. Its built-in inertial measurement unit (IMU)
further enhances depth stability during motion.

2.6.2 Microphone

We choose a built-in microphone array (Intel® Smart Sound Technology, Digital Micro-
phone for Realtek® Audio) as the input device to capture voice commands. The captured
audio is processed by a Wave2Vec 2.0 model that performs automatic speech recognition
(ASR) to convert voice commands into text, allowing the system to recognize the name of
the target object.

2.6.3 STM32

The STM32F103C8T6 microcontroller serves as the control hub of the robotic arm system.
Based on an ARM Cortex-M3 core running at 72 MHz, it integrates 64 kB of Flash mem-
ory and 20 kB of SRAM, providing sufficient computational power for real-time control. It
features multiple USARTs, PWM-compatible 16-bit timers, and GPIO ports for precise co-
ordination of the six smart servo motors. With built-in USB, I²C, SPI, and ADC interfaces,
the STM32 manages sensor inputs, actuator commands, and peripheral communication
efficiently, enabling stable and responsive operation of the robotic arm.

2.6.4 Motor

The robotic arm is driven by six DS-SY15A smart servo motors, which are responsible for
executing precise and smooth movements based on the planned trajectory computed by
the control algorithm. These motors operate at 6.0 – 7.4 V, deliver a rated torque of 15
kgf·cm, and reach a maximum rotation angle of 300°, allowing the arm to execute smooth
and flexible movements. With a no-load speed of less than 0.24 sec/60° and metal gear
construction, they ensure both responsiveness and durability. Communication is han-
dled via UART serial protocol at 115200 bps, enabling coordinated multi-motor control
through the STM32 microcontroller.

2.6.5 End Effector

Since the maximum opening width of the original robot arm end effector was too small,
we redesigned the end effector, and its CAD drawing is shown in Figure 5. By laser
cutting the acrylic plate, we obtained and assembled the eight parts of the end effector,

11

and the finished product is shown in Figure 6. The optimized end effector has a maximum
opening width of 6 cm and a maximum load capacity of 200 grams, which is more suitable
for grabbing various daily small objects. It is controlled by six servo motors and works in
conjunction with the robot arm’s motion planning system.

Figure 5: CAD drawing of redesigned end effector

Figure 6: Finished product of redesigned end effector

12

3 Verification

All the Requirement & Verification tables are included in Appendix B.

3.1 ASR (Wave2Vec 2.0)

According to Appendix B.1, ASR module has met all the requirements. To fully test its
functionality, we divide the test process into twp parts. Firstly, we test it on Librispeech
dataset and use Word Error Rate (WER) to evlaute the general result. For the ”clean”
recording, the WER is 3.4 and if we add some random noise into it, the WER is 8.6. Both
are good enough to show that this ASR module can be cable of transferring speech signals
to text. Another test is to speak with the microphone and check if the result meet our
expectation, and we put the reuslt in the follow table:

Table 2: ASR recognition examples in robotic grasping tasks

Ground Truth ASR Output

Help me grasp the pen over there. Help me graspe the pen over there.

Give me the tissue pack. Giv me the tissue peck.

I want to have a toy. I want to have a toy.

I need your help to get the charger. I need your help to get the charger.

Grip the bottle gently to avoid
spillage.

Grip the bottle gentley to a void
spillage.

3.2 CV (YOLOE-V8L)

According to Appendix B.2, CV module has met all the requirements. To fully test its
functionality, we follow the pseudocode 1. During each run, we save the detection result
to a local folder. In Figure 7, we list some of the results. The first floating point number is
the confidence level, and [x1, y1, x2, y2] defines the boundary of the detection box. These
images clearly show all the requirements are satisfied: it can correctly load the images
from the camera; it can accurately detect target objects with a clear box according to the
input label; it can obtain the frame from the depth camera whenever we pressed key
C.

