
ECE 445

SENIOR DESIGN LABORATORY

DESIGN DOCUMENT

A Smart Glove for HCI

Team #34
HONGWEI DONG (hd2@illinois.edu)
SHANBIN SUN (shanbin3@illinois.edu)
JINHAO ZHANG (jinhaoz2@illinois.edu)

ZHAN SHI (zhans6@illinois.edu)

TA: Yu Yue

April 13, 2025

Contents

1 Introduction 1
1.1 Problem . 1
1.2 Solution . 1
1.3 Visual Aid . 2
1.4 High-level Requirement List . 2

2 Design 3
2.1 Block Diagram . 3
2.2 Subsystem Overview . 3

2.2.1 IMU Based Gesture Sensing System 3
2.2.2 Gesture Recognition System . 4
2.2.3 Communication System . 4
2.2.4 Power Management System . 4

2.3 Hardware Design . 4
2.3.1 Attitude Sensor PCB Design . 4
2.3.2 I2C Switch PCB Design . 7
2.3.3 Power Management System . 9
2.3.4 ESP32 Board Design . 13
2.3.5 Communication System . 15

2.4 Software Design . 15
2.5 Overview . 15

2.5.1 I2C Driver and IMU Driver . 16
2.5.2 Bluetooth Low Energy Driver . 17
2.5.3 Gesture Recognition System . 18

3 Requirements and Verification 22
3.1 Requirements and Verification . 22
3.2 Tolerance Analysis . 23

3.2.1 IMU Based Gesture Sensing System 23
3.2.2 Gesture Recognition System . 24
3.2.3 Communication System . 24
3.2.4 Power Management System . 25

3.3 Safety and Ethics . 25

4 Cost and Schedule 26
4.1 Cost Analysis . 26
4.2 Project Schedule . 28

References 29

ii

1 Introduction

1.1 Problem

In today’s society, with the popularity of electronic devices such as laptops and smart-
phones, people’s demand for efficient and convenient human-computer interaction is in-
creasing[1]. However. However, traditional human-computer interaction methods (such
as keyboards, mice, and touch screens) are often inefficient or limited in usage scenarios
under some condition, and it is difficult to meet the current needs of multiple devices
and multiple environments. For example, with the development of emerging technolo-
gies such as AR/VR, people require more natural and flexible gesture- and motion-based
interactions[2]. But voice recognition and camera-based gesture recognition are limited
by factors like noise, lighting, and distance. Therefore, How to ensure the accuracy of
operation while using flexible interaction methods anytime and anywhere has become an
urgent problem to be solved.

1.2 Solution

As a new type of human-computer interaction device, smart gloves can capture and iden-
tify the curvature, movement trajectory and spatial orientation information of fingers in
real time, map gestures to various quick operations, and provide users with a convenient
and efficient interactive experience. With multiple built-in sensors, smart gloves can ac-
curately record the movement of fingers, and map the recognized gestures to pre-defined
functions, thereby realizing convenient control of smart devices such as laptops, smart-
phones, and even AR/VR systems. There are many application scenarios. While work-
ing, users no longer need to switch frequently between their computer and presentation
device. Instead, they can operate PowerPoint or documents with simple gestures. During
gaming time, gesture interaction can provide a more immersive and natural experience;
for people with disabilities, smart gloves can also help replace traditional input devices
and improve the operation method. In this way, the user’s hand movement information is
converted into machine-recognizable instructions, which greatly improves the operation
efficiency, and expands the application scope of human-computer interaction.

Due to time, manpower and resource constraints, we decided to focus on the most ba-
sic function - using smart gloves as a ”mouse replacement” for laptops. Specifically, the
built-in sensors on the gloves collect information about finger gestures, and map this
information to mouse operations such as cursor movement, clicks or scroll wheels. Al-
though the scope of this project is relatively limited, we will fully consider the scalability
of the system during design and implementation so that it can be further expanded to
more application scenarios in the future.

1

1.3 Visual Aid

Figure 1: Visual Aid[3][4][5]

1.4 High-level Requirement List

1. The main function of this project is to use an Inertial Measurement Unit to map the
position of the palm or index finger to the mouse pointer on the screen, enabling
natural movement. At the same time, gestures such as clicking, pinching, and grip-
ping are used as user commands, mapped to actions like left-click, right-click, and
double-click, ensuring stability and reducing gesture misinterpretation or repeated
commands.

2. The local gesture recognition system on the chip utilizes a pre-trained gesture recog-
nition model to implement shortcut key mapping. To ensure real-time performance,
our gesture recognition model must be fast and efficient, ensuring that each gesture
command can be recognized and executed by the computer within 0.2 seconds.

3. As a wearable electronic device, we want this device to be portable and lightweight.
Therefore, the proposed device weight will not exceed 0.5 kilograms to ensure that
users can easily carry it during the HCI experience. To guarantee a long wireless
usage experience for users, the glove should be able to operate for over 5 hours
under normal usage conditions.

2

2 Design

2.1 Block Diagram

There are 4 components in our system, lithium battery and voltage regulator circuit,
MPU6050 sensors, ESP32 MCU and the host device. The block diagram of the entire
system is shown as follows 2.

Figure 2: Block Diagram of System Design

2.2 Subsystem Overview

The smart glove is composed of four distinct subsystems: an IMU-based gesture sensing
system, a gesture recognition system, a communication system, and a power manage-
ment system.

2.2.1 IMU Based Gesture Sensing System

The gesture sensing system is responsible for capturing the position and the angle infor-
mation of the fingertip. Each glove is equipped with six MPU6050 sensors, constituting a
6 DOF IMU. The communication infrastructure between the ESP32 and the MPU6050 is
facilitated by an I2C bus. The I2C bus driver plays a pivotal role in regulating the SCL and
SDA wires and implementing a built-in integral and Kalman filtering algorithm.

