
1 Introduction 

This project introduces a vision-based robotic hand system designed to reduce human exposure 

in hazardous environments. Current solutions, such as sensor-equipped gloves or pre-

programmed robots, are limited by inflexibility, discomfort, high cost, and reliance on wearable 

devices. The proposed system addresses these challenges by utilizing camera tracking and 3D-

printed components to enable real-time human gesture imitation without the need for physical 

sensors. 

 

The robotic hand system captures and interprets human hand movements through cameras, 

translates them into precise robotic actions using closed-loop feedback, and employs a modular, 

3D-printed design for safe manipulation. Key features include camera-driven gesture 

recognition, real-time mimicry with sub-millisecond precision, and an affordable construction 

method that reduces costs by 80% compared to industrial robots. 

 

By eliminating the need for restrictive wearables and offering a flexible, adaptable solution, this 

project aims to redefine safety and accessibility in hazardous operations. Its non-invasive 

approach improves operational safety, adaptability, and ease of deployment in high-risk 

scenarios, making it a promising alternative to traditional methods. 



2 Design  

2.1 Block Diagram 

 

Figure 1: Block Diagram 



2.2 Physical Design Diagram 

 

Figure 2: Exploded view of the robotic hand design. 

As illustrated in Figure 2, the design is inspired by the human hand and consists of modular 

finger segments (proximal, middle, and distal phalanges). Most components are made of rigid 

PLA material for structural stability, while parts 7 and 8 utilize flexible TPU material (85A 

hardness) to enable adaptive joint motion. The modular architecture allows for easy assembly 

and customization, with internal integration potential for tendon-driven mechanisms or sensors. 

This design supports precise human gesture replication and is ideal for hazardous environment 

applications, robotics research, and educational purposes. 

2.3 Realtime Actuator  

2.3.1 Microcontroller 

The DJI A Board is a high-performance microcontroller that serves as the central control unit for 

the robotic hand system. It is built with an ARM Cortex-A processor, offering substantial 

computational power to handle real-time processing tasks such as gesture recognition, motor 

control, and sensor data integration. Its hardware is optimized for robotics applications, ensuring 

smooth and efficient operation even under complex workloads. 



 

Figure 3: DJI A Board schematic diagram 

This microcontroller enables seamless communication with other subsystems through its support 

for multiple interfaces, including UART, SPI, I2C, and PWM. These communication protocols 

make it highly adaptable, allowing integration with various sensors, actuators, and peripherals. 

Additionally, the DJI A Board has onboard hardware acceleration for AI processing, which is 

particularly valuable in vision-based systems that require low latency and high accuracy. 

The DJI A Board’s modular design and compact size make it ideal for embedding into the 

robotic hand system. It offers robust SDK support, simplifying the development of control 

algorithms and ensuring compatibility with a wide range of software tools. Its reliability and 

flexibility make it a key component in achieving precise and responsive robotic hand 

movements. 

Table 1: Requirements and Verification for Microcontroller 

Requirements Verification 

1. The microcontroller must execute motor 

control algorithms with low latency. 

Test the system with motors under load and 

measure response time to ensure real-time 

performance. 

2. It must support PWM output for driving 

servo motors. 

Validate PWM signal generation using an 

oscilloscope and verify its compatibility with 

actuators. 

3. The microcontroller should process data 

from the depth camera in real-time. 

Conduct tests by simulating human gestures 

and evaluating the response time of the 

robotic hand. 

4. The microcontroller should maintain 

stable operation under high computational 

loads. 

Stress-test the controller with simultaneous 

motor actuation and sensor data processing 

tasks. 

 



2.3.2 Servo Motor 

The MG995 Servo Motor is a high-torque servo widely used in robotics applications due to its 

durability, precision, and ability to handle significant mechanical loads. In the robotic hand 

system, the MG995 plays a crucial role in controlling the motion of finger joints, enabling 

smooth and realistic replication of human hand movements. 

This servo motor operates on a 5–7V AC power supply and is driven by a 50 Hz PWM signal 

with an adjustable duty cycle, which determines the position of the servo. The MG995 is 

designed to deliver reliable performance under varying conditions, with a stall torque of up to 10 

kg/cm, making it suitable for applications requiring precise and strong actuation. 

