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1 Introduction

1.1 Problem and Solution Overivew

Handwriting remains a personal and unique form of expression, yet current digital and
automated writing solutions lack the ability to accurately replicate individual handwrit-
ing styles. Existing methods either rely on digital fonts that imitate handwriting or re-
quire complex, manual customizations [1]. This project addresses the need for an auto-
mated system that can learn and reproduce a person’s unique handwriting style with high
fidelity [2]. By integrating machine learning-based handwriting analysis with robotic
writing mechanisms, this system enhances document personalization, enabling applica-
tions in personalized correspondence, secure document signing, and artistic reproduc-
tion.

In this project, our solution consists of a complete pipeline integrating three core subsys-
tems: a handwriting sample analysis subsystem, a few-shot font generation subsystem,
and a robotic handwriting mechanism. Initially, the user’s handwritten samples are pro-
cessed and segmented into standardized grayscale images, serving as input to a few-shot
font generation system. Using advanced machine learning techniques, this subsystem
extracts and learns the user’s handwriting style. Finally, generated stroke data is sent
to a robotic handwriting subsystem, which physically replicates the handwriting using
precise motor control.

The robotic handwriting subsystem comprises a two-axis rail system driven by high-
resolution stepper motors and an additional axis for pen actuation. Motor control sig-
nals are generated by an ESP32 module, which also manages data communication with
the host computer via UART, Bluetooth, or WLAN. Stroke data transmitted to the ESP32
follow the standard G-code path format, specifying precise movement commands (coor-
dinates and pen lift/drop states).



1.2 Visual-Aid
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Figure 1: The visual illustration of our project: a user’s handwriting sample and content
text are processed through a neural network, enabling a robotic arm to reproduce the text
in the user’s unique handwriting style.

1.3 High-Level Requirements
Few-shot Font Generation System

¢ The font generation inference should process each character in under 500 millisec-
onds, ensuring efficiency for practical usage scenarios.

¢ The system should reliably handle variations in handwriting input quality, main-
taining style fidelity with less than 5% performance degradation in the presence of
moderate image noise or distortion.

Robotic Handwriting Subsystem

* The subsystem must reproduce handwriting with positional accuracy within +0.1
mm to achieve clear and authentic handwriting replication.

* Control signal synchronization must maintain a maximum timing deviation of less
than 1 ms between ESP32 signals and motor response to ensure smooth and contin-
uous pen movements.

¢ Communication between the ESP32 module and the host computer must achieve a
data transmission reliability greater than 99.9% with latency below 100 ms, ensuring
real-time handwriting reproduction.



2 Design

2.1 Block Diagram
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Figure 2: Block Diagram of Our System

Design Overview: The complete system is composed of four modular subsystems: (1)
Few-shot Font Generation, (2) Image-to-Stroke Converter, (3) Robotic Handwriting Mech-
anism, and (4) Communication and Control. Each subsystem is independently testable
and interfaces with well-defined protocols and formats (e.g., SVG/G-code, UART). These
blocks collectively ensure the system meets all high-level requirements for fidelity, preci-
sion, and responsiveness.



2.2 Physical Design
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Figure 3: Schematic of CoreXY Mechanism

Figure 4: Linear axis and bearing



Figure 5: 42mm stepper motor

Mechanical Structure: The handwriting robot frame employs a CoreXY mechanism
(shown in Fig. [B)for the X-Y planar motion, ensuring high speed and reduced inertia
for better precision. A Z-axis stepper motor handles pen actuation. Stepper motors, belts,
and linear rails are mounted on a rigid 3D-printed or aluminum frame. PCB mounts for
the ESP32 and drivers are placed on the side, isolated from mechanical vibration. The
linear rail consists of linear axis and linear bearings, as shown in Fig. [
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Figure 6: TMC2209 Circuit Schematic

PCB Design: It is a 2-layer PCB with ESP32 module and TMC2209 stepper driver. The
TMC2209 circuit schematic is shown in Figure [f]

2.3 Subsystem Overview

The Handwriting Robot System is composed of 3 main subsystems:

2.3.1 Few-shot Font Generation System

Our system utilizes a few-shot font generation approach to produce fonts that match the
style specified by the user through a small number of sample fonts. Specifically, the font
samples provided by the user are segmented into 128 x 128 grayscale images, which serve
as references for style learning. Then, based on the content specified by the user, the sys-
tem generates fonts that imitate the user’s writing style as shown in Figure[7] We extracts
vectorized stroke paths from binary skeleton images by recursively splitting the image
into smaller regions using optimal horizontal or vertical cuts based on pixel sparsity
and shape heuristics. Since Chinese characters are primarily composed of straight-line
strokes, the endpoints and junctions extracted during vectorization effectively capture



the overall contour of each character, making them suitable for downstream robotic arm
execution.