3

2.2.2 Gesture Recognition System

The goal of this system is to implement mouse movement based on the ESP32 and MPU6050,
and map gestures (such as click, swipe, fist, etc.) to mouse buttons or keyboard shortcuts
to accurately generate human-computer interaction commands. For the mouse move-
ment part, we use a physical modeling approach, applying a series of coordinate trans-
formations and integrations to the sensor data to obtain velocity, which guides the mouse
movement. For the shortcut mapping, we adopt dynamic gesture detection rather than
static gesture detection. We use preprocessed 3D acceleration and angular velocity data
sequences from the MPU6050, which provides data for five fingers and the back of the
hand, to construct a dynamic gesture database. During the user interaction phase, we
sample sensor data at an appropriate frequency and use a sliding time window to ob-
tain candidate sequences. We match this data sequence with the database using the DTW
algorithm, and the matched gesture is mapped to a keyboard shortcut via HID.

2.2.3 Communication System

The communication system is designed to achieve efficient data interaction between smart
gloves and computers or mobile devices. The system uses serialization and deserializa-
tion technology to encapsulate and parse data in binary or JSON format on the device
and host sides to improve transmission efficiency. At the hardware level, the system in-
tegrates the CP2102/CH340 USB module, which supports wired communication of the
UART interface, suitable for glove charging or scenarios requiring high-bandwidth data
transmission; at the same time, the Bluetooth module provides wireless communication
capabilities and supports Bluetooth (optional low-power Bluetooth LE) for the transmis-
sion of gestures and commands to enhance portability and user experience.

2.2.4 Power Management System

The power management system is designed to provide a stable power supply to the
whole system. It is mainly divided into two parts: the battery charging section and the
processor power supply section. The battery charging section will receive input voltage
from USB/Type C interface and charging the battery under monitoring. The processor
power supply section mainly includes the converter circuit to provide a stable 3.3v out-
put voltage to the processor(Gesture Sensing Subsystem and Gesture Recognition Sub-
system)

2.3 Hardware Design

2.3.1 Attitude Sensor PCB Design

The MPU6050 is an advanced six-axis MEMS motion tracking chip that integrates a three-
axis gyroscope (programmable full-scale ±250°/s to ±2000°/s) and a three-axis accelerom-
eter (configurable range ±2g to ±16g), and is equipped with a digital motion processor
(DMP). The system-on-chip runs the sensor fusion algorithm in real time at a sampling

4

frequency of 1kHz, and synchronously outputs 16-bit raw inertial data and quaternion-
based processed attitude vectors through an I2C digital interface (supporting standard
100kHz and fast 400kHz modes). Its core advantages include: the industry-leading 4×4
×0.9mm QFN-24 package can be directly mounted on the knuckles; the ultra-low operat-
ing current of 3.6mA (5uA sleep mode) meets the battery life requirements of wearable
devices; the built-in temperature compensation function ensures ±1% measurement sta-
bility in the range of -40°C to +85°C. These features fully meet the core design require-
ments of gesture recognition gloves: miniaturization, high energy efficiency, and stable
tracking during dynamic hand movements.

In our IMU Attitude Sensor PCB design, MPU6050 is the core of the whole PCB. The
VDD pin of MPU6050 requires a digital power supply ranging from 2.375V to 3.46V. It
will be supplied with a 3.3V digital power supply from another power supply PCB. Pin
VLOGIC is the optional logic level, typically connected to match the I2C bus voltage level
(if different from the host controller’s supply), so we connected it with VDD. SCL and
SDA is two of the I2C communication port. SCL works as I2C clock input and SDA
works as I2C data IO. Both of the pins are required to be connected with 4.7kΩ pull-up
resistors. As we will not be using an external magnetometer, the pin XDA/XCL will not
be connected. Pin AD0 is the I2C address selection port, so we default drop it down to
the ground. Pin INT is the interrupt pin of MPU6050. It serves as a hardware-triggered
event notification output, enabling real-time alerts to the host microcontroller (which, in
our case, is ESP32) for specific sensor conditions without requiring continuous polling. It
gives a high signal when the detected attitude changes. Because we will do continuous
measurement, so we just leave pin INT floating. According to the datasheet, on pin 10
we used a regulator filter capacitor and on pin 13 we used a VDD bypass capacitor, both
of which are valued 0.1µF. For Pin 20 a charge pump capacitor valued 2.2nF is needed.
Finally, on VLOGIC pin 8, we need a bypass capacitor valued 10nF.

As the attitude sensor will be equipped onto human fingertips, the PCB needs to be rather
small. To minimize its size, we organized some of the electronic components on the back
of the board. Consequently, the real size of the board will be 9.9mm×12mm×1.6mm,
which is actually smaller than a fingernail, enhancing the portability of the peripheral.

5

Figure 3: Schematic of Attitude Sensor

Figure 4: PCB Design of Attitude Sensor

6

2.3.2 I2C Switch PCB Design

We selected the MPU6050 as the attitude sensor for our design. Since we need six MPU6050
modules (five on the fingertips and one on the palm) to achieve the attitude detection
function, we must merge the six I2C signals into a single bus using a multiplexer.

To accomplish this, we adopted the TCA9548A chip. The TCA9548A is an I2C multi-
plexer primarily used to expand I2C bus connectivity and resolve address conflicts. It
supports 1.8V, 3.3V, and 5V input logic levels, features low on-resistance (5Ω), and al-
lows programmable addressing (default 0x70) via pins A0-A2. The chip is controlled
via the I2C bus, can automatically isolate unselected channels to prevent bus conflicts,
and is equipped with an interrupt output (INT) function to monitor downstream devices’
status. It is particularly suitable for multi-sensor systems, modular designs, and mixed-
voltage I2C network applications, simplifying bus expansion while ensuring signal in-
tegrity.

