
ECE 445

SENIOR DESIGN LABORATORY

DESIGN DOCUMENT

Robotic Arm Integrated into Wheelchair
with MR Interface

Team #12

XINGRU LU (xingrul2@illinois.edu)
YILIN WANG (yilin14@illinois.edu)
YUNYI LIN (yunyil3@illinois.edu)

YINUO YANG (yinuoy4@illinois.edu)

TA: Yun Long

April 14, 2025

Contents
1 Introduction 1

1.1 Objective and Background . 1
1.1.1 Goals . 1
1.1.2 Functions . 1
1.1.3 Benefits . 1
1.1.4 Features . 1

1.2 High-Level Requirements List . 2

2 Design 3
2.1 Block Diagrams . 3
2.2 Block Descriptions . 5

2.2.1 Customized End Effector . 5
2.2.2 Open Manipulator-P Robotic Arm . 5
2.2.3 Depth Camera . 8
2.2.4 Apple Vision Pro . 9
2.2.5 Mixed Reality Interface System . 10
2.2.6 Mobile Platform . 10

2.3 Software Flowchart . 11
2.4 ROS-Unity Integration . 12
2.5 Calculations: Inverse Kinematics . 13

3 Requirements and Verifications 15
3.1 Customized End Effector . 15
3.2 Open Manipulator-P Robotic Arm . 15
3.3 Depth Camera . 16
3.4 Mixed Reality Interface System . 16
3.5 Apple Vision Pro . 17
3.6 Mobile Platform . 17

4 Tolerance Analysis 18
4.1 End-Effector Position Error . 18
4.2 Head Movement Impact on Hand Tracking Accuracy 19
4.3 Latency in the System Pipeline . 20

5 Cost & Schedule 22
5.1 Cost . 22
5.2 Schedule . 23

6 Ethics and Safety 24
6.1 Safety . 24
6.2 Ethics . 24

6.2.1 Privacy and Data Protection . 24
6.2.2 User Autonomy and Accessibility . 24

References 25

ii

1 Introduction

1.1 Objective and Background

1.1.1 Goals

Wheelchair users often face significant challenges when interacting with objects beyond
their immediate reach, particularly behind them. Without external assistance, tasks such
as pressing buttons or navigating through environments with complicated surroundings
can become difficult. These difficulties are compounded when operating independently,
highlighting the need for supplementary support to simplify routine activities. Addition-
ally, wheelchair users may struggle with limited situational awareness, as their field of
view is primarily forward-facing. As a result, there is a pressing need for innovative solu-
tions that enhance both accessibility and autonomy, enabling wheelchair users to interact
more conveniently with their surroundings.

1.1.2 Functions

Our solution integrates a rear-facing camera that streams real-time visuals to a Mixed
Reality (MR) interface, allowing wheelchair users to gain visual awareness of their sur-
roundings, including blind spots behind them. Additionally, a robotic arm mounted at
the back of the wheelchair can be controlled through MR, enabling users to perform assis-
tive actions such as pressing buttons and interacting with objects beyond their physical
reach. This system enhances both situational awareness and independent mobility, pro-
viding a more intuitive and convenient way for users to navigate and interact with their
environment.

1.1.3 Benefits

Our solution helps people with wheelchairs by enhancing situational awareness and in-
dependent mobility. It provides real-time imagery with the Mixed Reality (MR) interface
via the rearview camera, allowing users to see blind spots and navigate more securely.
Additionally, Users can use the robotic arm, controlled by MR, to push buttons, for exam-
ple, to make it easier to perform everyday tasks independently. It gives users an easier
and more intuitive way to interact with the environment, ultimately resulting in greater
autonomy and accessibility.

1.1.4 Features

• Mixed Reality Integration: Combines real-time MR with assistive robotics, offering
an intuitive control experience.

• Enhanced Situational Awareness: A rear-facing camera provides live visuals of
blind spots, improving navigation.

• Extended Reach with Robotic Arm: The Open Manipulator-P allows users to inter-
act with objects beyond their grasp, such as pressing buttons behind them.

1

• Apple Vision Pro for Control & Feedback: Tracks hand movements for precise
robotic control and provides interactive feedback.

• Low Latency & Safety Focus: Ensures smooth operation without compromising
wheelchair stability.

