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1 Introduction

1.1 Problem

Individuals who are bedridden or have significantly limited mobility due to conditions
such as stroke, spinal cord injuries, or neuro degenerative diseases often face substantial
challenges in performing routine daily activities. Tasks as simple as reaching for a water
bottle, retrieving medication, or accessing personal devices become daunting and fre-
quently necessitate assistance from caregivers. This dependency can lead to a diminished
sense of autonomy and increased strain on both patients and healthcare providers.

The integration of assistive robotic technologies has shown promise in enhancing the
quality of life for individuals with mobility impairments. Studies have demonstrated
that such technologies can effectively reduce the physical burden on caregivers and im-
prove patient outcomes. [1], [2] Furthermore, advancements in artificial intelligence have
facilitated the development of robots capable of assisting the elderly in daily activities,
thereby promoting independence and safety.

Despite these advancements, existing assistive devices often lack the capability to inter-
pret natural language commands and adapt to the dynamic environments typically found
in bedside settings. This limitation underscores the need for an intelligent robotic as-
sistant that can comprehend voice instructions, accurately identify and locate a variety
of objects in real-time, and safely interact with them within the confined space of a pa-
tient’s bedside. It requires the seamless integration of advanced computer vision, natural
language processing, and precise robotic control to perform accurate grasping actions
according to oral instruction. Many existing robotic systems are limited to specific con-
texts or require extensive retraining for new objects, lacking the generalization needed
for a broad object vocabulary. Overcoming these hurdles is essential to creating adapt-
able robotic systems that facilitate patience’s independence in dynamic, human-centric
settings.

1.2 Solution

Our expected solution is a smart robotic arm equipped with a well-designed recognition
system based on computer vision and natural language processing. The image analysis
module of the robotic arm will be trained using RGB images and corresponding captions,
allowing it to categorize objects in the robotic arm camera. We will also use a language
processing module to extract the name of the intended objects from the input text or
voice command. Then, the robotic arm will move along the path to grab the object to the
designated position. The visual illustration of our robotic arm is shown below.

1.3 High-level Requirements List

• Reliability: The system should maintain a high level of reliability, such as the accu-
racy of 80% recognition when matching input instructions and figures.
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Figure 1: The Visual Illustration

• Generalization: The system should support grasping for at least 10 distinct objects
and be able to deal with out-of-vocabulary phenomena.

• Efficiency: The system should avoid collisions during the path execution and com-
plete each grasping task in 2 minutes.

2 Design

2.1 High-level Block Diagram

Figure 2: Model Layout
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2.2 Robotic Arm

We use the YahBoom DOFBOT SE Robotic Arm, which is driven by an STM32 controller
and uses a virtual machine as the master to generate control decisions. This robotic arm
has 6-degree-of-freedom serial bus servo and is controlled by the ROS operating system.
By installing a microphone and a USB camera on the outside of the robotic arm, we give
the robotic arm visual and auditory perception capabilities. For the end effector, we de-
sign a mechanical claw with a maximum opening width of 6 cm and a maximum load of
200 g, so that it can grasp common small objects. Figure 3 shows the specifications of this
robotic arm [3].

Figure 3: The Specifications Of The Robotic Arm

2.2.1 Camera

The Camera subsystem runs continuously, capturing images once every second, and pro-
viding real-time visual data to the Image Encoder subsystem for further processing. By
operating in a continuous manner, the system can persistently collect and analyze vi-
sual information, facilitating rapid detection of changes or anomalies in the environment.
Moreover, the steady one-frame per second capture rate ensures a stable and timely flow
of image data, catering to the requirements of subsequent algorithms and monitoring
tasks in a broad range of applications.
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2.2.2 Microphone

The microphone serves as the input device for capturing voice commands. It enables
the robotic arm to receive instructions through natural language. The captured audio is
processed by a speech-to-text engine, allowing the system to identify the target object
name and intended action. This module enhances the human-robot interaction, making
the operation more intuitive and hands-free.

2.2.3 STM32

The STM32F103C8T6 microcontroller serves as the control hub of the robotic arm system.
Based on an ARM Cortex-M3 core running at 72 MHz, it integrates 64 kB of Flash mem-
ory and 20 kB of SRAM, providing sufficient computational power for real-time control. It
features multiple USARTs, PWM-compatible 16-bit timers, and GPIO ports for precise co-
ordination of the six smart servo motors. With built-in USB, I²C, SPI, and ADC interfaces,
the STM32 manages sensor inputs, actuator commands, and peripheral communication
efficiently, enabling stable and responsive operation of the robotic arm.