When the TCA9548A works as an I2C multiplexer, the host MCU sends a 1-byte channel
selection command through the I2C bus, and the chip turns on the specified channel (the
remaining channels remain in high-impedance state), achieving exclusive communication
between the host and the target slave without causing bus conflicts. Its open-drain out-
put INT pin can alert the host when a downstream device triggers an interrupt, thereby
achieving efficient multi-device management without address conflicts.

The VCC pin of TCA9548A requires a voltage level ranging from 2.3V to 5.5V, so we
will also use the same 3.3V supply from the voltage source as what we used in the de-
sign of attitude sensor. The SDA and SCL pins connect to the main I²C bus lines and
require external pull-up resistors for proper operation. Three address configuration pins
A0 through A2 determine the device’s I2C slave address, with all pins grounded resulting
in the default address of 0x70. An active-low RESET pin initializes the chip when pulled
low, normally maintained at logic high during operation. The open-drain INT output pin
signals interrupt conditions from downstream devices. Eight pairs of bidirectional SDx
and SCx pins, where x ranges from 0 to 7, interface with the SDA and SCL lines of con-
nected I²C slave devices respectively. Each channel can be individually selected through
I²C commands while maintaining electrical isolation of inactive channels. The device’s ar-
chitecture supports hot insertion capability and requires properly sized pull-up resistors,
typically 4.7kΩ, on the primary I2C bus lines to ensure reliable signal integrity across all
connected devices.

7

Figure 5: Schematic of I2C Multiplexer

Figure 6: PCB Design of I2C Multiplexer

8

2.3.3 Power Management System

Figure 7: Power Management System Flowchart

As shown in Figure 7, the power management system is divided into two main sections:
the battery charging section and the processor power supply section.

Battery Charging Section

• The system receives a 5V power supply via the Micro USB/Type-C interface, with a
fuse added for overcurrent protection.

• The charging module uses a CC-CV mode charging IC from the LTH series to man-
age the battery charging process.

• Two charging indicator LEDs are included to display charging status.

• A charging protection chip is added to prevent overcharge and overdischarge, en-
suring charging safety.

• The use of a Micro USB connector helps simplify later software integration and cod-
ing.

Processor Power Supply Section

9

• The converter system regulates the lithium battery’s output voltage, to provide a
regulated 3.3V ± 0.05V output to power the ESP32 and its peripherals.

• The ESP32 shall supply power to the connected sensors and other peripherals.

The following section provides a detailed description of the power supply modules

Figure 8: Power board schematic

The power supply board consists of six functional sections:Lithium-ion battery, Charg-
ing Protection, Charging Circuit, Voltage Transfer, Pin Header, and Switch. The detailed
schematic graph is showcased in Figure8,The PCB board 2D and 3D graph can be seen in
Figure9 and Figure17.

• Lithium-ion Battery: The selected battery is a 300mAh lithium-ion cell with dimen-
sions of 25 mm × 30 mm × 4 mm, chosen to balance capacity and compact size. Its
nominal charge/discharge rate is 0.2C, with a safe operating rate of 0.5C and a max-
imum rate of 1C. The physical appearance of the battery is shown in figure11.

• Charging Circuit: The TP4056 (U7) is used to implement a constant-current/constant-
voltage (CC-CV) charging scheme. The charging current is set by the resistor R28
according to the formula I = 1V

R28
× 1200, yielding approximately 100 mA for R28 =

12kΩ, which is within the recommended 0.2C–0.5C range for the selected lithium
battery. During charging, the red LED (LED4) connected to CHRG# is lit; once charg-
ing completes, the green LED (LED5) connected to STDBY# turns on.

• Charging Protection: The IP3003A (U8) provides battery protection features, in-
cluding overcharge, over-discharge, and short-circuit protection. The battery is con-
nected via BAT+ and BAT-, and the protected output is provided through VBAT.

– Overcharge protection: 4.28 V; recovery: 4.1 V

10

Figure 9: Power board PCB

Figure 10: Power board PCB-3D View

11

Figure 11: battery

– Over-discharge protection: 2.5 V; recovery: 3.0 V

These fixed thresholds align with lithium-ion battery specifications and effectively
prevent unsafe voltage excursions, thereby improving battery longevity and safety.

• Voltage Transfer (3.7 V → 5 V → 3.3 V): To ensure a stable 3.3 V output, a two-stage
voltage conversion scheme is adopted. First, the MT3608 boost converter (U2) raises
the battery voltage (typically 3.7 V) to 5 V. The output voltage is set using the feed-
back formula:

VOUT = 0.6V ×
(
1 +

R1

R2

)
With R1 = 73kΩ and R2 = 10kΩ, the output is regulated near 5 V.

The second stage uses a 662K low-dropout linear regulator (U1) to step down 5 V
to 3.3 V, with output smoothing by capacitors C15 and C16. This two-stage design
ensures a reliable 3.3

• Pin Header: The board includes one 3-pin and two 5-pin headers for interfacing.
The 3-pin header (H3) connects directly to the ESP32 board, providing 3.3 V and
GND, and receiving 5 V input. This compact design supports easy stacking with
the main controller board. The two 5-pin headers are reserved for future expansion,
offering extra power and signal connectivity to external modules.

• Switches: Power routing is managed by two slide switches (SW7, SW8) and one
terminal block (H1). SW7 controls whether the battery supplies power through the
VBAT line. SW8 switches the 5 V USB supply, which is useful during firmware flash-
ing or testing. The terminal block H1 is used to connect an external lithium-ion
battery. This configuration allows flexible switching between USB-powered and
battery-powered modes, enhancing both safety and development convenience.

12

2.3.4 ESP32 Board Design

The ESP32 Board consists of a Micro USB interface, which supplies 5 V input to
the power management board and simultaneously receives a regulated 3.3 V output
from it to power the onboard ESP32 module.