1.2 High-Level Requirements List

• Precision: The robotic arm should reliably press buttons with a diameter of at least
35mm, which is a common size of elevator buttons. The force applied must be
sufficient to activate buttons without excessive pressure that could cause damage or
failure.

• Safety and Stability: Users should be able to see both the front and rear environ-
ments through Vision Pro, while also adjusting the robotic arm’s perspective to gain
a broader field of view.

• Reach: The robotic arm should be able to reach a height from 110cm to 160cm.

2

2 Design

2.1 Block Diagrams

Figure 1: Block Diagram

3

Figure 2: Physical Overview

Figure 3: Dimensions of OpenManipulator-P [1]

4

2.2 Block Descriptions

2.2.1 Customized End Effector

Figure 4: Sketch of Our End-effector Design

The Customized End Effector is a gripper-style clamp designed for basic interaction
tasks, such as pressing buttons, supporting tasks that require moderate accuracy but not
extreme precision. It is mounted mechanically on the Open Manipulator-P Robotic Arm
and operates based on the signals provided by the Mixed Reality Interface System.

A thin-film force-sensitive resistor (FSR) is mounted on the robotic end-effector to detect
contact force during interactions such as elevator button presses. Designed for 5 - 20 N
range, it ensures reliable actuation without excessive force that could cause damage to
objects.

A development board will act as the control unit for the end-effector and force sensor.
It processes the data from the sensor and controls the motor actuators to adjust the grip-
per’s force. The system also provides real-time display and monitoring of the applied
pressure.

2.2.2 Open Manipulator-P Robotic Arm

Open Manipulator-P Robotic Arm is powered by a 24V15A Power Supply and equipped
with a Customized End Effector to interact with the environment, such as to press but-

5

tons. It is physically mounted on the Mobile Platform Module (Wheelchair) and con-
nected to the Mixed Reality Module for feedback and control. The OpenMANIPULATOR-
P system relies on several key ROS packages to bridge Unity-based control interfaces
with low-level robotic execution. These packages collectively handle launch configura-
tion, message definition, motion planning, hardware control, and communication bridg-
ing.

Figure 5: ROS Package Dependencies for OpenMANIPULATOR-P System

i. open manipulator p The open manipulator p package serves as the main ROS launch
and configuration interface for the OpenMANIPULATOR-P. It provides high-level launch
files to initialize and manage the robot.

• Launch Files: Unified scripts to initialize the robot controller, state publisher, and
joint trajectory control services.

• Parameter Configuration: Loads URDF and control parameters into the ROS pa-
rameter server.

Role in the System: Acts as the central hub for bootstrapping the robot; Unity indirectly
uses this via roslaunch.

ii. open manipulator msgs The open manipulator msgs package defines custom ROS
message and service types tailored to the manipulator’s operation. These are essential for
sending and receiving structured commands from Unity.

6

• SetJointPosition.srv: Service definition for commanding joint angles with path tim-
ing.

• JointPosition.msg: Structured joint data including joint names, positions, and con-
trol scaling.

• TaskSpacePath.msg: Used for controlling the end-effector in Cartesian space.

Role in the System: Provides the message format for Unity → ROS communication and
is required to compile any Unity–ROS interface.

iii. robotis manipulator The robotis manipulator package implements a lightweight
motion planning and control framework, used internally by the OpenMANIPULATOR
controller. It contains classes and algorithms for kinematics, dynamics, trajectory genera-
tion, and actuator interfacing.

• Forward/Inverse Kinematics: Calculates pose from joint angles and vice versa.

• Trajectory Planning: Supports linear, cubic, and custom joint motion interpolation.

• Modular Actuator Interface: Abstract layer for hardware-agnostic actuator control.

Role in the System: Functions as the mathematical and logical backend of the manipu-
lator. It is not directly called from Unity, but it’s essential for executing Unity commands
properly.

iv. ROS-TCP-Endpoint The ROS-TCP-Endpoint is a ROS-side communication bridge
provided by Unity’s Robotics Hub. It enables bi-directional TCP/IP communication be-
tween Unity and ROS. Unity sends service requests or publishes messages to ROS via this
bridge.

• Service Server Interface: ROS receives Unity’s service calls (e.g., SetJointPosition).

• Message Publishing/Subscription: Allows Unity to publish to or subscribe from
ROS topics.