The MG995 features a metal gear train, which enhances its longevity and ability to handle high 

torque without deformation. Its fast response time and minimal backlash ensure accurate and 

repeatable motion, which is essential for the robotic hand to achieve natural gestures. 

Additionally, its compact size allows for easy integration into the robotic hand's modular design. 

Table 2: Requirements and Verification for Servo Motor 

Requirements Verification 

1. 50 Hz PWM signal output with adjustable 

duty cycle and 5–7V AC power supply. 

Use an oscilloscope to check whether the 

output signal is correct. Use a voltage meter 

to check power supply 

2. Accurate positional control with minimal 

backlash. 

Perform repeatability tests by commanding 

the servo to specific positions and measuring 

its accuracy. 

3. High torque output of at least 10 kg/cm 

for reliable actuation. 

Test the servo under load to ensure it can 

handle the required torque without stalling. 

4. Stable operation under continuous use. Conduct endurance tests by running the servo 

continuously for extended periods under load. 

 

2.3.3 UART to USB 

The CH340 is a USB-to-UART bridge chip used to facilitate communication between the robotic 

hand system's microcontroller (DJI A Board) and external devices such as the x86 PC. The 

CH340 enables seamless data transmission by converting UART signals to USB, allowing the 

microcontroller to interface with devices that do not have native UART support. This component 

is essential for transferring control commands, debugging data, and real-time feedback between 

the high-level controller and the rest of the system.  



 

Figure 4: CH 340 PCB schematic diagram 

The CH340 is designed for simplicity and reliability, supporting standard baud rates from 50 bps 

to 2 Mbps, which makes it highly compatible with various robotic applications. It features low 

power consumption, making it ideal for embedded systems like the robotic hand. Additionally, 

its compact form factor ensures easy integration into the overall hardware architecture. 

The CH340 supports plug-and-play functionality, requiring minimal configuration for use. Its 

robust driver support across major operating systems (Windows, macOS, and Linux) ensures 

compatibility and ease of use during development and operation. This makes the CH340 a 

critical component for establishing a stable and efficient communication link in the robotic hand 

system. 

Table 3: Requirements and Verification for CH 340 

Requirements Verification 

1. Full-Duplex communication between 

microcontroller and PC at115200 baud 

rate. 

Send test message in full speed and keep 10 

min stress test. Check if there is any error 

message. 

2. Seamless USB-to-UART conversion 

without data loss or corruption. 

Perform data loopback tests to ensure 

accurate signal conversion. 

3. Low power consumption suitable for 

embedded systems. 

Measure the current draw of the CH340 

module under normal operation using a 

multimeter. 

4. Stable operation during continuous data 

transmission. 

Conduct stress tests by transmitting large 

volumes of data over an extended period and 

monitoring for errors. 

 

2.4 Power Supply 

2.4.1 24V Battery 

The DJI TB47 Intelligent Flight Battery serves as the power supply for the robotic hand system, 

providing a stable and reliable source of energy for all the subsystems, including the 



microcontroller, servo motors, and peripherals. This battery is specifically designed for high-

performance applications, delivering a nominal voltage of 22.2V and a capacity of 4500mAh, 

which ensures sufficient power for prolonged operation. 

The TB47 features advanced battery management capabilities, including over-voltage, over-

current, and temperature protection. These features ensure the safety and longevity of the battery 

while maintaining stable performance under varying load conditions. Its smart design includes 

real-time monitoring of battery status, such as remaining charge and health, which can be 

accessed through the system interface for effective energy management. 

In addition, the TB47’s lightweight and compact design make it ideal for integration into the 

robotic hand system, where weight and space are critical considerations. The battery’s high 

discharge rate ensures that it can handle peak loads, such as those experienced during the 

simultaneous actuation of multiple servo motors. With its proven reliability in demanding 

environments, the TB47 is a robust solution for powering the robotic hand system. 

Table 4: Requirements and Verification for 24V Battery 

Requirements Verification 

1. Nominal voltage of 22.2V with a capacity 

of 4500mAh. 

Measure the output voltage and capacity 

using a multimeter and battery tester. 

2. Must provide a stable power supply to all 

subsystems under varying loads. 