The development board integrates USB-to-serial circuitry and supports firmware
downloading and serial communication. It also includes the necessary current path
and logic for uploading code via USB. The schematic of the board is shown in Fig-
ure12, while the corresponding 2D and 3D PCB layouts are provided in Figure13
and Fiture14, respectively.

Figure 12: ESP32 Development Board

In the following section, we will provide a detailed explanation of its working prin-
ciples and circuit design.

This schematic illustrates the design of the ESP32 core board, which integrates USB
communication, serial port conversion, automatic download control, and the ESP32-
S3 processor. The board consists of five functional blocks: MicroUSB Interface, CH340
Serial Port, Auto Download Circuit, Pin Header, and ESP32 Processor Module.

– MicroUSB Interface: The USB2 connector provides both power supply and
data communication for the system. To protect the downstream battery and
circuits, a fuse (F4) is added to limit the current below 290 mA. If the current
exceeds this threshold, the fuse will blow, effectively preventing potential dam-
age caused by overcurrent conditions

13

Figure 13: ESP32 Development Board PCB

Figure 14: ESP32 Development Board PCB-3D View

14

– CH340 Serial Port: A CH340C chip (U3) is used to convert USB to UART, en-
abling serial communication between the host computer and the ESP32 mod-
ule. It connects USB signals D+ and D- to UART signals TXD0 and RXD0.

– Auto Download Circuit: The automatic download circuit consists of two NPN
transistors and pull-up resistors . This circuit uses the DTR and RTS signals
from the USB-UART converter to automatically toggle the EN (reset) and IO0
(boot) pins of the ESP32 for flashing firmware without manual intervention.

– Pin Header: The 3-pin header (H3) is designed to mate with the power sup-
ply board and is responsible for delivering power (V+, GND, and 3.3V) to this
module. The 5-pin FPC connector (CN1) is used to route the output signals
from the CH340 and ESP32 modules—specifically the I2C lines (SDA, SCL) and
power rails—to the TCA9848A I2C expander, enabling communication with
multiple downstream sensors.

– ESP32 Processor: The ESP32-S3-WROOM-1-N16R8 module (U9) serves as the
main controller. It operates on 3.3 V and connects to the serial port via TXD0
and RXD0, with the EN and IO0 pins interfaced to the download circuit.

2.3.5 Communication System

1. Bluetooth Section We will be using Build-in Bluetooth of ESP32 called BluetoothSe-
rial to transmit data between the mircoprocessor and our computer. ESP32 supports
Bluetooth 5.0 which has both Bluetooth and BLE (Bluetooth Low Energy), and we
will use BLE for our project. Compared with BR, BLE has lower connection delay
and lower power consumption, so it’s more suitable on low power devices such as
wearable devices. Bluetooth 5.0 has a transmission rate up to 2 Mbps and transmis-
sion distance up to 300 meters. In practical, the effective transmission rate is usually
lower than theoretical value, which is about 1 Mbps.

2. UART Section UART is a serial communication protocol that transmits data to a
host computer through a USB interface such as type-c. We use a CH340 serial com-
munication chip to realize the support of UART. Through the UART protocol, we
can monitor and program the ESP32. The PCB design for CH340 and ESP32 is
shown as 14.

2.4 Software Design

2.5 Overview

Our software design has three main parts, I2C and IMU driver, gesture recognition mod-
ule and BLE driver. In order to maintain the high performance and reproducibility of our
projects, we adhere to the following guidelines in the design of our software.

1. Zero Runtime Overhead Principle. Any template class is designed to maximize
the benefits of C++’s template programming, such as compile-time derivation using

15

constexpr.

2. Abstraction Without Sacrificing Performance. Abstraction of any object should
not come at the expense of performance. By using programming paradigms such as
CRTP (Curious Recursive Template Pattern), RAII (Resource Acquisition Is Initial-
ization), we can achieve zero-cost abstraction of class objects and hardware

3. Standardization and Portability. The Standard Template Library (STL) provides
a rich set of reusable components (containers, algorithms, iterators) that promote
portability and reduce the need for reinventing the wheel. By using STL, all of our
modules are header-only, providing extremely strong portability.

The relationship between the I2C driver, IMU driver and bluetooth driver is shown as
follows.

i2c::I2CBus

i2c::I2CDevice
i2c::

I2CDeviceConstructor

mpu6050::MPU6050mpu6050::
MPU6050Constructor

glove::IMUArray gesture::
GestureDetector

ble::HID

Attach

Generate

Generate

Inherit Derive

Compose

SendGestureData

SendCommand

Figure 15: Datapath Flowchart

2.5.1 I2C Driver and IMU Driver

The i2c namespace provides a robust abstraction for managing I2C communication on
an ESP32 device. It includes classes for configuring and interacting with I2C buses and
devices:

1. I2CBus: Represents an I2C bus. Provides functionality to scan for connected devices
and manage the bus lifecycle. Automatically cleans up resources when the bus is
destroyed.

2. I2CBusConstructor: A builder class for creating and configuring an I2CBus instance.
Allows customization of parameters like clock source, glitch ignore count, interrupt
priority, and internal pull-up resistors.

3. I2CDevice: Represents an I2C device connected to a bus. Provides methods for read-
ing and writing data to the device, including support for combined read-after-write

16

operations. Ensures proper cleanup of the device handle upon destruction.

4. I2CDeviceConstructor: A builder class for creating and configuring an I2CDevice
instance. Allows customization of parameters like clock speed, wait time, and ac-
knowledgment checks. The driver uses ESP-IDF’s I2C APIs and ensures error han-
dling . It supports both 7-bit and 10-bit addressing modes and provides a clean,
modern C++ interface for I2C communication.

