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1 Introduction

1.1 Problem & Solution Overview

1.1.1 Problem Description

With fertility rates falling and young people under increasing pressure to work, more and
more older people are now living at home alone. In other words, many elderly people
are currently in a state of unattended care at home, and if they faint at home in a sudden
illness, the consequences are incalculable. Therefore, a big challenge of the elderly care
problem today is how to accurately monitor the health of the elderly in the home envi-
ronment and timely feedback when problems occur and then take appropriate measures.
Nowadays, most monitoring systems rely on specialized hardware like wearable sensors
or cameras. These subjects, however, could be costly and inconvenient for older people
to use. In that case, WiFi signal, as a ubiquitous object around our lives, is a good choice
to provide non-contact sensing which cannot be achieved by traditional monitoring sys-
tems. Despite the convenience that WiFi signals convey, it is still a problem that extracting
and interpreting Channel State Information (CSI) accurately and making use of them to
detect subtle human activities such as breathing and heartbeats with the interference from
the outside environment.
To be specific, two main problems appear in the traditional systems. One is unavoidable
physical contact like the chest straps it contains. Although the existing medical technol-
ogy has minimized the discomfort caused by such contact, they are unsuitable for some
certain applications and people. Another issue that conventional methods have is the cost
and limited accessibility. Some wearable health monitoring devices are often expensive
and even if they can afford it. Taking a burden on the body always affects and restricts
their normal activities. Then for WiFi-based sensing method, the major problem is con-
centrated on the environmental interference. The signal might be influenced by noise and
dynamic surroundings easily, making it hard to extract exact physiological signals.

1.1.2 Solution

Respiratory diseases are one of the biggest threats to the health of the elderly. Real-time
acquisition of human respiratory information is extremely important for health manage-
ment and risk warning and helps to diagnose respiratory diseases. The aim is to achieve
accurate, real-time, non-contact monitoring of human respiratory conditions in the home
environment and provide convenience for health management and old-age care.
The approach will extract fine-grained CSI data from a WiFi transmitter-receiver setup.
The signal will reflect subtle physiological activities like breathing and heartbeats. By
analyzing the amplitude and phase variations of signals when they interact with the hu-
man body, we can infer the breath or heartbeat rates. To make it visually intuitive, we
will map the data to some LED indicators lying on a chest model and these lights could
flash in sync with the measured activities frequency. Moreover, we add a ground truth
measurement system to make comparison. This system will use a respiration or heartbeat
belt to provide accurate physiological data for validation with another group of LED in-
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Figure 1: Visual aid

dicators.
To implement our system, a WiFi sensing network is needed. We will equip this network
with AX200 cards for both transmitter and receiver to achieve CSI extraction. During
the experiment process, the receiver will take the CSI data by Ubuntu 22.04 LTS and Pi-
coScenes software and then apply filtering and signal processing algorithms to reduce en-
vironmental noise. The processed activity frequency will then be used to modulate LED
flashing frequency, making the experiment visually. In addition, a ground truth which is
behaved as a control group will exist and it will use the belt data to ensure reliability.

1.2 Visual aid

The whole process without ground truth is shown in Figure 1. A WiFi transmitter (Sender)
will emit signals and then these signals will be affected by tester’s movements before be-
ing accepted by a WiFi receiver (Receiver). The receiver will then process the CSI to an-
alyze tester’s behavior patterns. Finally this extracted data will be mapped onto a chest
model with some LED indicators, making the behavior rate visually.

1.3 High-level requirements list

• The system should accurately detect human behavior patterns using WiFi CSI data,
with a minimum correlation of 70% compared to the behavior ground truth mea-
surements.