13

(a) Pill bottle detection (b) Pen detection

(c) Tissue pack detection (d) Toy detection

Figure 7: Working behavior of YOLOE-V8L

3.3 6D-Pose Generator (Open-3D)

According to Appendix B.3, the 6D-Pose Generator (Open-3D) module was successfully
verified against all specified requirements. Using ground-truth data, the module demon-
strated an average position error under 2 cm and orientation error below 5 degrees. It
maintained stable performance under varying lighting, occlusion, and noise conditions,
confirming its robustness. The output was consistently aligned with the camera coordi-
nate system, with position values in meters and orientation expressed in degrees, satisfy-
ing both accuracy and unit consistency criteria. The result are as follows:

14

(a) the example of point cloud (b) the example of 6d-pose

Figure 8: Working behavior of 6D-Pose Generator

3.4 PCB Display

According to Appendix B.4, PCB display module has met all the requirements. To fully
test its functionality, we placed small items such as tissue bag, pen, medicine bottle, and
toy on the desktop. Then, we started the program. The ASR module received the user’s
command ”grasp a pen” and passed the label ”pen” to the PCB display module. The
OLED display responded within 1 second and correctly displayed the word ”pen” with-
out truncation, distortion, or corruption. The verification results are shown in Figure
9.

(a) Objects on the desktop (b) OLED display result

Figure 9: Working behavior of PCB display

3.5 Path Translator

Since we use hard code, we can get the angles of motor directly, so we are sure the motor
can move under our expectation and grab the object.

15

3.6 Robotic Arm

3.6.1 Depth Camera

We test the output of RGB and depth images according to Appendix B.6.1, and the depth
camera module has met all the requirements.

3.6.2 Microphone

We said some sentences in noisy and quiet environments according to Appendix B.6.2,
and the microphone captured them clearly.

3.6.3 STM32

According to Appendix B.6.3, we conducted two key experiments. First, we injected
known test commands and sensor data from the PC (ROS system) to the STM32 via
UART and confirmed that the microcontroller correctly parsed and forwarded the data
with minimal delay. We recorded timestamps to evaluate response time and ensure real-
time performance. Second, we introduced corrupted and delayed messages to simulate
communication faults such as buffer overflows and invalid packets. The STM32 success-
fully identified and handled these errors without crashing, demonstrating its ability to
maintain stable operation under abnormal conditions. These tests show that the STM32
module has met all the requirements.

3.6.4 Motor

According to Appendix B.6.4, we conducted three key experiments. First, we applied
PWM control signals at various frequencies and loads to evaluate the motors’ responsive-
ness and stability. The motors responded accurately with minimal overshoot or delay,
confirming precise control signal interpretation. Second, we continuously monitored mo-
tor temperature, voltage, and current during operation. The readings stayed within the
specified safety thresholds, and when we manually triggered overload conditions, the
motors shut down as expected to prevent damage. Finally, we tested motion smoothness
by executing trajectories involving abrupt changes in direction and load. The motors
maintained continuous movement without jitter or stall, demonstrating robustness un-
der dynamic control scenarios. These tests show that the motor module has met all the
requirements.

3.6.5 End Effector

According to Appendix B.6.5, we used a series of test objects with varying widths (rang-
ing from 0.5 cm to 6 cm) and varying weights (ranging from 10 g to 200 g) . The robotic
arm was instructed to grasp these object, lift them, and transport them along a predefined
trajectory. During the operation, the gripper successfully completed the full open-close
cycle, securely held the objects without slippage, and maintained stability throughout the
movement. One of the test pictures is shown in Figure 10. These tests show that the end
effector module has met all the requirements.

16

Figure 10: Working behavior of end effector

17

4 Cost Analysis

The total cost of the project consists of two parts: labor and hardware.

The labor cost is estimated based on the average hourly wage standard in the Electrical
and Computer Engineering industry, which is 20 RMB per hour. The senior design project
spanned from March to May, totaling approximately eight weeks. During this period,
each team member dedicated an average of 25 hours per week to the project. Given that
the team consists of four members, the total labor cost can be calculated as follows:

4× 25× 8× 20 = 16000 RMB

The hardware costs include several key components. The YahBoom DOFBOT SE robotic
arm was selected as the core manipulator at a cost of 1379 RMB. The Intel RealSense D455i
depth camera, priced at 3050 RMB, provides spatial perception and is mounted using a 47
RMB bracket. For local visual feedback, we implemented an OLED display system con-
sisting of a ZJY096I0400BG01 screen for 5.5 RMB and an STM32F103C6T6 microcontroller
for 5.3 RMB, both integrated on a custom PCB board that cost 200 RMB. Additionally, we
included a fruit model and a dice model, costing 7.5 RMB and 4 RMB respectively, for
grasping testing purposes. The total hardware cost is 4698.3 RMB.