2.2.4 Motor

The robotic arm is driven by six DS-SY15A smart servo motors, which are responsible
for executing precise and smooth movements based on the planned trajectory computed
by the control algorithm. These motors operate at 6.0–7.4V, deliver a rated torque of 15
kgf·cm, and reach a maximum rotation angle of 300°, allowing the arm to execute smooth
and flexible movements. With a no-load speed of less than 0.24 sec/60° and metal gear
construction, they ensure both responsiveness and durability. Communication is han-
dled via UART serial protocol at 115200 bps, enabling coordinated multi-motor control
through the STM32 microcontroller.

2.2.5 End Effector

Since the maximum opening width of the original robot arm end effector was too small,
we redesigned the end effector, and its CAD drawing is shown in Figure 4. By laser
cutting the acrylic plate, we obtained and assembled the eight parts of the end effector,
and the finished product is shown in Figure 5. The optimized end effector has a maximum
opening width of 6 cm and a maximum load capacity of 200 grams, which is more suitable
for grabbing various daily small objects. It is controlled by six servo motors and works in
conjunction with the robot arm’s motion planning system.

2.3 PC (ROS)

ROS (Robot Operating System) is an open-source framework that supports the develop-
ment of robot software. Rather than being a traditional operating system, ROS functions
as a middle platform running on top of existing systems like Linux. It provides essential
components such as hardware abstraction, low-level device control, inter-process com-
munication, development tools, algorithm libraries, and visualization utilities. One of
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Figure 4: CAD Drawing of Redesigned End Effector

Figure 5: Finished Product of Redesigned End Effector
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ROS’s key strengths lies in its modular architecture, where different functional compo-
nents—called ”nodes”—communicate through a publish/subscribe messaging mecha-
nism. This enables flexible, distributed development and clean separation of function-
alities. Developers can also take advantage of a wide range of open-source packages
provided by ROS, including modules for navigation, SLAM, path planning, and image
processing, allowing rapid prototyping of complex robotic systems. ROS is widely used
in service robots, mobile robotics, industrial automation, UAVs, and many other areas,
making it a cornerstone of modern robotics development.

Subsystem Control
For control, we will go to inverse kinematics. After the image processing get the coordi-
nates and orientation of the target, relative to the robotics (α, β, γ, x, y, z), the transforma-
tion will become:

0
ET =


cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ x

sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ y

−sβ cβsγ cβcγ z

0 0 0 1


And

0
ET = 0

1T
1
2T · · ·

The Denavit–Hartenberg (D-H) parameters provide a standardized method to describe
the geometric relationship between adjacent links and joints of a robotic manipulator.
This method is widely used to model the forward kinematics of robotic arms.

In the standard D-H convention, the relative transformation between two consecutive
coordinate frames is characterized by four parameters:

• θi: Joint angle – the rotation about the zi−1 axis (variable for revolute joints).

• di: Link offset – the translation along the zi−1 axis (variable for prismatic joints).

• ai: Link length – the translation along the xi axis (a constant).

• αi: Link twist – the rotation about the xi axis (a constant).

By using these four parameters, a 4× 4 homogeneous transformation matrix can be con-
structed to describe the pose of each link relative to its predecessor. Chaining these trans-
formations allows for the complete forward kinematic model of the robot to be built.

For transformation i
i−1T , we use D-H parameters to determine which is

i
i−1T = [Zi−1][Xi]
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[Zi] =


cosϑi − sinϑi 0 0

sinϑi cosϑi 0 0

0 0 1 di

0 0 0 1



[Xi] =


1 0 0 ri,i+1

0 cosαi,i+1 − sinαi,i+1 0

0 sinαi,i+1 cosαi,i+1 0

0 0 0 1


The transformation matrix T is a 4× 4 homogeneous transformation matrix, widely used
in robotics and rigid body kinematics to describe the pose (position and orientation) of
one coordinate frame relative to another.

It has the general form:

T =

R p

0T 1


where:

• R ∈ R3×3 is the rotation matrix, representing orientation.

• p ∈ R3×1 is the position (translation) vector.