Test the system under full load and monitor 

for voltage drops or instability. 

3. Support for peak current draw during 

simultaneous operation of multiple 

motors. 

Measure current draw during peak load 

scenarios and ensure the battery can handle 

the demand. 

4. Real-time monitoring of battery status 

(charge, health, etc.). 

Access battery status through the system 

interface and verify the accuracy of reported 

metrics. 

 

2.5 High-level Controller 

2.5.1 Depth Camera 

The Intel RealSense D405 Depth Camera serves as the core 3D vision sensor for the hand-

tracking system, providing high-precision depth perception and RGB imaging for accurate real-

time gesture recognition. This camera is specifically optimized for close-range applications, 

offering an ideal working range of 7cm to 50cm and a theoretical depth resolution down to 

0.1mm, which ensures exceptional accuracy in capturing fine hand movements and spatial 

details. 

The D405 features advanced hardware capabilities, including a 90fps RGB frame rate and 

1280×720 resolution, enhanced by an integrated Image Signal Processor (ISP) for superior image 

quality in varying lighting conditions. Its compact design (42×42×23mm) and USB 3.0 



connectivity make it ideal for embedded systems, robotic vision, and augmented reality 

applications. 

Equipped with active stereo infrared (IR) sensing, the D405 delivers robust depth data even in 

low-texture environments, while its factory-calibrated optics eliminate the need for manual 

recalibration. The camera also supports real-time depth-RGB alignment, ensuring seamless 

integration with vision-based AI models like MediaPipe Hands for stable 3D skeletal tracking. 

Additionally, the Intel RealSense SDK provides comprehensive tools for depth filtering, noise 

reduction, and system diagnostics, enabling efficient deployment in dynamic interactive systems. 

Table 5: Requirements and Vertification for Depth Camera 

Requirement Verification  

Operating temperature must be between 0°C 

and 35°C to ensure stable performance. 

Test image and depth output quality at 0°C, 20–

25°C, and 35°C, ensuring no frame drops or 

data errors. 

Camera must be powered via USB 3.1 Type-C 

at 5V, max current 1A. 

Use USB power meter to measure 

voltage/current and confirm stable operation 

over extended periods. 

Effective depth sensing range must be between 

7 cm and 50 cm. 

Place objects at key distances and verify depth 

data output is valid and accurate. 

Camera must function under natural and low 

indoor lighting conditions (≥10 lux). 

Test camera in normal and low-light (≥10 lux) 

conditions to evaluate noise and recognition 

reliability. Requirement 

 

 



                              

Figure 5: Intel D405 Depth Camera 

… 

2.6 Schematics, software flow charts, calculations, and simulation 

2.6.1 Visual perception algorithm of hands pose estimation based on Mediapipe 

The MediaPipe Hands model is a real-time hand tracking solution developed by Google. It 

detects and tracks 21 3D landmarks of a human hand from a single RGB image or video frame. 

The model combines palm detection and landmark regression to achieve high accuracy and low 

latency. 

It consists of two stages: 

1. Palm Detection – Identifies the presence and region of a hand in the image. 

2. Hand Landmark Model – Predicts 21 3D landmarks within the detected region, 

representing key finger joints and wrist positions. 

MediaPipe Hands is highly optimized for mobile and embedded platforms, making it suitable for 

real-time gesture recognition in interactive systems. 

Table 6: Requirements and Vertification for Mediapipe 

Requirement Verification Method 

The model must detect and return 21 3D 

hand landmarks in each frame. 

Use sample video frames to verify that the 

model returns 21 landmark points 

consistently for a variety of hand poses. 

The model must run in real-time (≥15 FPS) 

on the target platform. 

Measure the model’s runtime performance 

using profiling tools (e.g., OpenCV, 

MediaPipe built-in logs) and ensure average 

FPS ≥ 15. 



The model must detect hands with high 

accuracy (≥90%) under various hand poses. 

Conduct testing with a dataset containing 

different hand poses and calculate detection 

success rate. Accuracy must be ≥ 90%. 

The model must tolerate minor occlusions 

(e.g., partially hidden fingers) and still 

provide stable landmark tracking. 

Simulate common occlusion scenarios (e.g., 

hand partially outside frame or overlapping 

fingers) and verify landmark consistency 

across frames. 

