
ECE 445

SENIOR DESIGN LABORATORY

DESIGN DOCUMENT

Long-horizon Task Completion with

Robotic Arms by Human Instructions

BINGJUN GUO (bingjun3)

QI LONG (qilong2)

QINGRAN WU (qingran3)

YUXI CHEN (yuxi5)

(alphabetically)

Sponsor: Gaoang Wang, Liangjing Yang

TA: Tielong Cai, Tianci Tang

April 14, 2025

1 Introduction

1.1 Problem

The application of robotic arms for complex, long-horizon tasks such as assembling, cook-

ing, and packing is rapidly expanding due to their potential to improve efficiency and

reduce human labor. However, executing these multi-step operations consistently re-

mains challenging. Such tasks require robots to reason about the interdependencies be-

tween subtasks, adapt to dynamic environmental conditions, and integrate continuous

feedback effectively. Current robotic manipulation methods struggle with decompos-

ing and chaining task into manageable actions and maintaining robustness throughout

execution. Moreover, many existing robotic systems are limited to predefined scenar-

ios with known object interactions, making them unsuitable for dynamic environments

where conditions frequently change. To overcome these limitations and enable robotic

arms to autonomously manipulate objects based on real-time feedback, there is a criti-

cal need for a comprehensive framework that integrates perception, planning, and acting

intelligence effectively.

For example, eat and drink are essential for our daily lives, but it is not easy for everyone.

Driven by the real-world problem that people with disabilities such as physical impair-

ments may not be able to serve themselves. Simple actions in cooking, such as packing a

sandwich, putting in sauces, moving a pizza into a microwave, may be difficult for them,

but easy for just a single robot arm. Considering this, We have chosen cooking as the real-

world task for implementing our technique of long-horizon task completion with robotic

arms based on human instructions.

1

1.2 Solution

Figure 1: Visual Aid

Our proposed solution addresses the challenges associated with long-horizon robotic ma-

nipulation tasks by integrating Perception, Planning, and Acting Intelligence into a cohe-

sive framework. At a high level, our approach leverages advanced sensing technologies

alongside intelligent planning algorithms to enable a robotic arm (specifically UR3e) to

autonomously execute complex tasks based on human instructions.

In detail, our solution begins with perception: an RGB camera mounted on the top of the

scene captures images of the environment and objects involved in the task. Computer

vision techniques process these images to accurately identify and localize objects. Next,

in the planning stage, we utilize advanced language models capable of interpreting se-

mantic instructions provided by human users alongside processed visual data to generate

logical sequences of subtasks. For each subtask, the machine learning model is trained for

giving out feasible actions the robot arm should take. Finally, during the acting stage, the

robotic arm executes planned movements guided by continuous feedback from visual

and tactile sensors integrated into a closed-loop control system.

2

1.3 High-level Requirements List

1.3.1 Perception Accuracy

The system must achieve at least 90% accuracy in identifying and localizing target objects

within its operating environment. Specifically, it should be able to recognize and locate

over 20 kinds of common ingredients such as apple, banana, tomato and tools such as

plate and pot in our circumstance.

1.3.2 Planning Efficiency

The robot must generate actionable multi-step operation plans within 5 seconds after re-

ceiving human instructions. When the plan is being executed, it should be able to modify

the plan or next step to align with real world conditions.

1.3.3 Control and Execution Robustness

The robotic arm must successfully complete at least 90% of attempted long-horizon tasks

without collisions or critical errors under varying environmental conditions.

3

2 Design

2.1 Overall Design

Figure 2: Block Diagram for the Whole System

The overall system consists of five modules, namely User, Perception, Planning, Control,

and Action.

4

2.2 Physical Design

We are using the UR3e robotic arm as our base platform and will design a custom two-

finger parallel gripper for object manipulation. The suction-based end effector currently

available in our lab is limited to objects with regular shapes or flat surfaces, making it

unsuitable for items such as apples and bananas. To overcome this limitation, we plan to

build a two-finger gripper driven by a motor and gear sets to handle a wider variety of

objects.