• The bottom row [0 0 0 1] allows translation and rotation to be combined in a single
matrix operation.

Use in Robotics

In robotics, the transformation matrix is used to relate different coordinate frames along
the manipulator. For instance, the transformation from frame i−1 to frame i is represented
as i

i−1T . Then, a point P can be transformed as:

Pi =
i
i−1T · Pi−1

where Pi−1 and Pi are the homogeneous coordinates of the same point expressed in frames
i− 1 and i, respectively.

7



Constructing T using D-H Parameters

When using Denavit–Hartenberg (D-H) parameters, the transformation matrix between
two successive frames is given by:

i
i−1T =


cos θi − sin θi cosαi sin θi sinαi ai cos θi

sin θi cos θi cosαi − cos θi sinαi ai sin θi

0 sinαi cosαi di

0 0 0 1


After writing down the D–H parameter, we can identify each α, ϑ by combining the trans-
formation matrix and comparing them to 0

ET . Therefore, those pairs of (α, ϑ) can form a
joint space

q =


q1

q2
...


Each qi represents the orientation of each motor. And these will be packed as “Actua-
tor angle” message and sent to actuator.

Furthermore, to evaluate the velocity and acceleration of bodies. The velocity of body i
with respect to body j can be represented in frame k by the matrix

Wi,j(k) =


0 −ωz ωy vx

ωz 0 −ωx vy

−ωy ωx 0 vz

0 0 0 0


Where ω is the angular velocity of body j with respect to body i. All the components are
expressed in frame k; v is the velocity of one point of body j with respect to body i (the
pole). The pole is the point of j passing through the origin of frame i.

The acceleration matrix can be defined as the sum of the time derivative of the velocity
plus the velocity squared:

Hi,j(k) = Ẇi,j(k) +W 2
i,j(k)

The velocity and the acceleration in frame i of a point of body j can be evaluated as
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Ṗ = Wi,jP

P̈ = Hi,jP

And

Ṁi,j = Wi,j(k)Mi,j

M̈i,j = Hi,j(k)Mi,j

Velocity and acceleration matrices add up according to the following rules:

Wi,k = Wi,j +Wj,k

Hi,k = Hi,j +Hj,k + 2Wi,jWj,k

The absolute velocity is the sum of the parent velocity plus the relative velocity; for the
acceleration, the Coriolis’ term is also present.

The components of velocity and acceleration matrices are expressed in an arbitrary frame
k and transform from one frame to another by the following rule:

W(h) = Mh,kW(k)Mk,h

H(h) = Mh,kH(k)Mk,h

2.3.1 Communicator

The Communicator module in the ROS-based PC system is responsible for handling data
exchange between the ROS environment and external components, such as the STM32
microcontroller and robotic arm subsystems. It acts as a messaging bridge, ensuring that
data—whether sensor readings, control commands, or feedback signals—is accurately re-
ceived, processed, and dispatched across relevant ROS nodes. Using protocols like MQTT
or ROS’s native messaging interface, the Communicator ensures low-latency, reliable, and
real-time communication, which is critical for coordinated robotic actions. It also handles
error checking and message formatting, maintaining synchronization between the dis-
tributed subsystems. The modularity of ROS allows the Communicator to be reused or
extended across different robot configurations without altering the core logic.

2.3.2 Path Translator

The Path Translator module serves as the interface between high-level path planning and
low-level actuation commands. It receives planned trajectories, typically expressed in
terms of Cartesian or joint-space waypoints, and converts them into executable com-
mands that match the specific control format expected by the robotic arm. This includes
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interpolating smooth motion curves, adjusting speeds, and encoding commands into for-
mats supported by the STM32 and motor controllers. The Path Translator ensures that
each step of the path is feasible, optimized for efficiency, and respects constraints like
joint limits and physical safety. Integrated into the ROS framework, the module works
seamlessly with planning nodes and execution nodes, making it a key component in the
overall motion control pipeline.

2.4 AI Models

Our AI agent integrates natural language understanding with visual perception to enable
precise object manipulation. The agent accepts either text input or speech commands,
intelligently identifying objects for robotic arm grasping task.

2.4.1 NLP Model

The primary function of this natural language processing (NLP) model is to transform
user-provided instructions (regardless of input text or speech signals). These labels serve
as triggers for the YOLOE (CV model) to perform designated tasks. This module acts as a
critical bridge between language understanding and visual perception in a multi-modal
system, enabling instruction-driven control via natural language. Specifically, this model
would be divided into two components.