Combining the labor and hardware costs, the total expenses for the project is 20698.3
RMB, as shown in Table 3.

Table 3: Project cost breakdown

Item Model Price (RMB)

Robotic Arm DOFBOT SE 1379

Depth Camera Intel RealSense D455i 3050

Depth Camera Mounting
Bracket

Logitech C1000e 47

OLED Display ZJY096I0400BG01 5.5

STM32 Microcontroller STM32F103C6T6 5.3

PCB Board JLC 200

Fruit Model – 7.5

Dice Model – 4

Labor – 16000

Total – 20698.3

18

5 Conclusion

5.1 Accomplishment

Over the course of the semester, our team successfully designed and implemented a
multi-modal robotic system capable of performing object grasping tasks based on natural
language instructions. We integrated key modules including automatic speech recogni-
tion (Wave2Vec 2.0), visual object detection (YOLOE-V8L), 6D pose estimation (Open-3D),
real-time PCB feedback display, and a custom robotic arm controller based on STM32.
Despite initial challenges with inverse kinematics, we overcame them by implementing a
hard-coded pose mapping strategy based on sample points, which allowed reliable and
repeatable manipulation. All system modules met or exceeded their verification criteria,
confirming that our solution can accurately interpret user commands, locate objects in
complex scenes, and execute precise grasping maneuvers. This demonstrates our ability
to build a functional end-to-end assistive robotic platform from both software and hard-
ware perspectives.

5.2 Impact

Our project addresses the critical need for accessible and intelligent assistive technolo-
gies, particularly for individuals with limited mobility. By enabling voice-guided robotic
manipulation without requiring extensive training or environmental constraints, our sys-
tem promotes autonomy and reduces reliance on caregivers. The modular architecture
and cost-effective components also make it suitable for scalable deployment in home,
eldercare, and rehabilitation environments. Beyond its practical use, this work serves
as a proof of concept for combining modern deep learning frameworks with embed-
ded robotics. It lays the groundwork for future development in natural language-driven
robotic assistance, and highlights the potential of integrating AI with physical systems to
improve quality of life.

5.3 Ethics and Safety

Given that our target audience primarily includes the elderly and disabled, ethics and
safety are crucial aspects of our design. This section is divided into two parts to compre-
hensively address these concerns.

5.3.1 Ethics

This work focuses on developing a robotic arm capable of picking up diverse small ob-
jects. Such a system has practical applications in home assistance, eldercare, logistics,
and disaster recovery. By enabling reliable manipulation in unstructured environments,
it contributes to building assistive and autonomous systems that improve safety, reduce
human workload, and enhance quality of life. As ZJUI students, we are committed to up-
holding ethical standards and ensuring the integrity of our project. Our team will strictly

19

adhere to the IEEE Code of Ethics [7] and the ACM Code of Ethics [8]. We pledge to meet,
but are not limited to, the following ethical responsibilities:

• Prioritize public safety, health, and well-being by adhering to ethical design princi-
ples and sustainable practices. Additionally, we are obligated to report any potential
systemic risks that could lead to harm.

• Strive to benefit society by enhancing individual and collective understanding of
both traditional and emerging technologies and their societal implications.

• Maintain honesty and integrity in all professional activities, strictly avoiding uneth-
ical conduct such as bribery or other illegal actions.

5.3.2 Safety

To ensure the safety of both team members and others, and to mitigate any potential haz-
ards during the project, our team will strictly comply with the ECE 445 SAFETY GUIDE-
LINES [9]. We will undertake, but are not limited to, the following safety measures:

• No team member is permitted to work alone in the laboratory at any time.

• All team members must complete mandatory safety training before being autho-
rized to work in the laboratory.

• Any handling of battery charging or hazardous battery chemicals must be con-
ducted in strict accordance with established safe usage guidelines.

• The robotic arm is designed to operate safely around humans, minimizing collision
risks through motion planning and force-limited actuators. This ensures it can work
in homes or care facilities without endangering users.