• The system must be able to visualize behavior data in real-time with a maximum
delay of 750 milliseconds between data acquisition and LED output to ensure im-
mediate feedback for health monitoring

• The system must maintain consistent behavior detection with sufficient environ-
mental noise such as background movement and multipath effects and give an ac-
curacy that does not drop below 70% in different indoor conditions.
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2 Design

2.1 Block Diagram

See Figure 2

Figure 2: Block Diagram

2.2 Physical Design

The physical design of our team is shown in Figure 3. The main components are the
sender and receiver connected with WiFi signal amplifiers. PCB board used to transmit
the CSI signal. At the same time, two chest models are placed in the surroundings, with
LED lights and counters to visualize the results. The figure does not depict the specific
experimental device of ground truth, which needs to tie a belt to the tester’s body and
then plug the USB flash drive into the Receiver to output the image.

As shown in the figure, the receiver is connected to the PCB to transmit the WiFi sig-
nal and the ground truth output. The PCB board processes the signal and controls the
flashing of LED lights and the number in counters. We wanted to reflect the tester’s
breathing rate through the blinking of the LED lights and display the real-time breathing
rate through the counter. Moreover, the ideal test environment in our imagination is to
ensure that there are not too many people close to the tester to avoid affecting the test
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result. In addition, the distance between the tester and the test table should be kept at
2-5cm. During the test, avoid large movements and loud speech, and maintain natural
breathing under normal conditions. The test results could then be more accurate.

Figure 3: Physical Design

2.3 WiFi Sensing System

2.3.1 WiFi Signal Transmission Subsystem

The WiFi Signal Transmission Subsystem forms the foundation of the entire wireless sens-
ing infrastructure, establishing a stable and high-fidelity communication channel that is
essential for accurate signal acquisition and processing. To support flexible deployment
in diverse indoor environments, the system is designed to operate in both 2.4GHz and
5GHz dual bands, offering resilience against interference and improving overall signal
quality. In order to guarantee the accuracy of channel state information (CSI) acquisi-
tion, the subsystem must maintain a minimum signal-to-noise ratio (SNR) of 20dB, en-
suring that minor environmental perturbations—such as those caused by human motion
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or breathing—can be captured reliably.

Moreover, real-time performance is a critical requirement for this subsystem, especially
in latency-sensitive applications like respiratory monitoring. As such, the end-to-end sig-
nal transmission latency is constrained to be under 100 milliseconds, enabling the rapid
delivery of CSI data to downstream processing units.

To safeguard data integrity, it is imperative that the operating environment remains free
from extraneous wireless interference, which could distort the raw Wi-Fi signals or in-
troduce unwanted noise into the CSI. This includes minimizing the presence of active
devices on the same channel and controlling the electromagnetic environment.

Equally important is the subject control during measurements. To ensure that the ex-
tracted CSI patterns are solely attributed to the target individual’s micro-movements (e.g.,
chest displacement due to breathing), the environment should have less interference. This
restriction is vital for reducing cross-subject interference and ensuring that the resulting
data reflects a clean, interpretable signal profile corresponding to a single individual’s
actions.

Together, these stringent requirements enable the WiFi Signal Transmission Subsystem
to provide high-precision, low-latency, and interference-resilient CSI streams—laying the
foundation for subsequent modules in the Wi-Fi sensing system to perform accurate sig-
nal decomposition and human activity recognition.

Table 1: R&V for WiFi Signal Transmission Subsystem

Requirement Verification

• Signal-to-noise ratio (SNR) of at
least 20 dB must be maintained
at the receiver under nominal
operating conditions.

• End-to-end signal transmission
latency must not exceed 100 ms.

• Measure SNR in a low-
interference environment using
network diagnostic tools (e.g.,
Wireshark with CSI tool or cus-
tom SNR monitoring scripts);
confirm SNR > 20 dB.

• Use a network analyzer or em-
bedded software timestamps to
measure transmission delay; en-
sure latency < 100 ms.

2.3.2 CSI Extraction Subsystem

The CSI Extraction Subsystem is a critical component responsible for accurately translat-
ing raw WiFi signals into precise CSI data necessary for further analysis. To achieve this,
the subsystem incorporates several sophisticated signal processing modules, including
Time Domain Filtering, Digital IF Channel Filtering, Inverse OFDM transformation, and
Channel Equalization.
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Figure 4: CSI Extraction Process

Time Domain Filter

The first processing stage involves a time domain filter, which significantly enhances sig-
nal integrity by suppressing temporal noise and interference. This filter operates by se-
lectively attenuating frequencies outside the desired band, thus preserving signal com-
ponents essential for accurate CSI extraction. Implementing such filters helps maintain
consistency in the extracted CSI, particularly under varying environmental conditions,
leading to robust and stable data acquisition for downstream processing.