The first component is the Automatic Speech Recognition (ASR) module, which is re-
sponsible for processing incoming audio signals. This module would first improve speech
quality through noise reduction and signal enhancement. Then, The refined audio is tran-
scribed into its corresponding textual representation, thereby serving as the input for sub-
sequent natural language processing modules. We choose a lightening framework from
Meta AI: Wav2Vec 2.0 [4]. It is a self-supervised speech recognition framework that learns
powerful speech representations directly from raw audio using Transformer architectures
and contrastive learning. Figure 6 illustrates the workflow of the framework.

The second component is the Semantic Label Extraction module, which processes the tex-
tual instructions obtained from the ASR module or directly from the user. It employs
predefined regular expression rules to extract key terms that correspond to the target ob-
ject for grasping, serving as the label for the downstream computer vision module. Rec-
ognizing the limitations of rule-based keyword extraction in handling the diversity and
ambiguity of natural language, we also consider leveraging semantic similarity models
to infer potential target labels. This hybrid approach enhances the robustness and gener-
alization of instruction interpretation.

2.4.2 YOLOE (CV Model)

We primarily select YOLOE as our visual detection model. After ROS reads the image
captured by the camera, the image will be inputted into this visual model. The model is
responsible for recognizing all objects in the image, by extracting them from raw image
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Figure 6: Illustration of Wav2Vec 2.0 framework

and comparing them with pre-defined vocabulary base. Since we already get the instruc-
tion from NLP model, we produce a text prompt and just ask the model to select the
target object accordingly. The output of the model will be the index of the object. This in-
dex along with the raw image will be inputted to the Depth Prediction model to generate
the 3D coordinate of the target object.

Model Size Params AP APr APc APf

YOLOE-v8-S 640 13M 27.9 / 26.2 22.3 / 21.3 27.8 / 27.7 29.0 / 25.7

YOLOE-v8-M 640 30M 32.6 / 31.0 26.9 / 27.0 31.9 / 31.7 34.4 / 31.1

YOLOE-v8-L 640 50M 35.9 / 34.2 33.2 / 33.2 34.8 / 34.6 37.3 / 34.1

YOLOE-11-S 640 12M 27.5 / 26.3 21.4 / 22.5 26.8 / 27.1 29.3 / 26.4

YOLOE-11-M 640 27M 33.0 / 31.4 26.9 / 27.1 32.5 / 31.9 34.5 / 31.7

YOLOE-11-L 640 32M 35.2 / 33.7 29.1 / 28.1 35.0 / 34.6 36.5 / 33.8

Table 1: YOLOE version Comparison

We deploy YOLOE-11m to the server with two concerns. The first one is the require-
ment of our task. Given a near-bed, medical-aid scenario, input images will have a rela-
tively clean background and contain commonly-seen objects. Therefore, we prioritize the
model’s accuracy while accepting a sub-optimal ability in categorizing messy or unseen
objects. The other one is the cost of the model. We ask the model to response in a short
period of time after the instruction is inputted. Thus, the complexity of the model has
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to be limited. Given these two concerns, YOLOE-11m achieves an optimal trade-off be-
tween performance and size, with only 27M parameters for inference. However, since the
choice of visual model involves a seamless integration to other modules, we may change
the model version in later implementation. A complete versoin table of YOLOE can be
referred in Table 1. [5]

2.4.3 Depth Prediction Model

The depth prediction module employs the DepthFM [6] model as its core architecture,
aiming to transform monocular camera images into depth-enhanced representations. In
the preprocessing stage, the module performs essential image refinement operations,
such as pixel completion and frame rate enhancement, to improve spatial continuity and
visual quality. The refined images are then fed into DepthFM to produce per-pixel depth
maps, providing spatial awareness for downstream visual tasks.

Figure 7: Overview of the Depth Prediction Model pipeline.

The basic idea of DepthFM is to use flow matching to regress the vector field between
the image latent x0 and the corresponding depth latent x1. Detailed pipeline should be as
follows:

1. Flow Matching Objective: In the latent space, a time-dependent vector field ut(x)
is defined through an ordinary differential equation (ODE): dx

dt
= ut(x), where x

represents data points in the latent space, and ut(x) is the vector field at time t. The
goal of flow matching is to learn a vector field ut(x|x1) that transports the image
latent representation x0 to the depth latent representation x1.