'ji Few-Shot Font Generator
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Figure 7: Few-shot Font Generator

For few-shot font generator, we employ a few-shot font generation system inspired by
VQ-Font [3], which integrates two essential components:

* Global Style Aggregator (GSA): This component uses character similarity to guide
and ensure consistency in the overall style across similar characters.

* Local Style Aggregator (LSA): Utilizing vector quantization and cross-attention,
LSA captures intricate details, allowing for the learning of elements without the
need for manual definition.

The content decoder (generator) is trained using Generative Adversarial Networks (GANSs)
combined with a self-reconstruction framework, enabling its application across various
scripts without requiring extensive labeled data. The implementation of the few-shot
font generation system is expected to align with the following requirements:

* Training Few-shot Font Generator: The training happens in two stages. The first
stage is the pre-training of VQ-VAE [4]. This step uses 3,000 Chinese characters from
a few fonts, each resized to 128x128 pixels, to learn local style components. It em-
ploys a Vector Quantized Variational Autoencoder (VQ-VAE) with a reconstruction
loss and a latent loss, using an embedding dimension of 256, a batch size of 256, and
50,000 iteration steps.The second stage is the training of GAN [5]. After pre-training,
the full font generation model is trained using a Generative Adversarial Network
(GAN). It includes a fixed pre-trained content encoder, a style encoder trained from
scratch, and other components like style aggregators and a decoder. The training
uses a batch size of 48, 8 attention heads in three stacked transformer layers, and
runs for 500,000 iteration steps.

* Extracting Handwritten Characters: Begin by having the user write Chinese charac-
ters on grid paper and then capturing an image of this paper, which is subsequently
converted to grayscale. Following this, identify the grid edges and segment each
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character area accordingly, removing any unnecessary blank spaces to isolate the
character itself. Finally, resize the extracted character images to 128x128 pixels, en-
suring their original aspect ratio is preserved, to create uniform grayscale images.

Inference with Desired Content: Given a target character and 3-5 reference glyphs,
the font generator first encodes the content separately, extracts style features from
references, and combines them for generation. The Global Style Aggregator (GSA)
uses similarity to weight overall style while the Local Style Aggregator (LSA) ap-
plies vector quantization and cross-attention to transfer details. This inference method
is efficient, processing components in one pass, ideal for font library creation. The
similarity-guided GSA enhances flexibility, adapting style to content structure. For
optimal inference, we will use 3-5 clear references and avoid rare or intricate inputs.

Table 1: R/V Table: Few-shot Font Generation System

Requirement

Verification Procedure

The system must accu-
rately generate a font
glyph with visual similar-
ity to 3-5 user-provided
examples, achieving a
cosine similarity score >
0.85 in feature space.

Use a pretrained font encoder (e.g., VGG-
style) to extract features of the generated
and reference glyphs. Compute cosine sim-
ilarity over 100 test characters and verify
the average similarity is > 0.85.

Generated glyphs must
be output in 128x128
grayscale format with

pixel intensity range [0,
255] and structural in-
tegrity (no more than 2%
missing regions).

Perform pixel value range check and apply
structural similarity index (SSIM) against
original glyphs. Verify that SSIM > 0.95
and missing stroke pixels do not exceed
2%.

The training process of
the VQ-VAE module must
converge within 50,000 it-
erations with reconstruc-
tion loss below 0.02.

Log loss values every 100 iterations during
VQ-VAE training. Plot final reconstruction
loss and verity it is below threshold.

The GAN-based genera-
tor must complete training
within 500,000 steps and
produce results within 1
second per glyph at infer-
ence time on a GPU.

Time the inference speed across 100 charac-
ters. Verify average latency < 1.0 s using a
standard RTX 4060 or equivalent GPU.




2.3.2 Pen Trajectory Extraction System

Once the 128x128 grayscale character images are generated, we apply a stroke vector-
ization algorithm |'| to extract the pen trajectory information necessary for downstream
robotic writing execution. The algorithm operates on binary skeleton images obtained
from the grayscale input via thresholding and skeletonization (e.g., Zhang-Suen [6]]). It is
designed to recursively decompose the character image into meaningful stroke segments
by analyzing image sparsity and structural heuristics.