Digital IF Channel Filter

Following time domain filtering, the digital Intermediate Frequency (IF) channel filter
further refines signal quality. It operates digitally to isolate the intermediate frequencies
required for channel state information extraction. The filter removes residual out-of-band
noise and interference that could distort the CSI measurements. Digital IF filtering en-
sures a high signal-to-noise ratio (SNR), critical for maintaining the precision of CSI data
in high-density signal environments.

Inverse OFDM

Orthogonal Frequency Division Multiplexing (OFDM) is fundamental to WiFi systems
due to its resilience against multipath fading. In the CSI Extraction Subsystem, Inverse
OFDM (IOFDM) plays a pivotal role. This module converts frequency-domain data re-
ceived from WiFi transmissions back to the time domain. This transformation is essential
as it facilitates detailed channel characterization by converting CSI data into a form suit-
able for precise temporal analysis, thereby enabling accurate detection of subtle variations
caused by human movements.

Channel Equalization

Channel equalization is the final yet crucial step in the CSI extraction process. Due to
multipath propagation and various hardware imperfections such as IQ imbalance, sig-
nals undergo amplitude and phase distortions. Channel equalization corrects these dis-
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tortions, aligning the received signal closer to the original transmitted state. Techniques
such as Minimum Mean Square Error (MMSE) equalization are employed to minimize
error, enhancing the accuracy and reliability of the extracted CSI.

The MMSE equalizer coefficients are calculated as follows:

WMMSE = (HHH + σ2
nI)

−1HH (1)

Where:

• WMMSE is the weight matrix for the MMSE equalizer.

• H represents the channel matrix, describing amplitude and phase distortions intro-
duced by the wireless channel.

• HH denotes the Hermitian transpose (conjugate transpose) of matrix H .

• σ2
n is the noise power.

• I is the identity matrix with the same dimensions as HHH .

Equalization ensures the fidelity of CSI data, which directly influences the subsystem’s
ability to perform sensitive human action recognition and environmental sensing tasks.

Through the seamless integration of these advanced signal processing techniques, the
CSI Extraction Subsystem reliably delivers high-quality channel state information, thus
underpinning the effectiveness of the entire WiFi sensing system.

Table 2: R&V for CSI Extraction Subsystem

Requirement Verification

• The end-to-end processing delay of the
CSI extraction process from receiving
the WiFi signal to outputting the CSI
data shall not exceed 60 ms.

• The system should have a certain anti-
interference ability, can be in the ordi-
nary WiFi frequency band under the en-
vironment of stable extraction of CSI in-
formation.

• Use a high-precision timer to record,
averaged over at least 300 independent
measurements to see if the average pro-
cessing delay is less than 60 ms.

• Run the system in a typical indoor WiFi
environment for more than 10 minutes
and verify that data volatility is within
acceptable thresholds.

2.3.3 Human Action Recognition Subsystem

The Human Action Recognition Subsystem is designed to transform raw CSI data into
clear and meaningful features that reveal subtle human actions such as respiration. The
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system’s input, continuously captured CSI measurements, is first managed using a circu-
lar buffering mechanism that ensures low-latency storage of the most recent data. This
guarantees that the processing pipeline always operates on up-to-date CSI signals while
keeping the memory usage under control. Next, the subsystem computes the ratio be-
tween CSI readings obtained from two antennas. This operation effectively cancels out
static multipath effects and common-mode noise, isolating the dynamic component that
corresponds to small-scale movements of the human body. Given the intrinsic challenges
in commercial WiFi systems—such as abrupt phase jumps caused by hardware-induced
phase ambiguity—the subsystem employs a dedicated phase correction step. This step
uses a histogram-based method and complex rectification to resolve the two-way (bi-
nary) phase ambiguity, thus restoring the continuity of the phase information. Finally,
a Savitzky–Golay filter is applied to the CSI ratio waveform to attenuate high-frequency
noise while preserving the low-frequency, periodic characteristics inherent to respiratory
movements. As a result, the output of the Human Action Recognition Subsystem can
be either a clean, smoothed waveform that faithfully represents the underlying human
signal or an estimation of the periodic frequency of the action (e.g., the respiration rate).
This end-to-end process enables reliable detection and monitoring of human physiologi-
cal activities based solely on the analysis of commodity WiFi CSI data.