• Flexible Transport Layer: Uses TCP protocol for reliable, real-time data transfer.

Role in the System: Enables real-time command and feedback exchange between Unity
and ROS nodes—without it, Unity cannot communicate with the robot.

v. DynamixelSDK The DynamixelSDK is a low-level hardware communication library
used by Robotis devices. It provides the necessary interface to send and receive com-
mands from Dynamixel servo motors, which power each joint of the OpenMANIPULATOR-
P.

• Packet Protocol (1.0 / 2.0): Reliable serial communication over USB/UART.

• Synchronous Write/Read: Efficient multiple motor control and feedback.

• Cross-platform C/C++ API: Used by higher-level controller packages.

7

Role in the System: Acts as the hardware abstraction layer. The robot’s joints won’t move
without this library—even if the Unity command is received correctly.

2.2.3 Depth Camera

The Intel RealSense Depth Camera D435i is a high-performance depth-sensing camera
designed for applications requiring precise 3D vision, depth mapping, and motion track-
ing. It integrates an RGB sensor, stereo depth sensors, and an inertial measurement unit
(IMU) to provide synchronized depth, color, and motion data.

i. Stereo Depth Sensors

• Two high-resolution global shutter infrared (IR) sensors for accurate depth percep-
tion.

• Active IR projector for improved depth accuracy in low-light conditions.

• Depth resolution up to 1280×720 @ 90 fps (VGA @ 30 fps recommended for optimal
performance).

ii. RGB Sensor

• Full HD (1920×1080) color camera with a rolling shutter for high-quality 2D imag-
ing.

iii. Inertial Measurement Unit (IMU)

• Built-in 6-DOF IMU (accelerometer + gyroscope) for motion tracking.

• Enables sensor fusion applications by aligning depth data with motion data.

iv. Processing Unit

• Onboard depth processing with Intel’s RealSense Vision Processor (D4 ASIC).

• Reduces host CPU load by handling depth calculations internally.

Output Streams

• Depth Stream: Depth data in millimeters (up to 10 meters range, adjustable).

• RGB Stream: Color video feed (1920×1080 @ 30 fps).

• IR Stream: Left and right IR images for stereo matching.

• IMU Data: Accelerometer and gyroscope readings for motion tracking.

• Point Cloud: 3D spatial data (via SDK post-processing).

8

Key Features & Specifications

• Depth FOV: 85° × 58° (H × V)

• RGB FOV: 69° × 42° (H × V)

• Depth Accuracy: ±2% at 2m distance

• Minimum Depth Distance: ∼0.2m (with near-field mode enabled)

• Connectivity: USB 3.1 Type-C

• Software Support:

– Intel RealSense SDK 2.0 (Windows, Linux, macOS)

– ROS (Robot Operating System) integration

The camera will be mounted on the robotic arm and will move with the arm, providing
real-time RGB video to track the end effector’s motion and actions.

2.2.4 Apple Vision Pro

The Apple Vision Pro aims to capture and process environmental data to enable robust
spatial computing and natural user interaction. It operates by gathering high-resolution
camera images and depth sensor inputs, which are essential for understanding the sur-
rounding environment. The cameras capture high-resolution RGB images for image pro-
cessing and object detection, while the depth sensor generates precise depth maps by
measuring distances to objects, directly contributing to accurate coordinate computation.
This encapsulated image and depth data is then processed through the XR hand subsys-
tem toolkit in Unity. The toolkit interprets the visual and spatial inputs to generate hand
coordinate data, effectively mapping the user’s hand movements into a skeletal frame-
work for natural interaction within a mixed reality environment.

Input:

• Camera Image: This input is captured using multiple cameras, which can capture
high-resolution RGB images. These images enable image processing and object de-
tection.

• Depth Sensor Input: The depth sensor generates depth maps by measuring the
distance to objects. This input is crucial for spatial computing since it directly con-
tributes to coordinate computation.

Output:

• Hand Coordinate Data: This output is generated using the XR hand subsystem
toolkit in Unity. It reads the encapsulated image data from the Apple Vision Pro
and processes this data to generate the hand’s skeleton coordinates.