2. Loss Function Definition: The flow matching loss function is used to minimize the
discrepancy between the predicted vector field and the true vector field: LFM(θ) =
Et,x0,x1∥vt(x, t; θ)− ut(x|x1)∥2, where ut(x|x1) is the true vector field, and vt(x, t; θ) is
the vector field predicted by the model.
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3. Data Coupling: To align the distributions between images and depth maps, Gaus-
sian noise is applied to the image x0, resulting in the following distribution: xt ∼
N (x1+(1−t)x0, σ

2
min). This ensures that the distributions of images and depth maps

in latent space are effectively coupled.

4. Training Process: The image x0 and the depth map x1 are encoded into latent repre-
sentations z0 and z1 using an encoder. The flow matching loss LFM is used to train
a vector field that maps z0 to z1. A decoder reconstructs the image and depth map
from the latent space.

5. Noise Augmentation Mechanism: Gaussian noise is injected into the latent repre-
sentations to smooth the distributions of image and depth map modalities, improv-
ing training stability and accelerating convergence.

3 Requirements & Verification

3.1 Robotic Arm

3.1.1 Camera

Requirement Verification

1. The control subsystem could receive
data from sensors and cameras as well as
user’s voice input correctly in real-time.

A. For safety concern, we firstly run our
test cases of robotic control in software sim-
ulation.

2. The robotic arm works normally when
data is entered.

B. The function of the robot arm is tested in
the actual scenario.

3.1.2 Microphone

Requirement Verification

1. The microphone can clearly capture user
voice commands in real-time.

A. Voice input is tested in various noise
conditions to ensure reliable audio capture.

13



3.1.3 STM32

Requirement Verification

1. STM32 is able to receive, parse, and for-
ward commands from the PC or ROS sys-
tem with minimal delay.

A. Use logic analyzer or serial monitor to
measure response time and confirm accu-
rate data parsing.

2. STM32 shall periodically collect data
from sensors (e.g., position, force, encoder)
and transmit them accurately to the ROS
system.

B. Inject known sensor data and confirm
the integrity and timing of the data re-
ported to ROS.

3.The microcontroller should handle com-
munication errors, buffer overflows, and
invalid packets gracefully without system
crashes.

C. Introduce corrupted or delayed mes-
sages during testing to verify error han-
dling mechanisms.

3.1.4 Motor

Requirement Verification

1. Motors shall respond precisely to low-
level PWM or control signals with minimal
overshoot or delay.

A. Apply PWM signal tests at varying fre-
quencies and loads to evaluate control fi-
delity and stability.

2. The direction, speed, and torque of mo-
tors must match the intended control out-
puts from the STM32.

B. Use encoder feedback and tachometers
to compare target and actual motor behav-
ior under different control signals.

3. Motors should operate within thermal,
current, and voltage safety thresholds, and
automatically shut down if thresholds are
exceeded.

C. Monitor motor temperature, voltage,
and current during runtime to ensure
safety limits are not exceeded.

4.The motors shall maintain smooth and
continuous motion during trajectory exe-
cution without jitter or stall.

D. Perform sudden changes in direction
and load during trajectory execution to test
for jitter, stall, or recovery failure.
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3.1.5 End Effector

Requirement Verification

1. The end effector can fully open and
close to grasp objects within the rated 6 cm
width.

A. The gripper is tested with objects of dif-
ferent sizes to verify opening and gripping
performance.

2. The gripper can stably hold objects up to
200 g during movement.

B. The robotic arm is commanded to trans-
port weighted test objects to confirm load
handling and stability.

3.2 PC (ROS)

Requirement Verification

1. Achieve low-latency response to com-
mands from the STM32.

A. Measure the delay between receiving
MQTT commands and initiating robotic
arm movement.

B. Run multiple command scenarios to ver-
ify consistent low-latency performance.

2. Ensure stable and reliable communica-
tion between the STM32 and the ROS sys-
tem

C. Evaluate MQTT communication reliabil-
ity under varying network conditions.

D. Conduct stress testing to assess the sys-
tem’s robustness and accuracy in message
handling.

3.Maintain high reliability and execution
efficiency for tasks triggered by the STM32.