Step1: Circular Buffering Real-time CSI Data

In this initial step, the system employs a circular buffering mechanism to manage real-
time CSI data with low latency. The primary goal of using a circular buffer is to en-
sure that the CSI management process remains both efficient and responsive. A fixed-
length buffer is continuously updated with the most recent CSI measurements, and once
it reaches capacity, newly received data immediately overwrite the oldest entries. This
design choice is critical for achieving low-latency processing, as it eliminates the need for
time-consuming memory reallocation or data shifting operations, thereby enabling rapid
access to fresh data.
The circular buffer not only provides an efficient way to store continuously incoming CSI
measurements but also maintains a stable time-window that captures the signal’s tem-
poral dynamics. This persistent update facilitates the detection of subtle low-frequency
variations. By consistently working with the most current set of CSI data, the system
can promptly capture transient events and changes in the wireless channel, ensuring that
processing modules downstream can operate on the latest information without delay.
Furthermore, the circular buffering approach optimizes memory usage by constraining
the stored dataset to a predetermined size. This controlled memory footprint prevents
excessive resource consumption while still delivering the necessary temporal context for
accurate feature extraction. In sum, the circular buffering mechanism is designed to un-
derpin real-time, low-latency CSI data management. It strikes a balance between ensuring
a timely response to signal changes and maintaining data continuity, ultimately laying a
robust foundation for subsequent steps in processing.
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Step2: Obtaining Dynamic Component by CSI Ratio

In this step, the system exploits the ratio of CSI readings from two antennas to isolate the
dynamic component induced by subtle human motion (e.g., respiration) while suppress-
ing the static multipath effects from the environment, as proposed by [1]. Let H1(f, t) and
H2(f, t) denote the complex CSI measurements from two antennas at frequency f and
time t. These measurements can be modeled as

Hi(f, t) = e−jθoffset

[
Hs,i(f, t) + Ai(f, t)e

−j
2πdi(t)

λ

]
, i = 1, 2,

where Hs,i(f, t) represents the static multipath components, Ai(f, t) is the amplitude of
the dynamic (motion-induced) component, di(t) is the time-varying path length affected
by body movement, λ is the wavelength, and e−jθoffset is the common phase offset caused
by unsynchronized hardware.

Since both antennas share the same radio frequency oscillator, the phase offset cancels out
when the ratio is taken:

R(f, t) =
H1(f, t)

H2(f, t)
=

Hs,1(f, t) + A1(f, t)e
−j

2πd1(t)
λ

Hs,2(f, t) + A2(f, t)e
−j

2πd2(t)
λ

.

Assuming that the difference between the dynamic path lengths is approximately con-
stant,

d2(t) ≈ d1(t) + ∆d,

the above expression can be rewritten as

R(f, t) =
Hs,1(f, t) + A1(f, t)e

−j
2πd1(t)

λ

Hs,2(f, t) + A2(f, t)e
−j 2π∆d

λ e−j
2πd1(t)

λ

.

By dividing the numerator and the denominator by e−j
2πd1(t)

λ , we obtain

R(f, t) =
A1(f, t) +Hs,1(f, t)e

j
2πd1(t)

λ

A2(f, t)e
−j 2π∆d

λ +Hs,2(f, t)e
j
2πd1(t)

λ

.