• The system incorporates grasp failure detection to avoid dropping or mishandling
objects. This prevents accidental damage to the environment and ensures reliable
object transfer.

• Adaptive force control mechanisms allow the arm to handle fragile objects without
applying excessive pressure. This enhances safety when interacting with unknown
or delicate items.

• Manual and automated emergency stop mechanisms are included to immediately
halt motion in case of anomaly or user intervention. This provides a critical safety
layer during deployment and testing.

• Safety-centric design builds user trust and promotes system adoption. By making
robot actions predictable and explainable, users feel more comfortable interacting
with the robot.

20

References

[1] B. Allen, C. Bagnati, E. Dow, et al., “Report on the use of assistive robotics to aid
persons with disabilities,” Undergraduate Coursework, vol. 4, 2020. [Online]. Available:
https://docs.lib.purdue.edu/ugcw/4/.

[2] P. Marti, M. Bacigalupo, and L. Giusti, “Assistive robots for the social management
of health: A framework for robot design and human–robot interaction research,”
International Journal of Social Robotics, vol. 12, no. 4, pp. 681–702, 2020. DOI: 10.1007/
s12369-020-00647-6. [Online]. Available: https://pmc.ncbi.nlm.nih.gov/articles/
PMC7223628/.

[3] A. Baevski, H. Zhou, A. Mohamed, and M. Auli, Wav2vec 2.0: A framework for self-
supervised learning of speech representations, 2020. arXiv: 2006 .11477 [cs.CL]. [On-
line]. Available: https://arxiv.org/abs/2006.11477.

[4] A. Wang, L. Liu, H. Chen, Z. Lin, J. Han, and G. Ding, Yoloe: Real-time seeing anything,
2025. arXiv: 2503.07465 [cs.CV]. [Online]. Available: https://arxiv.org/abs/2503.
07465.

[5] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3d: A modern library for 3d data process-
ing,” arXiv preprint arXiv:1801.09847, 2018. DOI: 10.48550/arXiv.1801.09847. [Online].
Available: https://arxiv.org/abs/1801.09847.

[6] YahBoom, Yahboom dofbot se robotic arm specifications, Accessed: 2025-05-17, 2023. [On-
line]. Available: https://www.yahboom.com/tbdetails?id=562.

[7] IEEE. “”IEEE Code of Ethics”.” (2016), [Online]. Available: https://www.ieee.org/
about/corporate/governance/p7-8.html (visited on 05/17/2025).

[8] Association for Computing Machinery, ACM Code of Ethics and Professional Conduct,
Accessed: 2025-05-17, 2018. [Online]. Available: https://www.acm.org/code- of-
ethics.

[9] University of Illinois Urbana-Champaign, ECE 445 Safety Guidelines, Accessed: 2025-
05-17, 2025. [Online]. Available: https://courses.grainger.illinois.edu/ece445zjui/
guidelines/safety.asp.

21

https://docs.lib.purdue.edu/ugcw/4/
https://doi.org/10.1007/s12369-020-00647-6
https://doi.org/10.1007/s12369-020-00647-6
https://pmc.ncbi.nlm.nih.gov/articles/PMC7223628/
https://pmc.ncbi.nlm.nih.gov/articles/PMC7223628/
https://arxiv.org/abs/2006.11477
https://arxiv.org/abs/2006.11477
https://arxiv.org/abs/2503.07465
https://arxiv.org/abs/2503.07465
https://arxiv.org/abs/2503.07465
https://doi.org/10.48550/arXiv.1801.09847
https://arxiv.org/abs/1801.09847
https://www.yahboom.com/tbdetails?id=562
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.acm.org/code-of-ethics
https://www.acm.org/code-of-ethics
https://courses.grainger.illinois.edu/ece445zjui/guidelines/safety.asp
https://courses.grainger.illinois.edu/ece445zjui/guidelines/safety.asp

Appendix A YOLOE Analysis

YOLOE is chosen because of its high accuracy, timely classification, and generalization
ability in open vocabulary. It is an advanced extension of the YOLO object detection
framework that introduces strong support for open-vocabulary detection—the ability to
recognize and localize objects beyond a fixed set of predefined categories. Different ver-
sions of YOLOE models can be referred to in Table 4.