The mpu6050 namespace provides a high-level interface for interacting with the MPU6050
IMU (Inertial Measurement Unit) sensor. It leverages the i2c driver for communication
and includes the following components:

1. Register Abstraction: The DEFINE REGISTER macro simplifies the definition of
sensor registers with bitfield structures and default values. The Reg template class
provides a type-safe way to read and write specific registers.

2. MPU6050 Class: Encapsulates the functionality of the MPU6050 sensor. Provides
methods to: Read gyroscope, accelerometer, and temperature data. Configure sam-
ple rate, full-scale ranges, sleep mode, and low-pass filters. Enable low-power mode
with customizable configurations. Reset the sensor to its default state. Internally
manages sensitivity scaling based on the configured full-scale ranges.

3. MPU6050Constructor: A builder class for creating and configuring an MPU6050 in-
stance. Allows chaining of configuration methods for parameters like sample rate,
full-scale ranges, sleep mode, and low-power mode. Automatically initializes the
sensor with the specified settings upon construction.

4. Enums and Configurations: Enumerations for gyroscope and accelerometer full-
scale ranges, low-pass filter configurations, and low-power wake frequencies.

The driver provides a clean and efficient interface for working with the MPU6050 sensor,
making it easy to configure and retrieve data while abstracting low-level I2C communi-
cation details.

2.5.2 Bluetooth Low Energy Driver

The Bluetooth driver is abstracted using the ESP-IDF’s BLE (Bluetooth Low Energy) stack,
specifically tailored for HID (Human Interface Device) profiles. Here’s how the abstrac-
tion works:

1. HID Profile Initialization:

The esp hidd profile init() function initializes the HID profile environment (hidd le env)
and sets up the necessary BLE services and characteristics for HID functionality. The
HID profile includes predefined characteristics for mouse, keyboard, and consumer
control input reports.

2. Callback Registration:

The esp hidd register callbacks() function allows the application to register event

17

callbacks for handling HID-specific events (e.g. connection, disconnection, report
writes). These callbacks are stored in the hidd le env structure and invoked during
BLE events.

3. Report Handling: The hid dev register reports() function registers HID reports (e.g.,
mouse, keyboard, consumer control) with their corresponding IDs, types, and han-
dles. The hid dev send report() function sends HID reports to the connected BLE
client using the appropriate GATT handle

4. BLE GATT Services: The HID service and its characteristics are defined in
hidd le gatt db and include attributes for input reports, output reports, and control
points. The hidd le create service() function sets up the GATT database and starts
the HID service.

5. Event Handling: The gatts event handler() function handles BLE GATT server events
(e.g., registration, connection, disconnection, attribute writes) and routes them to
the appropriate handlers. Setting Up an HID Device to Simulate Input

To simulate an HID input device (e.g., a mouse or keyboard) using the BLE driver shown
as above, the following steps are performed.

1. HID Profile Initialization:

Call esp hidd profile init() to initialize the HID profile. This sets up the BLE GATT
services and characteristics required for HID functionality.

2. Register HID Reports:

Use hid dev register reports() to register the HID reports (e.g., mouse, keyboard)
with their IDs, types, and GATT handles. For example, a mouse input report is
registered with HID RPT ID MOUSE IN.

3. Send HID Reports:

Use functions like esp hidd send mouse value() or esp hidd send keyboard value()
to send HID input reports to the connected BLE client. For a mouse:
esp hidd send mouse value(conn id, mouse button, mickeys x, mickeys y) sends a
report with button states and movement deltas (mickeys x, mickeys y). For a key-
board: esp hidd send keyboard value(conn id, special key mask, keyboard cmd,
num key) sends a report with key presses.

4. BLE Connection Management: The HID device handles BLE connections and dis-
connections through the registered callbacks. For example, when a BLE client con-
nects, the HID device starts sending input reports.

2.5.3 Gesture Recognition System

Keypoints:

1. Overall, our human-computer interaction is divided into two parts: basic mouse
movement and shortcut keys. Mouse movement is achieved by deriving velocity

18

from sensor data through a series of coordinate transformations and integrations,
while shortcut key mapping is accomplished through a designed model and the
DTW algorithm.

2. In shortcut key mapping part, we predefine gestures as specific sensor time series
data, and use the DTW algorithm to match the sensor data from each time window
with the predefined database to recognize the gesture and map it to a mouse or
keyboard shortcut.

3. Our primary goals are high accuracy and real-time performance. In terms of ac-
curacy, we use a low-pass filter or a Kalman filter to process the raw sensor data
to eliminate noise, and average the data of multiple users to eliminate individual
differences. At the same time, real-time performance is achieved by quantizing the
sensor data into integers and storing them in the NVS(Non-Volatile Storage), which
is implemented based on the internal flash memory, reducing the data transmission
time and latency.

Mouse movement For the mouse’s X-axis and Y-axis movements, we utilized the ac-
celerometer data from the MPU6050 mounted on the back of the hand. However, since
the MPU6050 is affected by gravity and experiences a downward acceleration of g, we
first use the gyroscope to compensate for the gravitational acceleration. The specific pro-
cess is as follow:

The gravity vector in the world coordinate frame, the raw accelerometer and the gyro-
scope measurement are:

gworld =

0

0

−9.81

 a =

ax

ay

az

 ω =

ωx

ωy

ωz

The gyroscope provides the angular velocity components ωx, ωy, and ωz, which represent
the rates of change of the Euler angles ϕ, θ, and ψ, corresponding to roll, pitch, and yaw,
respectively. The relationship between angular velocities and Euler angles is:

ϕ̇

θ̇

ψ̇

 =

1 sin θ tanϕ cos θ tanϕ

0 cos θ − sin θ

0 sin θ/ cosϕ cos θ/ cosϕ

 ·

ωx

ωy

ωz

Once we have the angular velocities ωx, ωy, and ωz, we can integrate them numerically to
obtain the Euler angles ϕ(t), θ(t), and ψ(t) at each time step:

ϕ[k + 1] = ϕ[k] + ϕ̇[k] ·∆t
θ[k + 1] = θ[k] + θ̇[k] ·∆t

19

ψ[k + 1] = ψ[k] + ψ̇[k] ·∆t

The rotation matrix R (from world frame to sensor frame) is constructed from the Euler
angles:

R =

cosψ cos θ cosψ sin θ sinϕ− sinψ cosϕ cosψ sin θ cosϕ+ sinψ sinϕ

sinψ cos θ sinψ sin θ sinϕ+ cosψ cosϕ sinψ sin θ cosϕ− cosψ sinϕ

− sin θ cos θ sinϕ cos θ cosϕ

The gravity vector in the sensor coordinate frame is obtained by:

gsensor = R⊤ · gworld

Therefore, the net acceleration after removing gravity is:

ano gravity = a− gsensor

Therefore, we can integrate the gravity-compensated acceleration to obtain the velocity,
and use the velocity in the x and y directions as the speed for mouse movement in the
horizontal and vertical directions.

vk+1 = vk + ano gravity,k ·∆t

Data preprocessing and database construction.

Unlike simple mouse movement, gesture mapping is achieved through a dynamic map-
ping model. The data output by the MPU6050 may be subject to noise interference. By
using the low-pass filter to the data from the accelerometer and gyroscope, the influence
of noise can be effectively reduced, and the accuracy and stability of pose matching can
be improved. Then, to facilitate faster inference and adapt to the NVS storage format,
we quantize the original floating-point values into integer form. The accelerometer data
quantization relationship is shown in the figure.

Figure 16: Quantization relationship

20

We also perform similar quantization on the gyroscope data. Then, we define several
commonly used mouse and keyboard commands—such as clicking, increasing volume
and so on—as gestures. For each gesture, we collect multiple samples from multiple users
and use the average as the representative data sequence for that gesture. Therefore, the
data corresponding to each gesture has a dimension of [num sensors∗6, sequence length],
where 6 means the dimension of the accelerometer and the gyroscope data. The entire
database is stored in NVS(Non-Volatile Storage) in the form of key-value pairs.

The process of gesture recognition

Figure 17: Gesture recognition procedure

Here, we use a time window approach to spot user data and perform gesture recognition
and the whole procedure is shown in the figure. For each window, the size of the data we
obtain is [num sensors ∗ 6, window length], which is the data from all sensors multiplied
by the window length. Then, we match the candidate sequence with the database using
DTW(Dynamic Time Warping) algorithm, and if the minimum cost is below a certain
threshold, the gesture is recognized. Given sequence a and b, the DTW algorithm is as
follow:

DTW(1, 1) = ∥a1 − b1∥2,

DTW(i, j) = ∥ai − bj∥2 +min {DTW(i−1, j), DTW(i, j−1), DTW(i−1, j−1)}

There, the cost will be:
Cost = DTW(n,m)

In addition, to prevent a gesture from being recognized as a sub-gesture (e.g., a double-
click being recognized as two single clicks), we simultaneously sample windows of dif-
ferent lengths and take the action recognized by the largest window. Finally, the matched
gesture is implemented as a mouse or keyboard shortcut via HID.

21

3 Requirements and Verification

3.1 Requirements and Verification

The requirements and verifications are shown in the following table.

Requirement Verification

1. Relative Self Test Response (STR)
must within 14%

When self-test is activated, the on-board electron-
ics will actuate the appropriate sensor. This actua-
tion will move the sensor’s proof masses over a dis-
tance equivalent to a pre-defined Coriolis force. Read
the output values and compute the bias from factory
trim.

2. The mouse movement function is
working properly. (a) The direction of mouse movement and the

direction of hand motion can be accurately
matched.

(b) The mouse movement speed has a linear rela-
tionship with the hand movement speed.

3. The accuracy of shortcut key
mapping is above 70%.

Given a set of gestures (functions), have the user per-
form them one by one to measure the accuracy.

4. Battery input voltage must be
3.7 V ±10% (a) Connect the battery to voltmeter to measure the

battery terminal voltage after charging.

5. The charging process should be
monitored by the Red and Green
LED correctly

(a) Connect partially discharged battery
(b) Observe LED4 (Red) on while charging
(c) Observe LED5 (Green) on after charge com-

pletes

6. Constant current charging
should maintain 100 mA ±20% (a) Apply current meter in circuit to measure cur-

rent
(b) Power system via 5 V USB
(c) Ensure charging current remains within

80–120 mA range

22

Requirement Verification

7. The voltage output of the con-
verter must be 3.3 V ±10% (a) Connect oscilloscope to 3.3 V output, and make

sure the circuit is powered by the battery
(b) Ensure output voltage remains stable in range

2.97–3.63 V load

8. ESP32 should correctly receive
data from Micro USB interface (a) The program can be correctly flashed into the

ESP32.

9. ESP32 should correctly receive
data from MPU sensor (a) Angular velocity and linear acceleration data

could be read in the monitor.

3.2 Tolerance Analysis

3.2.1 IMU Based Gesture Sensing System

The MPU6050 is capable of configuring up to two I2C addresses, indicating that each I2C
bus can support two IMUs. However, the design requires a total of six IMUs: Five are
positioned at the fingertips, and one is mounted to the motherboard to provide the ori-
entation of the hand. To address this challenge, the utilization of an I2C MUX, such as
the TCA9548A, is recommended. This device is an 8-to-1 I2C MUX, which receives eight
I2C SDA and SCL inputs and two selection bits, thereby enabling the utilization of up to
sixteen I2C devices with a common address on two I2C buses.
A further inquiry pertains to the fresh rate of the gesture sensing system. The fresh rate
dictates the number of samples per second, which exerts a substantial influence on the ef-
ficacy of gesture recognition. The MPU6050 generates 6 16-bit values, corresponding to 3
linear accelerations and 3 angular accelerations. Notwithstanding the raw data overhead,
three additional bytes of data are necessary for the I2C protocol: the start signal, ACK,
and end signal. Hence, one MPU6050 requries

6× 2 + 3 = 15 bytes per transmission (1)

The I2C bus has been demonstrated to facilitate data transmission at a rate of up to 400
kilobits per second. Consequently, the 6 MPU6050 is capable of sampling the gesture at a
maximum rate give as follows,

fmax,sampling =
Bandwidth

DataPerTX

=
400, 000

6× 15× 8

≈ 555Hz

(2)

23

which is sufficient for high precision gesture recognition.