This formulation effectively cancels common factors—such as the random phase offset
and shared static multipath effects—thereby accentuating the small variations in d1(t) due
to human motion. As a result, the CSI ratio R(f, t) primarily reflects the dynamic changes
(e.g., the minute chest movements during breathing) and generally appears as a circular
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Figure 5: Comparison of three amplitude waveforms when a subject moves further away.
Obviously, the ratio of amplitude outperforms the other two raw amplitude waveforms
for its clear fluctuation caused by the movements.

or arc-like trajectory in the complex plane when the displacement is small (typically a
fraction of the wavelength).

In summary, by taking the ratio of two CSI measurements, the system eliminates common-
mode noise and enhances sensitivity to the dynamic component. The amplitude of the
ratio represents the relative strength of the signals, while its phase encodes the subtle
motion-induced changes. This makes the CSI ratio a robust metric for capturing and pro-
cessing the dynamic variations associated with human respiration.

Step3: Phase Correction

As noted in [2], [3], commercial WiFi devices suffer from inherent hardware impairments
that lead to abrupt phase jumps in the measured CSI data. In particular, cards such as the
Intel AX200 typically exhibit a binary phase ambiguity. This phenomenon arises largely
due to the behavior of the phase-locked loop (PLL) in the receiver chain. Specifically, the
PLL tends to lock onto the nearest 180° phase, leading the measured phase θ̂ to adopt one
of two values:

θ̂ = θ + kπ, k ∈ {0, 1},

where θ represents the true phase and k = 1 indicates an undesired phase jump by π.
Such discontinuities distort the trajectory of the CSI ratio in the complex plane, making it
difficult to discern the subtle phase variations caused by human motions.

To mitigate this ambiguity, the method exploited in our project utilizes a histogram-based
and complex rectification approach [4]. Over a short time window, the measured phase
differences are aggregated into a histogram. Typically, the histogram reveals a bimodal
distribution with two dominant peaks corresponding to θ and θ + π. By identifying the
valley between these two peaks, a decision boundary θv is determined. Then, each CSI
sample represented by its complex value z = Aejθ̂ is corrected by applying a simple
mapping:

z̃ =

{
z, if θ̂ ≤ θv,

−z, if θ̂ > θv.

This operation effectively “flips” the samples where a π jump has occurred, thereby restor-
ing the continuity of the phase. The corrected phase θ̃ then reflects a smoother variation
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over time, which is essential for capturing the low-amplitude human motion signal.

Furthermore, when the corrected CSI data are plotted in the complex plane, they are
expected to form a continuous circular arc. Any residual discontinuities due to phase am-
biguity would interrupt this arc, but the combination of histogram division and complex
rectification ensures the recovered phase dynamics are consistent with the expected be-
havior of the dynamic component. Overall, this phase correction step is crucial for elim-
inating the distortions caused by the hardware-induced phase jumps and for enabling
reliable extraction of the subtle motion-induced signal variations.

Figure 6: The process of finding the division boundary through histogram dividing and
complex rectifying method, from [4]

Step4: Filter Smoothing

To suppress high-frequency noise and to robustly extract the subtle human motion signal
embedded in the CSI ratio, the system employs a Savitzky–Golay (S-G) filter. The S-G
filter is a polynomial smoothing technique that works by fitting a low-degree polynomial
to successive segments of the data using linear least squares. For each data point, the
filter computes a weighted average of its neighbors, where the weights are derived from
the fitted polynomial, thereby preserving important features (such as peak height and
waveform shape) better than simple moving average filters.

Mathematically, suppose the original signal is represented by a set of equally spaced
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points yi. The S-G filter calculates the smoothed value ŷi by convolving the original signal
with a set of coefficients ck:

ŷi =
m∑

k=−m

ck yi+k,

where 2m + 1 is the size of the sliding window and the coefficients ck are computed by
fitting a polynomial P (t) of degree p to the data points in the window:

P (t) = a0 + a1t+ a2t
2 + · · ·+ apt

p.

The coefficients are chosen such that the squared error between the polynomial and the
actual data over the window is minimized. In effect, the filtering operation can be seen as
a convolution, where the filter’s impulse response is calculated from the solution of the
linear least-squares problem.