9

2.2.5 Mixed Reality Interface System

The Mixed Reality Interface Module processes sensor inputs, it combines RGB images
from the depth camera with hand position data from the Apple Vision Pro. It seamlessly
fuses virtual elements with the physical environment to construct an interactive display,
while simultaneously generating real-time control commands (joint data for robotic arm
movement) that enable coordinated system-wide operations. Additionally, it provides a
user-friendly GUI for controlling the robotic arm and delivers feedback on system perfor-
mance.

Input:

• RGB image from rear view: This input is generated from the depth camera attached
to the end effector of the robotic arm. It captures the environment from the rear view
of the user and thus provides feedback to the user.

• Hand Position Data from Apple Vision Pro: This input is generated from Apple
Vision Pro and procced by the XR interaction toolkit in Unity. It allows users to
interact with the virtual scene in the mixed reality interface.

Output:

• Joint Data for Open Manipulator-P robotic arm: This output is generated using
the inverse kinematic toolkit provided by Unity Ros package. It convert the hand
coordinate data to 6 DOF joint data for robotic arm.

2.2.6 Mobile Platform

The Mobile Platform Module is the foundation for the mobility in the system, allowing
users to navigate the space while maintaining control of the Robotic Arm Module. It’s
mainly a wheelchair, which is controlled by the Mixed Reality Interface System to make
the navigation either speech-based or gesture-based. When integrated with the Robotic
Arm Module, the platform allows users to work with objects even when moving, enhanc-
ing independence and accessibility.

10

2.3 Software Flowchart

Figure 6: Diagram illustrating the process flow of controlling the OpenManipulator-P
robotic arm using the Apple VisionPro system, Unity, and ROS, where image and depth
data from the camera are processed to generate hand coordinates, which are then used to
send pose information to the robotic arm for real-time control.

11

2.4 ROS-Unity Integration

Figure 7: ROS-Unity Communication Structure [2]

The ROS–Unity communication bridge plays a critical role in our system because the
pose information used to control the robotic arm is generated within the Unity environ-
ment. However, the services that execute these pose commands and control the physical
robotic arm reside on the ROS side, running on an Ubuntu system. Therefore, real-time
communication is necessary to ensure that Unity can request and receive robotic actions
from the ROS backen.

Communication between ROS nodes follows the traditional ROS Publish/Subscribe model,
allowing for decoupled and scalable message passing. Unity interacts with this system
in real time, sending commands and receiving feedback, making it possible to simu-
late, visualize, and control physical robotic systems directly from a Unity-based appli-
cation.

This architecture enables effective and synchronized bidirectional communication be-
tween Unity and ROS, essential for applications involving real-time robotic control, sim-
ulation, and user interaction through immersive interfaces like VisionPro. The communi-
cation between Unity and ROS is facilitated through a structured interface composed of
publisher, subscriber, and service scripts on the Unity side, and corresponding nodes and
a server endpoint on the ROS side.

Within the Unity Scene, three types of scripts are responsible for exchanging data with
the ROS system:

• ROS Publisher Script: Sends messages from Unity to ROS, such as robot control
commands or object positions.

• ROS Subscriber Script: Receives messages from ROS, including sensor data and
robot status, and makes them available to the Unity environment for visualization
or feedback control.

12

• ROS Service Script: Initiates service requests (e.g., SetKinematicsPoseRequest)
and processes responses from ROS, enabling more structured and request-response-
type communication.

These scripts communicate with a centralized Server Endpoint in the ROS Network,
which acts as a gateway, handling the serialization and deserialization of ROS messages.
The server endpoint further interfaces with various ROS Nodes, each responsible for
specific robotic tasks such as inverse kinematics, motion planning, or sensor integra-
tion.

2.5 Calculations: Inverse Kinematics

In robotic arm control, the calculation of the joint path from the end effector pose is a fun-
damental process known as inverse kinematics. Given the desired position and orienta-
tion of the end effector, the goal is to compute the corresponding joint angles or positions
that will achieve this pose.

End Effector Pose: The end effector pose is represented as a homogeneous transforma-
tion matrix Tee, which combines both the position and orientation of the end effector. It is
typically written as:

Tee =

Ree pee

0 1

where: - Ree is the 3x3 rotation matrix representing the orientation of the end effector, -
pee is the 3x1 position vector of the end effector.

The inverse kinematics solution involves determining the joint angles θ1, θ2, . . . , θn that
produce a specific Tee. These joint angles correspond to the values in the robot’s joint
space, which will generate the desired pose.