A preliminary model of this gripper is shown in the figure below:

Figure 3: Preliminary Model of Gripper

In this design, we will develop a PCB to control the motor, which in turn actuates the

gripper to manipulate objects. The main structure will be 3D printed, with additional

parts made from acrylic sheets.

To improve the reliability of object manipulation and ensure that the gripper successfully

captures a variety of objects, we plan to use silicone or other high-friction materials in the

5

grippe. In addition, FSR402 force sensors (Figure 4) will be incorporated into the two-

finger parallel gripper design. The addition of the FSR402 sensor will provide feedback

on whether the gripper has applied adequate force to securely grasp an object.

Figure 4: Force Sensor (FSR402)

The FSR402 sensors will be strategically positioned on the inner surfaces of each gripper

finger, where they will make direct contact with the object being manipulated. This place-

ment allows the sensors to detect the force exerted by the gripper when it closes around

an object. The sensor outputs an analog signal, which is proportional to the amount of

force applied to the object. The signal from the FSR402 will then be transmitted to the

control module to confirm whether the object has been properly grasped, the result will

be shared with the planning module to make adjustment when needed.

6

2.3 Subsystems

2.3.1 User Module

Figure 5: User Interface

a) Overview: This is the interface of the interaction. The user can input a high-level

instruction in natural language using the keyboard, for example, ’Make a sandwich’. The

planning process generated from the Planning Module will be output to the User Module

and displayed on the computer screen. When the task is finished, a ”Done” message will

be prompted to the user module and displayed on the computer screen.

7

b) Requirements and Verification

Requirements Verification

The user input should be a high-level task

that cannot be solved in less than 10 unit

steps.

A. Check by human intuition.

The user input can be received by the Con-

trol Module

A. Input an instruction from keyboard.

B. Check the input to the Chain-of-Thought

Reasoner, the prompt should contain the

user instruction.

The thinking process and ”Done” signal

can be displayed on computer screen.

A. Input an instruction from keyboard.

B. Run our whole system and check as

the process goes on, the plan and the final

”Done” signal is displayed on the screen.

8

2.3.2 Perception Module

Figure 6: Object Locator

a) Overview: It process the signals received from the working environment, which will

then be used for planning and acting. It includes two major components: Object Locator,

and Sensual Circuit.

b) Functionalities: Object Locator is responsible for identifying objects of interest in a

scene and labeling them with semantic classification (e.g., a tomato) and region (a bound-

ing box). It is improved based on the Grounding DINO model, which follows a pipeline

that firstly embed the text description and the whole image, then use a feature enhancer

to learn mutual features and finally decode it in a cross-modality way. The Sensual Cir-

cuit is responsible for processing the signal from the force sensor on the gripper into a

binary success/fail signal and transmitting it to the planning module.

c) Workflow: Requested by the planning module, when a subtask is generated, an image

of the scene will be processed by Object Locator, whose annotation result will be sent to

VLM (Planning Module) for planning. After each time the robot arm finishes carrying out

an action, the snapshot of the scene will be processed by the Object Locator in the same

9

way as above. The sensor circuit will also process the signal from the force sensor on the

gripper and send out binary signal to the planner as a feedback.

d) Requirements and Verification

Requirements Verification

The input should be supported by a RGB

camera.

A. Check the Object Locator’s input con-

tains image from RGB camera.

The input should be supported by a force

sensor.

A. Check the Object Locator’s input con-

tains signal from force sensor.

Object Locator needs to be able to identify

at least 20 categories of cooking stuff, in-

cluding ingredients and cookers, finishing

a single computation within 5 seconds.

A. Find an open source object detection

test dataset which includes 20 categories of

cooking stuff and 400 images in total.

B. Run the Object Locator model on this test

dataset, verify that it takes less than 2000

seconds in total.

C. Check that the Top-1 accuracy of the re-

sult should be more than 80 percent.

The force sensor should be able to detect a

force range between 0 and 10 N with a res-

olution of 0.1 N.

A. Test the force sensor with known

weights within the specified range and

check if the readings match the expected

force values within the accuracy tolerance.