3.2.2 Gesture Recognition System

For the gesture recognition model, the accuracy of the model is inevitably influenced by
the dataset. To evaluate the model’s performance, detect gesture recognition errors, and
identify failures, we use classic classification model evaluation metrics, including Accu-
racy, Precision, Recall, and AUC-ROC curve. In addition, to prevent a gesture from being
recognized as a sub-gesture (e.g., a double-click being recognized as two single clicks),
we simultaneously sample windows of different lengths and take the action recognized
by the largest window. As for the inference speed, we aim to keep the dataset size within
24kB, and typically, gesture mapping can be completed within 50ms to 200ms.

3.2.3 Communication System

• Theoretical Speed
BLE 5.0 2 Mbps PHY theoretical maximum speed: 2 Mbps = 250 KB/s. However,
BLE has protocol overhead, and the actual data rate is much lower than the theo-
retical value.

• Key Factors Affecting Actual Speed
BLE 5.0 data transfer is influenced by Maximum Transmission Unit (MTU), con-
nection interval, and number of packets per interval:

– MTU (Maximum Transmission Unit): ESP32 BLE default supports up to 247
bytes.

– Connection Interval: Minimum 7.5 ms (typically set to 10 ms).

– Maximum 6 packets per interval (per BLE specification).

Effective payload per data packet:

• MTU = 247 bytes (excluding BLE headers)

• L2CAP/ATT overhead = 7 bytes

• GATT payload = 247 - 7 = 240 bytes

Maximum Data Transfer Per Connection Interval

• One packet = 240 bytes

• Max 6 packets per interval

• Connection interval = 10 ms (optimal setting)

Maximum BLE 5.0 throughput calculation:

240× 6 = 1440 bytes/10 ms = 144 KB/s = 1.15 Mbps

24

If the connection interval is set to 7.5 ms, throughput can be increased, but power con-
sumption will rise. Actual BLE 5.0 2 Mbps mode throughput is approximately 1.4 Mbps
(175 KB/s), lower than the theoretical 2 Mbps.

Final Choice of UART Baud Rate: 1.5 Mbps (1500000 bps). This Baud Rate ensures stable
BLE 2 Mbps mode throughput of 1.4 Mbps.

3.2.4 Power Management System

The selected lithium battery operates at a standard discharge rate of 0.2C to 0.5C, with a
maximum discharge rate of 1C, corresponding to 0.3 A for a 300 mAh cell. To ensure safe
current delivery, all 3.3 V and 5 V power traces are routed with a width of 15 mil, which
supports up to 1.2 A of continuous current under standard PCB conditions.

All current-limiting resistors and components on the power path have been carefully se-
lected and analyzed for current and voltage stress, ensuring sufficient power tolerance
and reliability under expected load conditions.

The combined operating current of key components, including the ESP32, MPU6050, and
other peripheral devices, remains below 100 mA. This is well within the battery’s max-
imum rated output (300 mA), and also within the safe current handling capacity of the
power traces and all associated circuit elements.

3.3 Safety and Ethics

Our project adheres to ethical and safety principles as outlined in the IEEE and ACM
Codes of Ethics[6]. Ethically, we ensure that our design prioritizes reliability, transparency,
and public welfare. We commit to honest documentation, respect for intellectual prop-
erty, and responsible engineering practices. To prevent misuse, we will implement secure
communication protocols and adhere to privacy standards to protect data integrity.

This project does not involve high-voltage electricity, but does include lithium batteries.
We will select a small 300mAh lithium battery and have read and fully understand the
Safe Battery Usage document. In addition, we will apply fuses, battery protection mod-
ules to enhance safety. We will strictly follow national and campus safety regulations to
ensure that the experiment is conducted in a controlled environment.[7]

25

4 Cost and Schedule

4.1 Cost Analysis

The following table summarizes the complete component cost for the project, including
both standard and custom parts. Prices are listed in Chinese Yuan (RMB, ¥) and converted
to US Dollars (USD, $) at an exchange rate of 1 USD = 7.2 RMB.

Description Manufacturer Part # Qty Total (¥) Total ($)

Slide Switch XKB SK-3296S-01-L1 20 6.90 0.96

BJT Transistor CJ SS8050 50 4.47 0.62

FFC Connector JS JS10B-05P 20 12.69 1.76

Pin Header XFCN PZ254V 50 5.19 0.72

USB-UART Chip WCH CH340C 5 17.35 2.41

Pin Header HANBO HB-PH3 20 2.56 0.36

Boost IC HTMX MT3608 10 3.99 0.55

LDO Regulator HXY 662K 50 5.38 0.75

Wafer Header XUNPU PH2.0-2PWZ 50 3.72 0.52

TVS Diode TaiHai nSMD012 20 4.72 0.66

USB Socket SHOU HAN MicroXNJ 10 2.45 0.34

Inductor cjiang FTC252012S100MBCA 10 2.66 0.37

Charge Protection IC INJOINIC IP3005A 5 4.68 0.65

Charging IC TOPPOWER TP4056 5 5.73 0.80

Resistor 10k UNI-ROYAL 0805W8F1002T5E 100 1.15 0.16

Capacitor 0.1uF SAMSUNG CL21B103KBANNNC 50 2.07 0.29

Capacitor 0.1uF SAMSUNG CL05B104KB54PNC 100 3.12 0.43

FPC Connector HCTL HC-FPC-05-09 35 17.90 2.49

Capacitor 2.2nF SAMSUNG CL21C222JBFNNNE 20 4.20 0.58

Resistor 4.7k UNI-ROYAL 0603WAF4701T5E 50 0.28 0.04

PCB Board A Custom – 1 79.37 11.02

PCB Board B Custom – 1 112.40 15.61

PCB Board C Custom – 1 28.00 3.89

26

Description Manufacturer Part # Qty Total (¥) Total ($)