Inverse Kinematics: The inverse kinematics problem can be described mathematically
by a set of equations that relate the joint variables θi to the end effector pose. For a robotic
arm with n joints, the transformation from joint space to task space is expressed as a
function of the joint variables:

Tee = f(θ1, θ2, . . . , θn)

This function f(·) typically consists of a series of transformations that account for the
arm’s kinematic structure, such as link lengths and joint types. The IK solution seeks to
find θ1, θ2, . . . , θn such that:

Tee = Ttarget

13

where Ttarget is the desired target pose. In practice, solving the inverse kinematics problem
can involve algebraic methods for simpler arms or numerical methods (such as gradient
descent or Newton-Raphson) for more complex arms.

Jacobian Matrix: To compute the joint velocities or the joint path from the end effector
velocity, the Jacobian matrix J is used. The Jacobian relates the joint velocities θ̇ to the
end effector velocity ṗ in the task space:

ṗ = J(θ)θ̇

where J(θ) is the Jacobian matrix, which is a function of the joint angles θ. The Jacobian
matrix provides the linear mapping between the joint space and the task space. Inverse
kinematics algorithms often use the Jacobian to iteratively adjust the joint angles to mini-
mize the difference between the current and target end effector pose.

14

3 Requirements and Verifications

3.1 Customized End Effector

The Customized End Effector is a gripper-style clamp designed for basic interaction tasks,
such as pressing buttons, supporting tasks that require moderate accuracy but not ex-
treme precision. It is mounted mechanically on the Open Manipulator-P Robotic Arm
and operates based on the signals provided by the Mixed Reality Interface System.

Requirements Verification

1) Measure 5–50 N with ±20% error on arc-
shaped surface.

1) Use a force gauge to apply 5/10/20/50
N loads. Compare sensor output (volt-
age→force conversion) against theoretical
values (F=mg).

2) Complete successful button presses on
elevator with force less than 30N.

2) Test on more than 5 elevator buttons (of
different height and position), verify that
buttons are successfully pressed under the
pre-programmed threshold.

3.2 Open Manipulator-P Robotic Arm

Requirements Verification

1) The robotic arm shall maintain an end-
effector positioning accuracy within 10 mm
during standard trajectory execution.

1) Execute programmed joint-space and
task-space movements with known targets.
Measure final end-effector position using a
calibrated ruler or laser measurement de-
vice. Repeat over 10 trials.

2) The robotic arm shall apply force within
the range of 0.5–5N to activate buttons or
interact with objects, ensuring successful
actuation without damage.

2) Use a calibrated force sensor integrated
into the robot’s end-effector to measure the
applied force during button pressing.

3) The system shall respond to command
inputs within 300 ms, including Unity-to-
ROS transmission, processing, and actua-
tor movement initiation.

3) Use timestamp logging in Unity and
ROS to measure time from service request
to motor actuation. Measure multiple trials
and compute average latency.

4) The manipulator shall move at a speed
not exceeding 0.2 m/s during human inter-
action tasks, ensuring safety and control.

4) Record video of end-effector motion
with timestamp overlay. Use frame-by-
frame analysis or motion capture to calcu-
late peak velocity.

15

3.3 Depth Camera

Requirements Verification

1) The Unity application shall display the
RealSense RGB stream in a viewport that
can be zoomed in and out. When zoomed
in to occupy full view, video should have
1920×1080 resolution at 30 fps, maintaining
native quality.

1) Capture Unity’s screen output during
runtime and analyze frame rate (Unity Pro-
filer) and resolution (pixel measurement
tool). Verify no downscaling or frame
drops.

2) End-to-end latency (camera capture to
Unity display) shall be 150ms for RGB
stream.

2) Use a high-speed timer (e.g., Stopwatch
in C#) to log timestamps from frame cap-
ture (RealSense SDK) to Unity rendering.
Average 10 samples.

3) The camera shall maintain an unob-
structed view of the robotic arm’s end-
effector while moving synchronously with
it, ensuring continuous tracking.

3) Test robotic arm full-range motion and
verify that no blind-spot exists.

3.4 Mixed Reality Interface System

Requirement Verification

1) The interface shall display a 3D model
of the user’s hands with end-to-end latency
no greater than 50 ms.