10

2.3.3 Planning Module

Figure 7: Planning Module

a) Overview: The Planning Module is responsible for interpreting user-provided high-

level instructions and decomposing them into detailed, actionable subtasks. It bridges

the user interface and the robotic control system by combining reasoning capabilities and

vision-language understanding to generate feasible spatial motion plans.

b) Functionalities: The Planning Module serves several critical functions. First, it inter-

prets the general instruction received from the I/O Device in the User Module and uses

the Chain-of-Thought Reasoner to decompose that instruction into a series of detailed

subtasks. This enables the system to transform abstract user goals into step-by-step op-

erations that the robot can perform. Meanwhile, it integrates perceptual input from the

environment. It receives object-level scene descriptions from the Perception Module, al-

lowing it to reason about the current state of the environment and the spatial relationships

11

between objects. This information is essential for contextual and goal-directed reason-

ing. With the subtasks and perceptual data in hand, the Vision-Language-Action Model

within the Planning Module generates precise 7D spatial motion plans, which include

three-dimensional translations and rotations. These plans define how the robot should

move in space to complete each subtask. Finally, the Planning Module also supports a

feedback mechanism. It sends the proposed subtasks back to the user via the I/O Device

for confirmation, ensuring that the system’s interpretation of the instruction aligns with

user’s intent before any physical actions are executed.

c) Workflow: The workflow of the Planning Module begins when a user issues a general

instruction through the I/O Device. This instruction is passed to the Chain-of-Thought

Reasoner, which analyzes it and breaks it down into a sequence of detailed subtasks that

are logically and temporally structured. Simultaneously, the Planning Module gathers

scene information from the Perception Module, which provides a detailed understanding

of the environment, including object bounding boxes and scene context. Once the in-

struction has been decomposed and the scene is understood, the Vision-Language-Action

Model uses this combined input to generate a 7D spatial motion plan and send it to the

Control Module. This plan defines the robot’s intended movements in space, including

how to reach, grasp, or manipulate objects as specified by the user’s instruction. Before

execution, the generated subtasks and motion plan are sent back to the user via the I/O

Device for confirmation, and once confirmed, the plan is forwarded to the Computing Ter-

minal in the Control Module, which then coordinates the robot’s physical actions based

on the planned trajectory.

12

d) Requirements and Verification

Requirements Verification

The Planning Module must correctly de-

compose high-level user instructions into

subtasks that are ordered in valid and fea-

sible logic.

A. Unit Testing of Chain-of-Thought Rea-

soner using predefined instructions and ex-

pected decompositions.

B. Compare generated subtasks with

ground truth annotations in benchmark

datasets.

C. Human-in-the-loop evaluation, where

users assess whether the subtasks match

their intent.

D. Check for logical coherence and com-

pleteness across subtasks (e.g., no missing

steps or contradictions).

The module must generate plans that are

consistent with the current scene, as de-

scribed by the Perception Module.

A. Inject errors in object positions and

check that the planner reacts or fails grace-

fully.

B. Cross-validate spatial plan with ob-

ject bounding boxes and affordances (e.g.,

reachable positions).

C. Consistency checks between planned

motions and scene descriptions to detect

mismatches.

13

The planner must produce physically ex-

ecutable motion plans for the robot in the

form of 7D poses (3D position + 4D quater-

nion orientation).

A. Run kinematic feasibility tests to ensure

each 7D pose is reachable by the robot arm.

B. Check against robot’s joint limits to en-

sure motion commands are physically exe-

cutable.

The module must present planned sub-

tasks to the user and incorporate confirma-

tion before execution.

A. Ensure the system pauses execution un-

til confirmation is explicitly received.

B. Track versioning of task plans before and

after user confirmation to detect changes.

C. Test for rejection handling, ensuring re-

vised plans can be generated upon user

feedback.

The Planning Module must effectively in-

terface with upstream (perception) and

downstream (control) modules.

A. Interface consistency tests: Check that

input/output formats match module ex-

pectations.