We test the performance of YOLOE-11M, YOLOE-11L, YOLOE-V8L based on a real-world
daily image, with result shown in figure 11. Accordingly, we find the YOLOE-V8L has
the best performance while causing acceptable resources.

Table 4: YOLOE version comparison

Model Size Params AP APr APc APf

YOLOE-v8-S 640 13M 27.9 / 26.2 22.3 / 21.3 27.8 / 27.7 29.0 / 25.7

YOLOE-v8-M 640 30M 32.6 / 31.0 26.9 / 27.0 31.9 / 31.7 34.4 / 31.1

YOLOE-v8-L 640 50M 35.9 / 34.2 33.2 / 33.2 34.8 / 34.6 37.3 / 34.1

YOLOE-11-S 640 12M 27.5 / 26.3 21.4 / 22.5 26.8 / 27.1 29.3 / 26.4

YOLOE-11-M 640 27M 33.0 / 31.4 26.9 / 27.1 32.5 / 31.9 34.5 / 31.7

YOLOE-11-L 640 32M 35.2 / 33.7 29.1 / 28.1 35.0 / 34.6 36.5 / 33.8

22

(a) Input sample (b) YOLOE-11M

(c) YOLOE-11L (d) YOLOE-v8L

Figure 11: Different YOLOE model comparison, with keywords: [“glasses, laptop, chairs,
bottle, bottle cap”]

23

Appendix B Requirement & Verification Tables

B.1 ASR (Wave2Vec 2.0)

Requirement Verification

1. Achieve accurate speech recognition and
semantic understanding.

A. Design test cases with varied speech
commands and noise conditions; record ac-
curacy and compute average recognition
rate.
B. Test semantic label mapping accuracy
under diverse natural language expres-
sions.

2. Support real-time speech signal process-
ing and labeling.

C. Measure time delay between receiving
speech input and producing a label.
D. Ensure the processing time does not ex-
ceed 200 ms.

3. Ensure adaptability to environmental
noise and ambiguous inputs.

E. Evaluate performance of audio module
in different environments (e.g., low noise,
high noise, echo) and assess recognition
stability.
F. Assess semantic label module under var-
ious paraphrasing or ambiguous inputs for
accuracy and robustness.

24

B.2 CV (YOLOE-V8L)

Requirement Verification

1. Ensure images are correctly loaded with-
out loss.

A. Perform a data stream test by saving
images sent to both local PC and server,
then manually compare the two to check
for loss.

2. Ensure accurate object detection with
clearly marked bounding boxes.

B. Conduct detection tests with varied
backgrounds and object combinations, re-
peated at least 50 times to evaluate accu-
racy.

3. Ensure the target label (object name) is
loaded correctly.

C. Log input labels during loading and
compare them with expected values to ver-
ify correctness.

4. Select key frames from continuous cam-
era input for model processing.

D. Use a frame counter to ensure that only
one image is processed per instruction, val-
idating resource-efficient frame selection.

B.3 6D-Pose Generator (Open-3D)

Requirement Verification

1. The module shall accept a pair of aligned
RGB with depth images as input and gener-
ate a 3D point cload using Open-3D. After
that, the module estimates the 6D pose of
the target object from the point cloud and
output 3D position (x,y,z) and orientation
in Euler angles (roll, pitch, yaw).

A. Use known ground-truth pose for a
given RGB-D input and compare it with
the estimated pose to compute position and
orientation errors.
B. Evaluate the module with diverse test
cases featuring variations in lighting, oc-
clusion, and perspective; record accuracy
metrics.

2. The output coordinate system shall be
aligned with the camera coordinate system
of the depth sensor, and the position unit
shall be in meters.

C. Verify that the output position is in me-
ters and the orientation is in degrees or ra-
dians; test edge cases such as zero depth or
background noise.

3. The module shall be robust to moder-
ate noise and partial occlusion, maintain-
ing a position error below 2 cm and orien-
tation error below 5 degrees under test con-
ditions.

D. Evaluate robustness by testing under
different environments and check the cor-
responding position.

25

B.4 PCB Display

Requirement Verification

1. The STM32 shall receive object names
from the ROS system via UART and trans-
mit them to the OLED display with mini-
mal delay (less than 1 sencond).