E. Confirm accuracy and timing consis-
tency of task execution across different
MQTT command sequences.

F. Monitor system behavior over extended
periods to validate long-term reliability
and performance.
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3.2.1 Communicator

Requirement Verification

1. Ensure reliable and real-time communi-
cation between the PC and STM32 micro-
controller.

A. Measure the communication delay and
packet loss rate under different operational
loads and network conditions.

B. Conduct robustness testing by simulat-
ing packet drops or delays to verify system
stability.

2. Handle message parsing and packaging
accurately without data corruption.

C. Test with randomized payload data and
edge-case messages to ensure correct en-
coding and decoding.

D. Validate data integrity between sender
and receiver.

3.Support bidirectional command and
feedback flow.

E. Verify full-duplex communication by
sending concurrent commands and feed-
back and checking for synchronization er-
rors.

3.2.2 Path Translator

Requirement Verification

1. Translate high-level path commands into
low-level joint or actuator instructions ac-
curately.

A. Compare the translated joint angles or
control signals with expected values for
known test paths.

B. Test on real robot arm to ensure correct
execution of generated instructions.

2. Ensure real-time performance for path
computation.

C. Measure the computation time of the
path translator under various path com-
plexities to ensure responsiveness.

D. Stress test the module with long or
curved paths to observe latency and pro-
cessing limits.

3.Maintain kinematic and motion con-
straints of the robotic arm during transla-
tion.

E. Validate that all generated paths respect
joint limits, speed constraints, and avoid il-
legal positions.

F. Simulate edge cases to ensure safe and
predictable motion behavior.
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3.3 AI Models

3.3.1 NLP Model

Requirement Verification

1. Achieve accurate speech recognition and
semantic understanding.

A. Design test cases with varied speech
commands and noise conditions; record ac-
curacy and compute average recognition
rate.
B. Test semantic label mapping accuracy
under diverse natural language expres-
sions.

2. Support real-time speech signal process-
ing and labeling.

C. Measure time delay between receiving
speech input and producing a label.
D. Ensure the processing time does not ex-
ceed 200 ms.

3. Ensure adaptability to environmental
noise and ambiguous inputs.

E. Evaluate performance of audio module
in different environments (e.g., low noise,
high noise, echo) and assess recognition
stability.
F. Assess semantic label module under var-
ious paraphrasing or ambiguous inputs for
accuracy and robustness.

3.3.2 YOLOE (CV Model)

Requirement Verification

1. Ensure images are correctly loaded with-
out loss.

A. Perform a data stream test by saving
images sent to both local PC and server,
then manually compare the two to check
for loss.

2. Ensure accurate object detection with
clearly marked bounding boxes.

B. Conduct detection tests with varied
backgrounds and object combinations, re-
peated at least 50 times to evaluate accu-
racy.

3. Ensure the target label (object name) is
loaded correctly.

C. Log input labels during loading and
compare them with expected values to ver-
ify correctness.

4. Select key frames from continuous cam-
era input for model processing.

D. Use a frame counter to ensure that only
one image is processed per instruction, val-
idating resource-efficient frame selection.
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3.3.3 Depth Prediction Model

Requirement Verification

1. The model shall accurately convert
monocular RGB images into depth maps
using the DepthFM model.

A. Design test cases under varying depth
scenarios and compare the output with
ground truth for accuracy evaluation.

2. The model shall support real-time pro-
cessing of monocular input images.

B. Measure processing latency and confirm
it remains under 200 milliseconds to ensure
real-time performance.

3. The model shall maintain accurate pre-
dictions under varying lighting conditions
and partial visual occlusions.

C. Evaluate robustness by testing under
different lighting environments and intro-
ducing visual noise or occlusions in the in-
put images.

4 Tolerance Analysis

4.1 Robotic Arm

A key design consideration for the robotic arm lies in its ability to maintain stability, accu-
racy, and responsiveness under varying mechanical and command conditions. We focus
our analysis on two main factors: gripping overload tolerance and trajectory execution
tolerance.

Gripping Overload Analysis: The robotic arm’s end effector is rated to handle objects up
to 200 g. However, during testing, fluctuations in object weight or dynamic shifts during
motion may introduce temporary overload conditions. We simulate gripping tasks with
increasing weight loads and monitor motor current, claw slippage, and command feed-
back delay. When the load exceeds safe limits, the servo’s internal protection triggers a
stall mode to prevent mechanical damage. To address such situations, our system incor-
porates a threshold-based load monitoring mechanism. When stress readings approach
the maximum safe torque, the STM32 microcontroller either adjusts the gripping force or
aborts the task gracefully.