B. Latency measurements to ensure that

planning happens in real-time or within ac-

ceptable bounds.

C. Integration testing with the full pipeline

under various scenarios (e.g., occlusions,

moving targets).

14

2.3.4 Action Module

Figure 8: Action Module

a) Overview: It interacts with the real environment to execute the tasks. It includes

two components: UR3e Robot and a gripper, the end effector, which together enable the

robotic system to manipulate objects and complete the task.

b) Functionalities: The UR3e robot receives joint movements from the Control Module to

reach the desired location, which then enables the mounted gripper to conduct manipu-

lation to the target object. The Optical Sensor captures the distance between gripper and

object.

c) Workflow: When the Planning Module generates action code, it sends these commands

to the Robot Arm, which decode the action via inverse dynamic movement and adjusts

its joints and end effector position according to achieve the desired positions and orienta-

tions. Specifically, the Planning Module sends these commands to the PCB in the specially

designed hand, which controls the motor’s motion and subsequently controls the grip-

per’s motion. When the robot finish each single action, the RGB Camera will stream RGB

images to the Perception Module for object tracking and the optical sensor will stream

gripping signal to the Perception Module for verification. At the start and completion of

each sub-goal, the camera captures a snapshot that is processed by the Perception Module

15

for updated object detection, which will be used in the Planning Module.

(a) UR3e Robot (b) Gripper

d) Requirements and Verification

Requirements Verification

The Robot Arm can pick up objects with

different sizes (10 mm to 50 mm).

Place three objects with sizes (lengths) 10

mm, 30 mm, 50 mm and test if the Robot

Arm can successfully pick them up.

The Robot Arm can pick up objects up to

0.25 kg.

Place an 0.25 kg object and test if the Robot

Arm can successfully pick it up.

The Robot Arm can operate safely. A. Place an object at three different places

and test if the Robot Arm can reach it with-

out collision .

B. The system can pause immediately for

unexpected situations (e.g., people try-

ing to touch the object which is currently

grasped by the gripper).

16

2.3.5 Control Module

Figure 10: Control Module

a) Overview: The Control Module is responsible for managing communication, synchro-

nization, and information exchange between all other modules in our system. It serves as

the centralized control terminal, ensuring seamless coordination and execution of tasks.

This module is built around a Raspberry Pi, which runs the ROS (Robot Operating Sys-

tem) framework, enabling communication between various sensors, cameras, motors,

and model server in real-time.

We selected the Raspberry Pi 4 (Figure 11 as the central processing unit for our smart

assistive guide stick due to its robust computational power, extensive interface compati-

bility, and ability to manage complex logic-based tasks. Powered by a 1.5GHz quad-core

Cortex-A72 processor and 4GB of RAM, the Raspberry Pi 4 efficiently handles real-time

data processing from the force sensor, motor feedback and camera input. In addition,

it supports a variety of communication interfaces, including UART, I2C, SPI, GPIO, and

MIPI CSI, ensuring reliable and seamless connectivity with peripheral devices.

b) Functionalities: The Control Module has the following key responsibilities:

• Centralized Coordination: It acts as the central hub where all data from the Per-

ception, Planning, Action, and other modules are processed and exchanged. The

17

Figure 11: Raspberry Pi 4

Raspberry Pi integrates all system components via ROS topics, services, and actions.

• Task Scheduling and Synchronization: The Control Module schedules tasks in the

correct sequence and ensures synchronization between modules. For example, it

ensures the Perception Module’s data is received before the Planning Module can

generate the next set of actions.

• Failure Handling: If there is any discrepancy or failure detected by the Verifier or

other components, the Control Module can initiate a failure recovery mechanism,

such as reprocessing a task or notifying the system for a new plan.

c) Workflow: The Control Module is the central communication platform for all system

modules. It runs ROS and establishes communication channels for data transfer:

When the Planning Module generates a new task or subtask, the Control Module relays

the corresponding ROS command to the Action Module for execution. The Action Mod-

ule then completes the task (e.g., moves the Robot Arm to a specific position), while the

Control Module monitors the process, receives data from the sensors, and informs the Per-

ception Module for real-time feedback. Simultaneously, the Control Module processes the

feedback data from the Perception Module to update the task status and make decisions,

18

passing the updated information to the Planning Module for the next step. If a failure

occurs (e.g., the object is not detected properly), the Control Module can send recovery

instructions to the Action Module or reset the process via the Planning Module.

d) Requirements and Verification

Requirements Verification

The system should allow communication

between all modules (Perception, Plan-

ning, Action, etc.).