One of the key advantages of the S-G filter is its ability to preserve the essential shape
characteristics of the waveform—such as the amplitude and relative locations of peaks
and valleys—while effectively reducing high-frequency fluctuations. This property is es-
pecially critical in our application because the respiratory-induced variations in the CSI
ratio are often of very low amplitude and can be easily masked by noise. By preserving
these subtle characteristics, the filter ensures that subsequent possible steps, like peak de-
tection and motion rate estimation, can operate on a signal that accurately reflects the true
physiological motion.

Table 3: R&V for Human Action Recognition Subsystem

Requirement Verification

• Real-time: Process CSI with la-
tency < 100 ms.

• Accuracy: Respiration error <
0.2 bpm.

• Measure total latency to confirm
< 100 ms.

• Lab tests with a reference wear-
able device.
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Figure 7: Flowchart of Human Action Recognition Subsystem
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2.4 Display System

2.4.1 Power Subsystem

The Power Subsystem is tasked with delivering stable and efficient electrical energy to the
entire display system, with a specific emphasis on ensuring reliable power for both the
chest model’s LED array and the PCB control circuitry. Since LEDs are highly sensitive
to variations in both voltage and current, it is critical that the system provides a consis-
tently stable 3.3 V DC output with a tolerance of only ±10% to ensure uniform brightness
and consistent performance. To accommodate the substantial inrush and transient surge
currents typically seen at LED startup, the power module must be capable of delivering
a minimum current of 500mA for the LED array.

In parallel, the PCB controller requires a dedicated 12 V power input. Maintaining a clean
and stable 12 V supply is essential to ensure the correct operation of the digital logic,
signal processing, and interfacing components housed on the PCB. The dual-voltage re-
quirement necessitates either separate regulated outputs or an onboard DC-DC conver-
sion scheme to efficiently provide both voltage rails from a common input source.

The power system implements a switching power supply architecture as shown in fig-
ure 8 to generate the 3.3 V voltage for the LED array and 12 V for the PCB controller.
This configuration involves a PWM-controlled switching component paired with essen-
tial inductors, rectification diodes, and filtering capacitors to effectively reduce the input
voltage. A high-efficiency feedback mechanism continuously monitors the output voltage
and dynamically adjusts the PWM duty cycle to rapidly respond to changes in load con-
ditions, ensuring stability across operating modes. Additionally, overcurrent and short-
circuit protection circuits are integrated into both voltage supply paths, allowing the sys-
tem to quickly detect abnormal current surges and either limit or shut off the output to
prevent damage. These protections safeguard not only the LED array but also the PCB
from the risks posed by unexpected short circuits or excessive transient loading.

Figure 8: The Circuit Schematic of the Power Subsystem

Efficiency is a paramount consideration for this power subsystem. The design targets a
conversion efficiency of at least 75%. High efficiency reduces energy loss, minimizes ther-
mal buildup, and simplifies thermal management requirements. Given that experimental
and demonstration scenarios may require the system to operate continuously for 1 hour
or more, it is essential that the power subsystem delivers long-duration reliability under
varying load conditions.
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In summary, a power subsystem that satisfies stringent requirements for voltage stability,
current capability, and conversion efficiency is foundational to the system’s performance
and reliability. By combining high-efficiency switching techniques with robust protec-
tion mechanisms, the design ensures uninterrupted and safe operation of both the LED
lighting and PCB control systems.

Table 4: R&V for Power Subsystem

Requirement Verification

• The power subsystem must pro-
vide a stable 3.3 V DC output
with a tolerance of ±10% under
a load of up to 500 mA for the
LED array

• It must provide a stable 12 V DC
output with a tolerance of ±10%
for the PCB controller

• The system must support con-
tinuous operation for a mini-
mum duration of 1 hour without
performance degradation.

• Use a digital multimeter (DMM)
or oscilloscope to measure the
3.3 V and 12 V output voltages
under nominal load conditions;
confirm that the voltages remain
within ±10% tolerance

• Connect a variable electronic
load to simulate the 500 mA
(LED) load; observe output sta-
bility over time.