Trajectory Execution Analysis: Trajectory execution tolerance is primarily influenced by
the timing precision of PWM signals and mechanical backlash. Under sudden command
changes or during multi-axis coordinated movement, small errors may accumulate, re-
sulting in end effector misalignment. To quantify this, we analyze trajectory deviation
using camera feedback and inverse kinematics reconstruction. Our measurements show
a maximum positioning error of ≤ 1◦, consistent with the motor’s specified backlash and
return tolerance. This confirms that the mechanical and control system performs within
expected tolerances.
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4.2 PC(ROS)

Optimizing Gripping Strategies for Irregularly Shaped Objects: Irregularities in the
shape of objects can pose significant challenges to the gripping accuracy of robotic arms.
When handling complex or unevenly shaped items, the robotic arm may struggle to fully
conform to the object’s surface, resulting in deviations in the gripping position. To over-
come this issue, it is essential to optimize the gripping strategy. Techniques such as multi-
point gripping or the use of soft grippers can enhance the arm’s ability to adapt to various
shapes, thereby improving stability and accuracy during the gripping process.

4.3 Remote Server

NLP Model: The NLP module demonstrates a moderate level of tolerance to errors from
the ASR subsystem. Given the potential presence of word-level transcription errors, the
NLP model is designed to extract semantic labels using both pattern-based and seman-
tic similarity methods. This dual approach allows the system to remain functional even
when the input text is partially noisy or grammatically irregular. Furthermore, label ex-
traction operates with a degree of redundancy by supporting multiple aliases or para-
phrases of target objects, thereby improving robustness in real-world scenarios.

Computer Vision Model: The CV model module should effectively complete two tasks:
identifying the objects against the background, and assigning a correct label to each ob-
ject. Given that the input image is embedded to feature vectors, we can represent the
model as an embedding F (images) = features. Then, we can use the loss function to
optimize and evaluate the model. The first loss function refers to the model’s ability of
picking out objects from the background. In short, it can be represented as a binary cross-
entropy loss. We first break the image into N grids. p

obj
i represent the probability of an

object is in the ith grid, and p̂
obj
i is the corresponding ground truth with 1 of containing an

object.

Lobj =
1

N

N∑
i=1

BCE(pobj
i , p̂

obj
i )

Similarly, we can also represent the label assignment as another cross-entropy loss, where
M is the number of objects, pcls

j,c is the probability of the object in region j be classified as
label c, and p̂cls

j,c as the ground truth.

Lcls =
1

M

M∑
j=1

C∑
c=1

BCE(pcls
j,c, p̂

cls
j,c)

These two loss function will be added together, and we may assign weights to them if we
find the model perform much better in one loss than the other. Therefore, our final goal
is to minimize the overall loss:

L = λobjLobj + λclsLcls
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Depth Prediction Model: The Depth Prediction module is inherently tolerant to moder-
ate variations in image quality, such as motion blur, low light, or occlusion. DepthFM,
as a learning-based model, can generalize across a range of visual conditions observed
during training. In the event of partial frame corruption or incomplete data, prepro-
cessing steps—such as temporal frame enhancement and noise reduction—help stabilize
the input. Additionally, downstream components using depth information (e.g., grasp
planning) incorporate fallback heuristics or confidence thresholds to handle uncertain or
missing depth regions, further enhancing system-level robustness.

Data Transfer Analysis Between Computer and Server: Simulations have shown that
data transfer delays between the computer and server can be limited to approximately
3-4 seconds. The primary factors affecting this latency include network speed, server
processing capabilities, and the complexity of the data. To enhance processing efficiency,
we can try to use Python libraries such as flash-attention, which significantly accelerate
AI model computations. These libraries optimize real-time data analysis and decision-
making processes, enabling faster and more efficient handling of information received
from user devices. This approach not only reduces latency but also improves the overall
responsiveness and accuracy of the system.