Test if the Raspberry Pi 4 can send and

receive messages between modules using

ROS.

The Raspberry Pi should process data from

sensors, motors, and cameras in real-time.

Check if the Raspberry Pi 4 processes input

data (e.g., from sensors and cameras) with-

out delay.

The system should handle failures or errors

during operation.

Simulate an error (e.g., object not detected)

and check if the Control Module initiates

recovery actions.

19

2.4 Tolerance Analysis

2.4.1 Perception Module

For Perception Module, by training, the Object Detection is capable of correctly recogniz-

ing at least 30 types of objects, given current open-source dataset COCO [1] contains 80

categories and YOLO algorithm [2] can achieve high accuracy (68.9 mAP at [0.5]).

2.4.2 Planning Module

For Planning Module, current Large Language Models (e.g., ChatGPT, Doubao) are capa-

ble of reasoning about images for text generation and current VLA Models (e.g., Open-

VLA [3]) are capable of predicting robot arm movements.

2.4.3 Action Module

For Action Module, 3D-printed and acrylic structures can withstand substantial forces

without damage, and collision-free algorithms help prevent severe mechanical damage.

Additionally, using silicone with a patterned surface increases the coefficient of friction,

which enables the gripper to lift heavier objects with reduced risk of slipping.

2.4.4 Control Module

For the Control Module, the Raspberry Pi 4 should be=- capable of managing real-time

communication and should be able to handle errors and failures, initiating recovery ac-

tions when necessary.

2.4.5 Remainings

The critical part is that it is unknown whether the pretrained Large Models on open source

datasets can be adapted to our laboratory scene, which poses a risk.

20

3 Cost and Schedule

3.1 Cost Analysis

Cost Item Unit Cost (USD) Quantity Total Cost (USD)

Hardware Components

Raspberry Pi 4 $45.00 1 $45.00

PCB Printing $20.00 3 $60.00

3D-Printed Gripper $300.00 1 $300.00

Force Sensors (FSR402) $10.00 2 $20.00

UR3e Robotic Arm $0.00 1 $0.00

Hardware Subtotal $425.00

Labor

Engineering Labor $15.00/hr 200 hrs $3,000.00

Total Project Cost $3,425.00

Table 1: Detailed Prototype Cost Breakdown

3.2 Schedule

Table 2: Project Timeline and Team Responsibilities

Week Qi Long Bingjun Guo Yuxi Chen Qingran Wu

Phase 1: Research & Investigation

3/17 Literature Re-

view: Guiding

Long-Planning

with VLM

Literature

Review: Hierar-

chical Planning

Foundation

Model

Literature Re-

view: Optimal

force sensor

placement for

gripper design

Investigate

common grip-

per design for

robot arm

Continued on the next page

21

Table 2 – Continued from previous page

Week Qi Long Bingjun Guo Yuxi Chen Qingran Wu

3/24 Literature Re-

view: VLA

models, includ-

ing OpenVLA

Literature Re-

view: Improved

VLA strategies,

including ECoT

Investigate PCB

design for sen-

sor integration

Build the initial

CAD model of

the gripper

3/31 Set up server

environments

and experiment

on OpenVLA

model

Set up server

environments

and validate in-

verse kinematic

method

Collaborate

with Qin-

gran sensor

placement and

gripper design

3D-print, as-

semble, test

the gripper, and

collaborate with

Yuxi on sensor

placement

Phase 2: Design

4/7 Team Collaboration: Design Document Composition

Perception

Module

Planning Mod-

ule

Planning Mod-

ule

Action Module

Continued on the next page

22

Table 2 – Continued from previous page

Week Qi Long Bingjun Guo Yuxi Chen Qingran Wu

Phase 3: Implementation

4/14 Implement

ECoT pipeline

and experiment

on ECoT-VLA

model

Experiment the

inverse kine-

matic method

in lab environ-

ment

Create prelimi-

nary PCB lay-

out

Improve the de-

sign and con-

tinue to assem-

ble and test the

gripper

4/21 Implement Ob-

ject Locator and

verify on testset

Start bonding

the ECoT-VLA

pipeline to the

offline exe-

cution flow;