Figure 8: Visualization of vectorized stroke extraction results applied to various shapes
and characters.

The algorithm follows a divide-and-conquer strategy. If the image is sufficiently small,
it enters a base-case stroke analysis routine. Otherwise, it scans the image to find an op-
timal vertical or horizontal split line that minimizes foreground pixel density while pre-
serving stroke continuity—i.e., ensuring no stroke crosses through the corners of the split
regions. The image is divided along this line into two subimages, which are then recur-
sively processed. After processing, the resulting polyline segments from each subimage
are merged. If an endpoint from one side lies near the split line, it is matched with a
neighboring endpoint on the other side to form a continuous stroke. Matching is based
on proximity constraints that account for small differences in position due to skeleton
curvature.

At the smallest scale, the algorithm performs a border-walk around the subimage to
detect transition points between background and foreground pixels. These points are
treated as entry or exit locations for stroke paths. Each is connected to the center of the

https:/ / github.com /LingDong-/skeleton-tracing



subimage, forming an initial set of line segments. Several heuristics refine this repre-
sentation: if there are exactly two endpoints, the segment is likely a straight stroke and is
directly connected; if there are three or more, the region likely contains a junction, and the
stroke center is adjusted to the densest 3x3 subregion; if only one endpoint is detected, it
is connected to the center directly.

This recursive procedure produces a compact, vectorized representation of each character,
capturing key structural features such as stroke direction, endpoints, and junctions. The
output is a set of polylines approximating the pen movement, making it highly suitable
for robotic arm execution. Because Chinese characters predominantly consist of linear
strokes and junctions, this method effectively transforms static image data into action-
able motion trajectories, thereby bridging the gap between font generation and physical
handwriting.

Table 2: R/V Table: Pen Trajectory Extraction System

Requirement

Verification Procedure

The system must convert
a 128x128 grayscale image
into a binary skeleton with
stroke width of 1 pixel and
connectivity preserved.

Visualize skeleton overlay on original im-
age and use a flood-fill-based test to con-
firm that all stroke regions remain con-
nected post-skeletonization.

The recursive stroke trac-
ing must produce poly-
lines covering > 95% of the
skeleton pixels.

Count total skeleton pixels and compare to
the union of all pixels along output poly-
lines. Confirm coverage is at least 95%.

The system must iden-
tify endpoints and junc-
tions with £2 pixel toler-
ance from ground truth la-
bels.

Compare system output with manually
labeled ground-truth junction/endpoints
across 100 characters. Confirm spatial off-
set does not exceed 2 pixels for over 98% of
points.

Vectorization output must
be completed within 300
ms per character on av-
erage for real-time robotic
control.

Measure processing time across 100 test im-
ages. Report mean and standard deviation.
Verify average time is < 300 ms.

2.3.3 Robotic Handwriting Subsystem

The Robotic Handwriting Subsystem is responsible for executing precise two-dimensional
handwriting motions and controlling the pen’s vertical contact with the writing surface.
To achieve this, we implement a CoreXY mechanism driven by three stepper motors: two
for planar movement (X and Y) and one for the Z-axis (pen actuation).
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* CoreXY Motion Platform: CoreXY is a type of Cartesian motion system optimized
for speed, precision, and mechanical efficiency. Instead of assigning one stepper
motor per axis, CoreXY uses two motors operating in tandem over a system of belts
and idlers to control motion in both X and Y directions. Motor A and Motor B op-
erate together or in opposition to create diagonal, vertical, or horizontal movement.
This results in lower moving mass (only the toolhead moves), faster motion, and
reduced vibration. We use two NEMA 17 stepper motors with 1.8° resolution (200
steps/rev), driving GT2 belts through 20T pulleys, providing a theoretical spatial
resolution of 0.1 mm or better.

* Pen Actuation Mechanism (Z-axis): A third stepper motor with a lead screw actu-
ator or cam linkage is used to raise and lower the pen. This allows the pen to lift
when transitioning between strokes or repositioning. The vertical axis has a limited
travel range (e.g., 5-10 mm), and the motor will be configured with software end-
stops to prevent over-travel. A microswitch or optical endstop will be mounted for
homing the Z-position.

* Mechanical Frame and Bearings: The structural frame is assembled from aluminum
extrusions (e.g., 2020 profile) and supported by V-slot wheels or linear rails to re-
duce backlash and improve repeatability. The CoreXY idler pulleys are mounted on
machined plates to maintain belt tension and geometric symmetry.