A. Send object name strings via ROS and
measure the time until correct display on
the OLED using a logic analyzer or stop-
watch.

2. The OLED display shall accurately ren-
der the received object name in a human-
readable format without truncation, distor-
tion, or corruption.

B. Send a variety of valid object names and
verify correct on-screen rendering through
visual inspection under normal operating
conditions.

B.5 Path Translator

Requirement Verification

1. Translate high-level path commands into
low-level joint or actuator instructions ac-
curately.

A. Compare the translated joint angles or
control signals with expected values for
known test paths.

B. Test on real robot arm to ensure correct
execution of generated instructions.

2. Ensure real-time performance for path
computation.

C. Measure the computation time of the
path translator under various path com-
plexities to ensure responsiveness.

D. Stress test the module with long or
curved paths to observe latency and pro-
cessing limits.

3.Maintain kinematic and motion con-
straints of the robotic arm during transla-
tion.

E. Validate that all generated paths respect
joint limits, speed constraints, and avoid il-
legal positions.

F. Simulate edge cases to ensure safe and
predictable motion behavior.

26

B.6 Robotic Arm

B.6.1 Depth Camera

Requirement Verification

1. The depth camera can accurately pro-
vide RGB and depth data for object local-
ization in real-time.

A. Test the output of RGB and depth im-
ages under typical workspace settings to
confirm 6D coordinate computation relia-
bility.

B.6.2 Microphone

Requirement Verification

1. The microphone can clearly capture user
voice commands in real-time.

A. Voice input is tested in various noise
conditions to ensure reliable audio capture.

B.6.3 STM32

Requirement Verification

1. STM32 is able to receive, parse, and for-
ward commands from the PC to the ROS
system with minimal delay.

A. Inject known sensor data and confirm
the integrity and timing of the data re-
ported to ROS.

2.The microcontroller should handle com-
munication errors, buffer overflows, and
invalid packets correctly without system
crashes.

B. Introduce corrupted or delayed mes-
sages during testing to verify error han-
dling mechanisms.

B.6.4 Motor

Requirement Verification

1. Motors shall respond precisely to low-
level PWM or control signals with minimal
overshoot or delay.

A. Apply PWM signal tests at varying fre-
quencies and loads to evaluate control fi-
delity and stability.

2. Motors should operate within thermal,
current, and voltage safety thresholds, and
automatically shut down if thresholds are
exceeded.

B. Monitor motor temperature, voltage,
and current during runtime to ensure
safety limits are not exceeded.

3. The motors shall maintain smooth and
continuous motion during trajectory exe-
cution without jitter or stall.

C. Perform sudden changes in direction
and load during trajectory execution to test
for jitter, stall, or recovery failure.

27

B.6.5 End Effector

Requirement Verification

1. The end effector can fully open and
close to grasp objects within the rated 6 cm
width.

A. The gripper is tested with objects of dif-
ferent sizes to verify opening and gripping
performance.

2. The gripper can stably hold objects up to
200 g during movement.

B. The robotic arm is commanded to trans-
port weighted test objects to confirm load
handling and stability.

28

	Introduction
	Problem
	Solution

	Design
	ASR (Wave2Vec 2.0)
	CV (YOLOE-V8L)
	6D-Pose Generator (Open-3D)
	PCB Display
	Path Translator
	Robotic Arm
	Depth Camera
	Microphone
	STM32
	Motor
	End Effector

	Verification
	ASR (Wave2Vec 2.0)
	CV (YOLOE-V8L)
	6D-Pose Generator (Open-3D)
	PCB Display
	Path Translator
	Robotic Arm
	Depth Camera
	Microphone
	STM32
	Motor
	End Effector

	Cost Analysis
	Conclusion
	Accomplishment
	Impact
	Ethics and Safety
	Ethics
	Safety

	References
	Appendix YOLOE Analysis
	Appendix Requirement & Verification Tables
	ASR (Wave2Vec 2.0)
	CV (YOLOE-V8L)
	6D-Pose Generator (Open-3D)
	PCB Display
	Path Translator
	Robotic Arm
	Depth Camera
	Microphone
	STM32
	Motor
	End Effector