feedback loop

for user confir-

mation

Write ROS

nodes for force

sensors

Complete the

assembly and

test the func-

tionality

4/28 Test Object Lo-

cator and ECoT-

VLA model

Adapt and fine-

tune the model

regarding the

specific tasks;

force feedback

loop

Execute end-to-

end system test-

ing on ROS and

finalize PCB de-

sign

Figure out the

connection

between the

gripper and the

robot arm

Continued on the next page

23

Table 2 – Continued from previous page

Week Qi Long Bingjun Guo Yuxi Chen Qingran Wu

Phase 4: Testing & Integration

5/5 Integration Testing

Software work-

flow testing

with Bingjun

Software work-

flow testing

with Qi

Hardware

workflow

testing with

Qingran

Hardware

workflow test-

ing with Yuxi

5/12 Full System Implementation

5/19 System Testing and Debugging

24

4 Ethics and Safety

4.1 Ethical Issues

4.1.1 Development-Stage Ethical Concerns

The ACM Code of Ethics[4] emphasizes honesty about the capabilities and limitations of

a system. To avoid misrepresenting the capabilities of our robot, we will specify its ap-

plication scenarios, operational boundaries, and potential failing cases. In the meantime,

since the planning stage of our robot is data-based, bias in training data that could result

in unfair or unpredictable behavior is possible. Following IEEE and ACM guidelines, we

will take fairness in consideration when determining our planning model (VLM) and test

under diverse circumstances to mitigate bias. The IEEE Code of Ethics [5] also stresses

that developers should accept responsibility for their technology’s consequences, as the

ACM Code emphasize on the robustness and usability of the system. To promote the

sustainable development of our project, we will include logging and traceability features

during the development to allow both developers and users to diagnose errors and at-

tribute responsibility.

4.1.2 Misuse and Unintended Consequences

The project could be misused for unsafe or malicious tasks such as unauthorized modifi-

cations or weaponization. Responding to both the IEEE Code’s concern [5] about physical

abuse and ACM Code’s[4] valuing on the public good, we will strictly restrict our robot’s

capability to conduct physical harm through e.g. limit the maximum operation speed or

rejecting malicious language instructions. Another risk is that users might overestimate

the robot’s ability, leading to dangerous reliance on automation. We will provide clear

user guidelines and training that ensure the users remaining awareness of the robot’s

limitations, responding to the ACM Code’s requirement to foster public awareness of our

technology.

25

4.2 Safety and Regulatory Standards

Safety is to be attached with primary significance during the process of both development

and utilization. During the process, the robot arm could accidentally harm developers or

users due to unexpected movements. In addition, bugs or adversarial commands caused

by illusions of LLM could lead to unsafe robot actions. Below are several notable federal

and industry safety standards to consider.

4.2.1 ISO 10218-1/2[6]

This standard mandates safety requirements for robotic arms, including emergency stop

mechanisms, protective barriers, and collaborative safety features. The project will com-

ply with these safety measures to ensure operational safety.

4.2.2 ISO/TS 15066[7]

As the project involves a robot interacting with human instructions, this standard pro-

vides guidelines on safe human-robot interaction, ensuring safe speeds, forces, and

workspace conditions. Our kinetic and dynamic interpreter will comply to a preset safe

constraint for motion output, and we will ensure that the instructions are given from a

safe distance with respect to the robot’s workspace.

4.2.3 ANSI/RIA R15.06[8]

This U.S. standard aligns with ISO 10218 and includes risk assessments, safety interlocks,

and safe operation zones, all of which will be incorporated into the project’s design.