1) Mount high-speed cameras to monitor
both real-world hand motion and the vir-
tual hand representation. Compare times-
tamp logs or frame-based recordings to cal-
culate the total system latency. Confirm 50
ms.

2) The interface shall interpret basic hand
gestures (e.g., pinch, grab) with an accu-
racy of at least 80% under normal operat-
ing conditions.

2) Define a test set of gestures. Record
the system’s recognition results against
ground-truth labels. Evaluate the result to
confirm the gesture accuracy is 80%.

3) The interface shall provide a user-
friendly GUI for robotic arm control, dis-
playing real-time feedback on both status
and errors.

3) Conduct user tests to ensure the GUI re-
acts to user inputs. Monitor system logs to
verify error handling.

16

3.5 Apple Vision Pro

Requirement Verification

1) The device shall provide hand-tracking
coordinates with an error margin 5 mm rel-
ative to actual hand positions.

1) Use a motion capture system as a
ground-truth reference. In multiple trials,
record Apple Vision Pro’s hand tracking
data and compare coordinate sets with the
motion capture baseline. Confirm the error
5 mm.

3.6 Mobile Platform

Requirements Verifications

1) The Robotic Arm must be securely at-
tached to the wheelchair using a flange col-
umn and other physical mounting devices
to ensure stability and safety during opera-
tion.

1) Perform a mechanical stress test where
the platform (wheelchair with robotic arm)
is subjected to various forces to ensure the
arm remains securely attached without de-
taching or loosening.

2) The system must ensure the safety and
stability of the user while controlling the
robotic arm and navigating the wheelchair.
The wheelchair must be stable and not
prone to tipping over when interacting
with the robotic arm.

2) Conduct tipping tests by simulating var-
ious load conditions and interactions with
the robotic arm, ensuring the wheelchair
remains stable and does not tip over under
normal use.

17

4 Tolerance Analysis

4.1 End-Effector Position Error

The end-effector position error is determined by the angular resolution of each motor
joint and the arm length. The calculations below outline the process of calculating the
error for each joint and summing the errors from all joints.

Step 1: Angular Resolution for Each Joint The angular resolution for each motor is
calculated using the encoder resolution. The formula for angular resolution is:

Angular Resolution =
360◦

Encoder Resolution (pulses/rev)

For Joints 1, 2, 3, and 4 (with 501,923 pulses/rev):

Angular Resolution =
360◦

501, 923
= 0.000718◦ per pulse

For Joints 5 and 6 (with 303,750 pulses/rev):

Angular Resolution =
360◦

303, 750
= 0.001186◦ per pulse

Step 2: End-Effector Position Error To calculate the position error at the end-effector,
we use the following equation:

End-Effector Position Error ≈ Joint Error × Arm Length × sin(θ)

Where: - Joint Error is the angular resolution of the motor (in radians), - Arm Length is
the maximum reach of the robotic arm (645 mm).

For Joints 1 to 4 (with 501,923 pulses/rev):

Angular Resolution = 0.000718◦ = 0.000718× π

180
radians = 1.254× 10−5 radians

For each joint:

Position Error (Single Joint) = 645× 1.254× 10−5 = 0.0081mm

Since there are 4 joints contributing to the total error:

18

Total Position Error (Joints 1-4) = 4× 0.0081 = 0.0324mm

For Joints 5 and 6 (with 303,750 pulses/rev):

Angular Resolution = 0.001186◦ = 0.001186× π

180
radians = 2.071× 10−5 radians

For each joint:

Position Error (Single Joint) = 645× 2.071× 10−5 = 0.0134mm

Since there are 2 joints contributing to the total error:

Total Position Error (Joints 5-6) = 2× 0.0134 = 0.0268mm

Finally, summing the errors from all joints:

Total End-Effector Position Error = 0.0324 + 0.0268 = 0.0592mm

To make the analysis more realistic and reflect real-world conditions, it is important to
consider additional error sources that can significantly affect the accuracy of hand track-
ing and robotic control. VisionPro, for instance, has its own intrinsic tracking error. When
considering the robotic arm itself, additional mechanical issues like mounting instability
or slight movement of the arm or end-effector, especially under varying loads, can in-
troduce further deviations. These errors can lead to a final error in hand position that is
much larger than the theoretical motor error alone.