5 Cost Analysis

The cost consists of two parts. For labor part, our labor cost is calculated acccording to
ECE industry average hourly wage, which is 15 dollars per hour. Starting from March to
May, we spend two months, eight weeks on our senior design. Each week we spend 25
hours on project on average, so the total labor cost is 4 * 15 * 25 * 8 = 12000 USD.

For hardware part, our robotic arm, together with end effector, microphone and camera,
the cost is 1379 RMB. So the total cost is 12000 * 7.3 + 1379 = 88979 RMB.

6 Schedule

Week Tasks Member

4/15 Finalize hardware setup: STM32, motors, camera,
microphone. Connect end effector and test basic
grasping.

Zixuan Zhang

Pre-train and test NLP model on sample com-
mands.

Junzhou Fang,
Junsheng Huang

Set up ROS environment on PC, confirm serial com-
munication with STM32.

Zixin Zhu

Continued on next page
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Table 2 – continued from previous page

Week Tasks Member

4/22 Integrate microphone with ASR pipeline
(Wav2Vec2.0).

Junzhou Fang,
Junsheng Huang

Verify ROS control pipeline (PC → STM32 → mo-
tor).

Zixin Zhu, Zix-
uan Zhang

Conduct mechanical stress test of arm + gripper. Zixuan Zhang

4/29 Deploy YOLOE object detection model with ROS
camera stream. Test YOLOE + NLP integration for
object command matching.

Junzhou Fang,
Junsheng Huang

Refine ROS path planner and integrate with grasp
commands.

Zixin Zhu

5/6 Conduct system-level integration (voice → vision
→ grasp). Test real-time instruction cycle with com-
mon items. Begin documentation of experimental
results and failures.

All members

5/13 Demo dry run & presentation rehearsal. All members

Debug remaining issues with ROS control loop or
grasp logic.

Zixin Zhu, Zix-
uan Zhang

Finalize and polish report, diagrams, CAD draw-
ings, and video.

Junzhou Fang,
Junsheng Huang

5/19 Final demo and report submission. All members

7 Ethics and Safety

Given that our target audience primarily includes the elderly and disabled, ethics and
safety are crucial aspects of our design. This section is divided into two parts to compre-
hensively address these concerns.

7.1 Ethics

This work focuses on developing a robotic arm capable of picking up diverse small ob-
jects. Such a system has practical applications in home assistance, eldercare, logistics,
and disaster recovery. By enabling reliable manipulation in unstructured environments,
it contributes to building assistive and autonomous systems that improve safety, reduce
human workload, and enhance quality of life. As ZJUI students, we are committed to up-
holding ethical standards and ensuring the integrity of our project. Our team will strictly
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adhere to the IEEE Code of Ethics [7] and the ACM Code of Ethics [8]. We pledge to meet,
but are not limited to, the following ethical responsibilities:

• Prioritize public safety, health, and well-being by adhering to ethical design princi-
ples and sustainable practices. Additionally, we are obligated to report any potential
systemic risks that could lead to harm.

• Strive to benefit society by enhancing individual and collective understanding of
both traditional and emerging technologies and their societal implications.

• Maintain honesty and integrity in all professional activities, strictly avoiding uneth-
ical conduct such as bribery or other illegal actions.

7.2 Safety

To ensure the safety of both team members and others, and to mitigate any potential haz-
ards during the project, our team will strictly comply with the ECE 445 SAFETY GUIDE-
LINES [9]. We will undertake, but are not limited to, the following safety measures:

• No team member is permitted to work alone in the laboratory at any time.

• All team members must complete mandatory safety training before being autho-
rized to work in the laboratory.

• Any handling of battery charging or hazardous battery chemicals must be con-
ducted in strict accordance with established safe usage guidelines.

• The robotic arm is designed to operate safely around humans, minimizing collision
risks through motion planning and force-limited actuators. This ensures it can work
in homes or care facilities without endangering users.

• The system incorporates grasp failure detection to avoid dropping or mishandling
objects. This prevents accidental damage to the environment and ensures reliable
object transfer.

• Adaptive force control mechanisms allow the arm to handle fragile objects without
applying excessive pressure. This enhances safety when interacting with unknown
or delicate items.

• Manual and automated emergency stop mechanisms are included to immediately
halt motion in case of anomaly or user intervention. This provides a critical safety
layer during deployment and testing.

• Safety-centric design builds user trust and promotes system adoption. By making
robot actions predictable and explainable, users feel more comfortable interacting
with the robot.
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