• Run the system for at least 1 con-
tinuous hour and periodically
log output voltage, current, and
system temperature; check for
voltage drift or shutdowns.

2.4.2 Chest Model Subsystem

The Chest Model Subsystem visually represents human action through an LED array in-
stalled on a chest cavity model, providing a tangible demonstration of both ground-truth
(i.e., the tester’s actual actions) and predicted (i.e., the monitored system’s recognized)
signals for real-time validation of the Human Action Recognition Subsystem. The LED
array is arranged to simulate human action, with each LED individually addressable to
control brightness based on the strength of the detected signals. This design enables direct
comparison between the monitored signal intensity and the actual measured activity. The
system must update the LED brightness levels within 50 ms for timely synchronization,
and the LEDs should be sufficiently bright for clear observation under typical indoor and
outdoor lighting conditions.

A key component enabling this visualization is the PCB controller, which bridges the pro-
cessed breath signal and LED array on the chest model. After receiving the processed
breathing signal, the PCB generates PWM signals to drive the LED array, causing its
brightness to vary in sync with the breathing cycle.

Regarding the specific chest model, we originally intended to use 3D printing technology
to make the model as shown in Figure 9, but later considered that the quality of the model
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would be too large, which is not very easy to carry and use. Finally, we decided to use a
plastic chest model, and to control its height and width within 40 cm to avoid excessive
volume.

Figure 9: Chest Model

Table 5: R&V for Chest Model Subsystem

Requirement Verification

• The two chest models are firmly
fixed and less than 4kg for easy
carrying

• The LED array should visibly
brighten and dim in sync with
user breathing under normal in-
door conditions

• Ensure the model is securely
fixed on the acrylic base and
weighs less than 4 kg using a
scale if needed

• Have a tester breathe normally
and observe whether the LED
brightness visibly follows the
breathing rhythm
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2.5 Tolerance Analysis

A major risk in the design is whether Wi-Fi CSI can reliably detect subtle human behaviors—
such as the small chest displacements during breathing—given the inherent noise and
multipath interference in indoor environments. Based on Fresnel zone theory[5], our
analysis shows that detection sensitivity strongly depends on the subject’s position within
the Fresnel zones.

For example, at a Wi-Fi frequency of 5.24GHz, the wavelength λ is approximately 57mm.
A typical chest displacement during normal breathing is about 5mm. According to the
Fresnel zone model, the phase change ∆ϕ induced by this displacement is given by:

∆ϕ =
2π∆d

λ
, (2)

where ∆d is the displacement. Substituting the values:

∆ϕ ≈ 2π × 5mm

57mm
≈ 0.55 radians (≈ 31.6◦). (3)

This phase shift, although small, is within detectable limits provided that the system’s
phase resolution is on the order of 0.1 radians. However, this detection is critically sensi-
tive to the target’s location:

• Optimal Detection: When the subject is centered within a Fresnel zone, the inter-
ference between the direct and reflected signals yields maximum phase sensitivity.

• Degraded Detection: When the subject is near the Fresnel zone boundaries, the
phase contributions may partially cancel out, reducing the effective signal change
and making detection more vulnerable to noise.

The analysis shows that, under controlled conditions with stable noise levels (phase noise
less than 0.1 radians RMS), a phase shift of 0.55 radians is discernible. This confirms
that the design can detect subtle human motions if the following tolerances are main-
tained:

• Phase Measurement Accuracy: The system must maintain a phase resolution better
than 0.1 radians.

• Positional Tolerance: The subject should ideally remain within a specified range
from the center of the Fresnel zone to ensure maximal sensitivity.