4.2.4 Robot Manipulator General Safety Procedures[9]

Additional to the social standards, Illinois Robotics Group impose necessities to check the

damage condition of robot arms and strict clothing regulations. Also, before the testing

26

or instructing start, there should be loud and clear announcement that raise awareness

and mental alert in the vicinity of everyone.

27

References

[1] T.-Y. Lin, M. Maire, S. Belongie, et al., Microsoft coco: Common objects in context, 2015.

arXiv: 1405.0312 [cs.CV]. [Online]. Available: https://arxiv.org/abs/1405.0312.

[2] R. Khanam and M. Hussain, Yolov11: An overview of the key architectural enhancements,

2024. arXiv: 2410.17725 [cs.CV]. [Online]. Available: https://arxiv.org/abs/2410.

17725.

[3] M. J. Kim, K. Pertsch, S. Karamcheti, et al., Openvla: An open-source vision-language-

action model, 2024. arXiv: 2406.09246 [cs.RO]. [Online]. Available: https://arxiv.

org/abs/2406.09246.

[4] ACM. “”ACM Code of Ethics”.” (2018), [Online]. Available: https://www.acm.org/

code-of-ethics (visited on 03/14/2025).

[5] IEEE. “”IEEE Code of Ethics”.” (2016), [Online]. Available: https://www.ieee.org/

about/corporate/governance/p7-8.html (visited on 03/14/2025).

[6] ISO. “”Industrial robot safety bundle”.” (2025), [Online]. Available: https://www.

iso.org/publication/PUB200102.html.

[7] ISO. “”Robots and robotic devices — Collaborative robots”.” (2016), [Online]. Avail-

able: https://www.iso.org/obp/ui/#iso:std:iso:ts:15066:ed-1:v1:en.

[8] ISHN. “”ANSI/RIA R15.06-2012- The industrial robot safety standard”.” (2018), [On-

line]. Available: https://www.ishn.com/articles/107815-ansiria-r1506-2012--the-

industrial-robot-safety-standard.

[9] I. R. Group. “”Robot Manipulator Safety Rules”.” (), [Online]. Available: https://

robotics.illinois.edu/lab/robot-manipulator-safety-rules/ (visited on 03/14/2025).

28

https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/2410.17725
https://arxiv.org/abs/2410.17725
https://arxiv.org/abs/2410.17725
https://arxiv.org/abs/2406.09246
https://arxiv.org/abs/2406.09246
https://arxiv.org/abs/2406.09246
https://www.acm.org/code-of-ethics
https://www.acm.org/code-of-ethics
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.iso.org/publication/PUB200102.html
https://www.iso.org/publication/PUB200102.html
https://www.iso.org/obp/ui/#iso:std:iso:ts:15066:ed-1:v1:en
https://www.ishn.com/articles/107815-ansiria-r1506-2012--the-industrial-robot-safety-standard
https://www.ishn.com/articles/107815-ansiria-r1506-2012--the-industrial-robot-safety-standard
https://robotics.illinois.edu/lab/robot-manipulator-safety-rules/
https://robotics.illinois.edu/lab/robot-manipulator-safety-rules/

	Introduction
	Problem
	Solution
	High-level Requirements List
	Perception Accuracy
	Planning Efficiency
	Control and Execution Robustness

	Design
	Overall Design
	Physical Design
	Subsystems
	User Module
	Perception Module
	Planning Module
	Action Module
	Control Module

	Tolerance Analysis
	Perception Module
	Planning Module
	Action Module
	Control Module
	Remainings

	Cost and Schedule
	Cost Analysis
	Schedule

	Ethics and Safety
	Ethical Issues
	Development-Stage Ethical Concerns
	Misuse and Unintended Consequences

	Safety and Regulatory Standards
	ISO 10218-1/2iso-10218
	ISO/TS 15066iso/its15066
	ANSI/RIA R15.06r15
	Robot Manipulator General Safety Proceduresuiuc-safety

	References