PCB Board D Custom – 1 53.64 7.45

ESP32 Module Espressif ESP32 3 69.00 9.58

MPU6050 Sensor InvenSense MPU6050 8 200.00 27.78

Battery (300mAh) Generic Li-ion 3 23.40 3.25

Screw Set Generic – 1 3.00 0.42

TCA9548A TI TCA9548APWR 4 4.08 0.57

Total Parts Cost: ¥684.10 $95.03

Labor Cost: 4 people × 80 hours × ¥80/hour × 2.5 = ¥64,000.00 $8,888.89

Grand Total: ¥64,684.10 $8,983.90

Note: All the components are purchased online, so the shop labor hour will not be taken
into consideration.

27

4.2 Project Schedule

Date Jinhao Zhang
(EE)

Hongwei Dong
(ECE)

Shanbin Sun
(ECE) Zhan Shi (EE)

Mar. 20–24
Design ini-
tial power
schematic.

Bluetooth test.
Define data
protocol.

Collect gesture
samples. Test
IMU stability.

Design IMU-
ESP32 I2C con-
nection. Draft
PCB layout.

Mar. 25–31
Design initial
ESP32 board
schematic.

Build prepro-
cessing pipeline
(filter, normal-
ize).

Collect standard-
ized gesture set.

Model battery
shell. Draft glove
appearance.

Apr. 1–7
Choose special-
ized chip and
implement PCB

Train gesture
model. Test
Bluetooth trans-
mission.

Build I2C bus
test routine. UI
wireframe.

Develop IMU-
ESP32 driver.
First PCB test.

Apr. 8–14 Order PCB, Sol-
dering

Improve model
accuracy. In-
tegrate with
device.

Improve UI. Add
custom gesture
mapping.

Revise PCB and
re-order. 3D
print glove.

Apr. 15–21

Test all PCB
boards (leave
room for possi-
ble revision)

Deploy model
to ESP32. Map
gestures to
shortcuts.

UI + recognition
integration test.

Assemble glove.
Polish design
and fit.

Apr. 22–24

Test all PCB
boards (leave
room for possi-
ble revision)

Write deploy-
ment scripts.
Clean up code.

UI testing and
bug fixing.

Finalize exte-
rior. Prepare for
demo.

Apr. 25-May. 1 Combine all the subsystems and do final verifications. All together

May. 2-8 Prepare for mock demo and start writing final report draft. All together

May. 9-15 Prepare for final demo and the final report. All together

28

References

[1] Alex Roney Mathew, Aayad Al Hajj, and Ahmed Al Abri. “Human-computer inter-
action (hci): An overview”. In: 2011 IEEE international conference on computer science
and automation engineering. Vol. 1. IEEE. 2011, pp. 99–100.

[2] W Zhang et al. “Survey of dynamic hand gesture understanding and interaction”.
In: J. Softw 32.10 (2021), pp. 3051–3067.

[3] Encyclopædia Britannica. A laptop computer. 2025, Mar 14. URL: %5Curl%7Bhttps :
//www.britannica.com/technology/computer#/media/1/130429/231796%7D.

[4] Manus Meta. Quantum Metagloves. https : / / www. manus - meta . com / products /
quantum-metagloves. 2025, Mar 14.

[5] Electronic Cats. MPU6050A. https://github.com/ElectronicCats/mpu6050a. 2025,
Mar 14.

[6] IEEE. ”IEEE Code of Ethics”. 2016. URL: https://www.ieee.org/about/corporate/
governance/p7-8.html (visited on 02/08/2020).

[7] University of Illinois at Urbana-Champaign. Safe Practice for Lead Acid and Lithium
Batteries. Online. Available: https : / / courses . grainger . illinois . edu / ece445zjui /
documents/GeneralBatterySafety.pdf [Accessed: Feb. 28, 2024]. 2016.

29

%5Curl%7Bhttps://www.britannica.com/technology/computer#/media/1/130429/231796%7D
%5Curl%7Bhttps://www.britannica.com/technology/computer#/media/1/130429/231796%7D
https://www.manus-meta.com/products/quantum-metagloves
https://www.manus-meta.com/products/quantum-metagloves
https://github.com/ElectronicCats/mpu6050a
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html
https://courses.grainger.illinois.edu/ece445zjui/documents/GeneralBatterySafety.pdf
https://courses.grainger.illinois.edu/ece445zjui/documents/GeneralBatterySafety.pdf

	Introduction
	Problem
	Solution
	Visual Aid
	High-level Requirement List

	Design
	Block Diagram
	Subsystem Overview
	IMU Based Gesture Sensing System
	Gesture Recognition System
	Communication System
	Power Management System

	Hardware Design
	Attitude Sensor PCB Design
	I2C Switch PCB Design
	Power Management System
	ESP32 Board Design
	Communication System

	Software Design
	Overview
	I2C Driver and IMU Driver
	Bluetooth Low Energy Driver
	Gesture Recognition System

	Requirements and Verification
	Requirements and Verification
	Tolerance Analysis
	IMU Based Gesture Sensing System
	Gesture Recognition System
	Communication System
	Power Management System

	Safety and Ethics

	Cost and Schedule
	Cost Analysis
	Project Schedule

	References