• Noise and Interference Control: The environment must be managed to minimize
extraneous reflections and electronic noise that could obscure these subtle phase
changes.
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Figure 10: The Fresnel model.
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3 Cost and Schedule

3.1 Cost Analysis

Table 6: Project Cost Breakdown

Category Parts Price (RMB)

Device Lenovo V310-15 900

Microprocessor PCB 200

Physical Model

Intel Ax200*2 115

EDUP external antenna*2 108

Aodeimao IPEX converter*4 24

Chest model*2 60

LED*6 20

Counter*2 10

Acrylic plates*5 50

Stainless steel 304 damped hinges*12 28

Power Supply 3.3V/12V DC Power Supply 100

Labor 4 people * 80 hours * 75 RMB/hour 24000

Total 25615
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3.2 Schedule

Table 7: Schedule
Date Yukai Han Qiyang Wu Xin Chen Xuanqi Wang

4/18

Design appropri-
ate surroundings
for whole testing
system

CSI extraction sub-
system require-
ment analysis and
hardware selec-
tion confirmation

Develop and
refine scripts for

circular buffering,
phase correction,

and filtering

Construct the
power supply
subsystem and
design PCB

4/25

Construct sur-
roundings using
acrylic plates and
hinges and test the
strength

Debug and op-
timize the time
domain filters and
digital IF channel
filters

Construct the PCB
and LED

5/2

Fix chest models
with LED, coun-
ters and acrylic
plates

Complete soft-
ware integration
and tuning of CSI
extraction subsys-
tems

Debug and
optimize the data

processing
pipeline

Help design cir-
cuits from signal
output to LED dis-
play

5/9
Clean up all the
items and lines of
the system

Complete subsys-
tem robustness
test and anti-
jamming capabil-
ity verification

Further testing of
the overall display
system

5/16

Optimize the ex-
perimental equip-
ment based on ex-
perimental results

Help design cir-
cuits from signal
output to LED dis-
play

Integrate visual
signal output with
LED display

Improve the ro-
bustness of the
display subsystem
and debug under
different scenarios

5/23 Prepare final test-
ing demo

Prepare final demo
and design testing
cases

Prepare final demo Prepare final demo
and debug
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4 Ethics and Safety

4.1 Ethics

Our project will strictly follow ethical standards by prioritizing public safety, privacy pro-
tection, and responsible technology use. Since we use WiFi signals to detect physiological
activities, it inherently touches upon user privacy. We therefore ensure that no person-
ally identifiable information is collected, and that all data remains anonymous to protect
users’ privacy. In accordance with the ACM Code of Ethics, we are committed to protect-
ing the privacy and dignity of all individuals whose data may be used [6].

Furthermore, given the potential for misuse in tracking or surveillance, we design our
system to prevent unauthorized exploitation. We don’t store or display any data linked
to an individual’s identity. All data is processed locally and only for the purpose of mod-
ulating LED indicators for demonstration. Consistent with the IEEE Code of Ethics, we
seek to avoid harm and uphold the public welfare through honest disclosures and re-
sponsible engineering practices [7].

To reinforce these commitments, every participant in our tests provides informed consent
prior to data collection. The temporary data processing is clearly stated in a consent form.
During any public display, a clear disclaimer will accompany our system to ensure it is
not mistaken as a medical product. These precautions help uphold ethical transparency
and prevent any misleading representation of the system’s capabilities.

4.2 Safety

Our project strictly adheres to the safety standards set forth by the ECE 445 Safety Guide-
lines from the University of Illinois [8]. The system operates entirely at low voltage—3.3V
and 12V DC—and does not involve any risky power levels, high temperatures, or mov-
ing mechanical parts. However, due to the presence of electronic circuitry, PCBs, and
soldered components, we have implemented detailed precautions to ensure the safety of
both users and developers.

All circuits are designed with current-limiting resistors and fuses to prevent overcurrent
damage. During construction and testing, all exposed electrical connections are insulated
including the use of ESD-safe mats and wrist straps when handling PCBs. Soldering is
conducted in well-ventilated environments using heat-resistant tools as recommended by
the course’s safety documentation [8].

Prior to each lab session or demonstration, a safety checklist is reviewed to ensure sta-
ble power supply, secure wiring, and minimal electromagnetic interference in the testing
environment. In accordance with ECE 445 protocol, we follow a two-person rule during
high-risk activities such as circuit debugging or hardware testing. A formal safety manual
will be presented at the final demo, summarizing all relevant precautions and emergency
procedures, thereby demonstrating full compliance with the university’s safety standards
[8].
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