4.2 Head Movement Impact on Hand Tracking Accuracy

When using Vision Pro for hand tracking, the movement of the head-mounted device
(HMD) introduces errors in the perceived hand position. Since the tracking system is
based on the relative position of the hands with respect to the headset, any movement
of the headset alters the reference frame, potentially causing discrepancies between the
actual and detected hand positions.

Let:

• H be the headset coordinate frame,

• H ′ be the hand coordinate frame (relative to the headset),

• ∆H be the headset movement relative to the world coordinate system,

• ∆h be the hand movement relative to the headset,

19

• ∆h′ be the actual hand movement in the world coordinate system.

The actual hand displacement in the world frame should be calculated as:

∆h′ = ∆H +∆h

However, if the system does not compensate for head movement, it assumes:

∆h′ = ∆h

This leads to errors in hand position estimation due to the head movement altering the
reference frame.

4.3 Latency in the System Pipeline

Latency is a critical factor in the real-time control of a robotic arm using Vision Pro hand
tracking. The total system latency consists of four main components:

• Ltotal - Vision Pro Hand Tracking Latency: The time delay between the user’s actual
hand movement and the system’s recognition of the new hand position. According
to Road to VR, Vision Pro’s measured hand tracking latency is approximately 128
ms.

• Lprocessing - Program Processing Latency: The time required for the computing sys-
tem to process the received hand position data and generate corresponding control
commands for the robotic arm. This depends on computational complexity, data
transmission speed, and software optimizations.

• Lusb - USB Communication Latency (DYNAMIXEL U2D2): As noted in the DY-
NAMIXEL U2D2 e-Manual, when connecting the robotic arm to the PC via USB,
the default USB latency time is 16 ms.

• Lrobot - Robotic Arm Reaction Latency: The delay between receiving the control
command and the robotic arm physically executing the movement. This includes
actuation delay, motor inertia, and mechanical constraints.

Thus, the total system latency can be expressed as:

Ltotal = Ltracking + Lprocessing + Lusb + Lrobot

Substituting known values:

Ltotal = 128ms + Lprocessing + Lusb + Lrobot

20

For real-time interaction, it is essential that Ltotal remains below the human perceptual
threshold for smooth interactions, typically around 200-250 ms for motion feedback ap-
plications. If Ltotal exceeds this limit, users may experience noticeable lag, affecting the
precision and responsiveness of robotic control.

Assuming:

• Lprocessing = 10ms to 30ms,

• Lrobot = 50ms to 150ms,

• Lusb = 1ms to 16ms,

Then the total system latency falls within:

Ltotal = 128ms + (10ms − 30ms) + (1ms − 16ms) + (50ms − 150ms) = 189ms to 324ms

21

5 Cost & Schedule

5.1 Cost

Table 1: Cost

22

5.2 Schedule

Week Task

3.15 - 3.21 Write a program to detect hand gestures and drag virtual objects in
Unity. Install ROS and OpenManipulator package, achieve basic con-
trol over the robotic arm.

3.22 - 3.28 Connect Unity with Isaac Sim using ROS2 and simulate a virtual envi-
ronment in Isaac Sim. Establish bi-directional communication between
Unity and ROS (Ubuntu).

3.29 - 4.04 Successfully control the arm in Unity and use VisionPro to control the
robotic arm.

4.05 - 4.11 Start designing the mounting system to attach the robotic arm to the
wheelchair.

4.12 - 4.18 3D print and install a gripper that meets the requirements. Install a
pressure sensor on the gripper.

4.19 - 4.25 Write code on the development board to control the opening and clos-
ing of the gripper and display pressure readings, while establishing
a connection with Unity so that VisionPro’s hand gesture recognition
can control the gripper’s operation.

4.26 - 5.02 Integrate the full control system, including VisionPro and pressure
sensor feedback. Complete mounting with the wheelchair.

5.03 - 5.09 Start to improve the system based on tasks and feedback.

5.10 - 5.12 Project wrap-up, documentation, and presentation.

Table 2: Project Schedule

23

6 Ethics and Safety

6.1 Safety

Robotic Arm Operation Safety: Our system includes a robotic arm extending from the
rear of the wheelchair, which introduces potential risks if not properly designed. To avoid
these risks, we implement the following safeguards:

Hardware/Software Safety: The arm will remain folded when inactive, ensuring it does
not occupy additional space beyond the wheelchair and cause potential collision.