* Trajectory Execution: The stroke trajectories are provided in G-code format gen-
erated by the Image-to-Stroke Converter subsystem. This G-code is parsed and
executed by the FluidNC firmware running on the ESP32 microcontroller, which
generates the step and direction signals in real time.

* Precision Targeting: Based on 1.8°/step motors and 20-tooth GT2 pulleys (2 mm
pitch), each step moves the belt by 0.1 mm. Microstepping via TMC2209 drivers
(configured for 1/16 or 1/32 microstepping) allows effective resolutions of 0.00625-0.003125
mm per microstep, greatly enhancing smoothness and detail fidelity.

This subsystem fulfills the high-level requirement of producing handwritten output with
+0.1 mm accuracy, while maintaining smooth, lifelike motion and sharp stroke transi-
tions.

2.3.4 Communication and Control Subsystem

The Communication and Control Subsystem bridges the data pipeline between high-level
stroke generation and the low-level motor signals required for mechanical execution. It
is built around the ESP32 microcontroller and the open-source FluidNC firmware, which
enables parsing and real-time execution of G-code commands.

e ESP32 Microcontroller: The ESP32-WROOM module serves as the central process-
ing unit for the robot. It features dual-core Xtensa processors and hardware periph-
erals (UART, SPI, PWM, Wi-Fi, Bluetooth), making it ideal for embedded motion
control. The ESP32 handles:
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- Receiving stroke data via UART, Wi-Fi, or Bluetooth

— Interpreting G-code commands (positioning, pen up/down)
— Generating step/direction signals for all three motors

— Monitoring limit switches and emergency stop signals

¢ FluidNC Firmware: FluidNC is a lightweight G-code interpreter and motion con-
trol firmware designed for CNC and 3D printing applications on ESP32. It offers:

— G-code streaming from SD card or over serial /network

— Configuration of CoreXY kinematics with high-speed planning
- Support for spindle/laser/pen tool types with Z-axis lift

— Runtime adjustable feedrates, acceleration, and homing

Configuration is handled through a YAML file uploaded to the ESP32 via the Flu-
idNC web interface. Axes are mapped to specific GPIO pins, with real-time step
rates reaching over 50 kHz per axis.

* Motor Driver Interface: Step/direction signals are sent from ESP32 GPIOs to TMC2209
stepper drivers via direct wiring or UART-controlled interface. The TMC2209 drivers
provide microstepping, current control, and stall detection, ensuring smooth motion
and reduced noise.

¢ Stroke Command Protocol: The stroke data is converted into G-code format by the

Image-to-Stroke Converter. These G-code commands follow standard syntax (e.g.,
‘G1 X10 Y10 Z0 F1200) and specify:

— XY coordinates in mm
— Pen actuation states via Z-axis ("Z0" for down, ‘Z5’ for up)
— Feedrate in mm/min

Commands are streamed to the ESP32 in real-time or preloaded onto an SD card for
standalone operation.

This subsystem ensures high synchronization fidelity between command reception and
motor actuation, fulfilling latency and accuracy requirements. It also abstracts away
low-level control logic, allowing modular upgrades or replacements of stroke-generation
methods.

2.4 Tolerance Analysis
241 Few-shot Font Generation System

¢ Reference Sample Variations:

12



2.4.2

The performance metrics of the model improve with an increase in reference sam-
ples from 1 to 8, plateauing between 5 to 8 samples. The model exhibits high toler-
ance with 3 to 8 references but performs unsatisfactorily with fewer than 3 due to
insufficient style cues. Hence, at least 3 references are needed for reliable style trans-
fer, which limits the technique’s application in scenarios with very limited data.

Quality and Noise in Input Data:

The model is designed to work with high-quality reference images and has not been
tested on noisy inputs. The style encoder’s ability to handle noise may be limited
due to its reliance on precise feature extraction from clean images. It is crucial for us
to accurately extract and segment user-provided inputs to yield outputs that contain
the user’s stylistic font for the model’s use.

Training Parameters and Resource Intensity:

The model’s training process involves substantial resources, including large batch
sizes and many iterations. The model likely has low tolerance for reduced train-
ing settings, as these could disrupt convergence and affect the stability of the GAN
training. This indicates a high demand for computational resources during training.

Robotic Handwriting & Communication Subsystem

Mechanical Tolerance: Precision in handwriting replication depends critically on
mechanical tolerances. Rails and belts/screws must ensure minimal backlash and
slippage. Any mechanical tolerance exceeding +0.1 mm may visibly distort hand-
writing. Careful design and routine calibration are required.