Speed Constraints: Arm motion speed will be limited to prevent high-impact collisions.

Safe Operation Limits: The Open Manipulator-P arm will be programmed to operate
within predefined safety thresholds for users and bystanders. Specifically, it will avoid
the space that the user occupies. Furthermore, Apple Vision Pro’s depth and spatial
awareness capabilities will be utilized to enhance situational awareness and prevent un-
intended interactions.

Privacy and Data Protection: User privacy is a critical consideration in our system, par-
ticularly given the use of real-time cameras and Mixed Reality (MR) technology. Our
system does not store or transmit user data to any external servers. All video process-
ing and interaction tracking occur locally. The rear-facing camera feed is processed in
real time solely for user awareness and robotic arm control. Similarly, Apple Vision Pro’s
hand-tracking data is processed locally, without transmitting biometric or movement data
beyond the device[3].

6.2 Ethics

6.2.1 Privacy and Data Protection

Aligning with IEEE/ACM principles, our system prioritizes user privacy:

Local Processing: No user data (camera feeds, hand-tracking biometrics) is stored or
transmitted externally.

Real-Time Use Only: Rear-facing camera data is processed locally solely for arm control
and user awareness [3].

6.2.2 User Autonomy and Accessibility

Inclusive Design: The MR interface offers intuitive controls, respecting human dignity[4],
[5].

Safety in Design: The MR interface ensures frontal visibility is never obstructed during
use.

Transparency: Users will be informed of system capabilities/limitations to manage ex-
pectations.

24

References

[1] ROBOTIS. “Openmanipulator-p - specification,” ROBOTIS e-Manual. (Accessed: Mar.
14, 2025), [Online]. Available: https://emanual.robotis.com/docs/en/platform/
openmanipulator p/specification/#specifications (visited on 03/14/2025).

[2] U. Technologies. “”ROS-Unity Integration Tutorial”.” (2023), [Online]. Available: https:
//github.com/Unity-Technologies/Unity-Robotics-Hub/blob/main/tutorials/
ros unity integration/README.md (visited on 04/14/2023).

[3] Apple. “”Apple Vision Pro Privacy”.” (2023), [Online]. Available: https : / / www.
apple.com/privacy/ (visited on 04/12/2023).

[4] IEEE. “”IEEE Code of Ethics”.” (2020), [Online]. Available: https://www.ieee.org/
about/corporate/governance/p7-8.html (visited on 02/08/2020).

[5] ACM. “”ACM Code of Ethics and Professional Conduct”.” (2018), [Online]. Avail-
able: https://www.acm.org/code-of-ethics (visited on 02/08/2020).

25

https://emanual.robotis.com/docs/en/platform/openmanipulator_p/specification/#specifications
https://emanual.robotis.com/docs/en/platform/openmanipulator_p/specification/#specifications
https://github.com/Unity-Technologies/Unity-Robotics-Hub/blob/main/tutorials/ros_unity_integration/README.md
https://github.com/Unity-Technologies/Unity-Robotics-Hub/blob/main/tutorials/ros_unity_integration/README.md
https://github.com/Unity-Technologies/Unity-Robotics-Hub/blob/main/tutorials/ros_unity_integration/README.md
https://www.apple.com/privacy/
https://www.apple.com/privacy/
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.acm.org/code-of-ethics

	Introduction
	Objective and Background
	Goals
	Functions
	Benefits
	Features

	High-Level Requirements List

	Design
	Block Diagrams
	Block Descriptions
	Customized End Effector
	Open Manipulator-P Robotic Arm
	Depth Camera
	Apple Vision Pro
	Mixed Reality Interface System
	Mobile Platform

	Software Flowchart
	ROS-Unity Integration
	Calculations: Inverse Kinematics

	Requirements and Verifications
	Customized End Effector
	Open Manipulator-P Robotic Arm
	Depth Camera
	Mixed Reality Interface System
	Apple Vision Pro
	Mobile Platform

	Tolerance Analysis
	End-Effector Position Error
	Head Movement Impact on Hand Tracking Accuracy
	Latency in the System Pipeline

	Cost & Schedule
	Cost
	Schedule

	Ethics and Safety
	Safety
	Ethics
	Privacy and Data Protection
	User Autonomy and Accessibility

	References