Timing and Signal Accuracy: Stepper motors rely on precise timing of control sig-
nals. Variations greater than 1 ms in signal generation or processing can degrade
handwriting quality. This subsystem requires stringent synchronization between
the ESP32 signals and the motor response, necessitating real-time firmware opti-
mization.

Communication Stability: The subsystem’s performance is sensitive to communi-
cation reliability. If communication latency or packet loss exceeds thresholds (0.1%),
pen movements may become irregular, resulting in discontinuities or unintended
strokes. Robust error-checking protocols and efficient data encoding should miti-
gate these risks.

13



3 Cost and Schedule

3.1 Cost Analysis

Labor Cost: We assume a reasonable undergraduate engineering rate of $40/hour. Each
team member contributes approximately 100 hours over the course of the semester.

¢ Labor cost per member = $40/hour x 100 hours = $4,000
e Total labor cost (4 members): $16,000

Table 3: Parts Cost Breakdown

Part Manufacturer | Part Number Qty | Cost (CNY)
42mm Stepper Motors Generic 42BYGH47 3 72.00
GT2 Belts + Pulleys Generic GT2-6mm 1 set 20.00
Linear Axis Generic 8mm 2m 10
Linear Bearings Generic LM8UU 4 5
3D Printed Parts In-house — — 40
Power Supply MeanWell LRS-100-24V4.16A | 1 30
Custom PCB & electronic components | JLCPCB — 1 250
Misc Hardware (screws, wires) — — — 10.00
Total 437~ $60.0

Parts and Components:

Grand Total:
e Labor: $16,000
e Parts: $60
¢ Total Estimated Cost: $16,060
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3.2 Schedule

Table 4: Project Schedule by Week
Week | Milestone

14 Apr. | 3D modeling of the robot

14 Apr. | Train few-shot font generation model, evaluate output
quality

14 Apr. | Implement character segmentation, font preprocess-
ing pipeline

18 Apr. | Implement stroke extraction and G-code generator

18 Apr. | CoreXY mechanical assembly and ESP32 driver board
fabrication

18 Apr. | PCB soldering assembly

21 Apr. | Integrate hardware with FluidNC firmware and estab-
lish communication

21 Apr. | Testing, debugging, and validation

Task Sharing: Team members will collaborate on all subsystems, with focus areas di-
vided as follows:

* Zhixiang: Font generation, preprocessing pipeline, software integration

¢ Zifan: Mechanical assembly, ESP32 firmware, control hardware, PCB design & sol-
dering

¢ Xuancheng: PCB validation, testing, User Interface Design

¢ Mingchen: Data point generation, User Interface Design

4 Discussion of Ethics and Safety

4,1 Ethical Considerations

The handwriting robot system presents several ethical considerations due to its ability to
replicate personalized handwriting styles. One primary concern is the potential misuse
for document forgery or impersonation. To mitigate this risk, we propose the follow-
ing:

¢ Implement user authorization before accepting handwriting input or generating
outputs.
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Embed subtle digital watermarks in stroke data to allow traceability of generated
content.

Restrict the use of this tool to offline, user-verified environments to avoid mass im-
personation scenarios.

Another critical ethical aspect involves user data privacy. Handwriting is considered a
form of biometric information. Therefore, we will:

4.2

Obtain explicit consent for collecting and using user handwriting samples.
Store all data locally, encrypted on the host system.

Comply with data protection standards such as GDPR in handling personal biomet-
ric data.

Safety Considerations

The robot includes moving mechanical parts and electronic components that could pose
risks during operation. Our safety strategy includes the following elements:

Mechanical Safety: The CoreXY frame and motion subsystem will include limit
switches at all axes and physical bumpers to prevent over-travel.

Emergency Stop: A physical emergency stop button will be placed within easy
reach to immediately disable all motor drivers.

Firmware Limits: FluidNC firmware will be configured with software-defined max-
imum velocities, accelerations, and travel limits.

Electrical Safety: The ESP32 control board and stepper motor drivers will be en-
closed in a protective case. Wiring will be routed through secure channels to prevent
short circuits.

Component Durability: Belts and rails will be regularly inspected for wear, and a
maintenance log will be maintained throughout the testing phase.

These measures ensure the system adheres to IEEE ethical guidelines and prioritizes both
user safety and responsible technology deployment.
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