The model must operate under varying 

lighting conditions, including indoor and 

natural light. 

Test the model in environments with 

different light intensities and evaluate 

detection stability and landmark precision. 

 

 

2.6.2 Filtering algorithm of depth graph 

To improve the reliability and accuracy of depth data captured by the Intel RealSense D405 

camera, both spatial and temporal filtering techniques are applied to the raw depth frame. 

1. Sptial Filtering 

The spatial filter smooths pixel-level noise using a weighted average of neighboring 

pixels. It can be expressed as: 

𝐷𝑠(𝑥,  𝑦)  =   (
1

𝑊
) ⋅ ∑ 𝑤{𝑖,𝑗}

 

 (𝑖,𝑗)∈𝑁(𝑥,𝑦)

⋅ 𝐷(𝑖,  𝑗)  

 where: 

   - 𝐷(𝑖,  𝑗) is the raw depth value at pixel (i, j), 

   - 𝑁(𝑥,  𝑦) is the neighborhood of pixel (x, y), 

   - 𝑤{𝑖,𝑗} is the spatial weight (based on distance and/or depth similarity), 

   - W is the normalization factor, 𝑊  =  ∑ 𝑤{𝑖,𝑗}
 
  . 

 The filter also performs hole filling, which interpolates missing depth data (usually 

marked as 0) using surrounding valid pixels. 

2. Temporal Filtering  

The temporal filter reduces flickering by combining the current frame with past depth 

data using an exponential moving average: 

𝐷𝑡   =  𝛼  ⋅  𝐷𝑐𝑢𝑟𝑟𝑒𝑛𝑡  +  (1 − 𝛼) ⋅ 𝐷𝑝𝑟𝑒𝑣 , if |𝐷𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝐷𝑝𝑟𝑒𝑣 | < 𝛿 

 where: 

   - 𝐷𝑐𝑢𝑟𝑟𝑒𝑛𝑡is the current depth value, 

   - 𝐷𝑝𝑟𝑒𝑣is the value from the previous filtered frame, 



   - α ∈ [0, 1] controls the smoothing strength (set to 0.4), 

   - δ is the maximum allowable depth jump for filtering (set to 50 mm). 

If the depth change exceeds δ, the filter favors the current value to preserve 

responsiveness. 

This combination ensures both spatial consistency (smooth surfaces) and temporal 

stability (minimal flicker) in the depth output, while keeping latency low enough for real-

time applications. 

Table 7: Requirements and Vertification for Filtering Algorithm 

Requirement Verification Method 

The system must apply spatial filtering to 

reduce pixel-level noise in depth maps. 

Visually compare raw and filtered depth 

maps using test scenes; noise level should 

visibly decrease in flat surfaces. 

The filter must support hole-filling to 

interpolate missing depth values in small 

regions. 

Compare regions with missing depth (black 

holes) before and after filtering; measure 

pixel fill rate improvement. 

The system must apply temporal filtering to 

stabilize depth data over time. 

Record depth frames of a static object and 

check for fluctuations before and after 

filtering; depth value variance should be 

reduced. 

Filtering must run in real-time (≥15 FPS) on 

the target hardware. 

Use profiling tools to measure frame 

processing speed after filtering; ensure 

processing rate stays above 15 frames per 

second. 

 

 

 

2.6.3 Pixel-to-3D algorithm 

 

The system uses a standard pinhole camera model to convert 2D pixel coordinates into real-

world 3D space. Given a pixel (u,v)(u, v)(u,v) from the depth image and its corresponding depth 

value ZZZ (in meters), the coordinates in 3D camera space (X,Y,Z)(X, Y, Z)(X,Y,Z) are 

computed using the intrinsic parameters of the depth camera: 

𝑋  =  
(𝑢  −  𝑝𝑥) ⋅ 𝑍

𝑓𝑥
 



𝑌  =  
(𝑣  −  𝑝𝑦) ⋅ 𝑍

𝑓𝑦
 

𝑍 =  Depth_frame.get_distance(u, v) 

where: 

(𝑝𝑥,  𝑝𝑦)are the principal point offsets (optical center), 

(𝑓𝑥,  𝑓𝑦)are the focal lengths (in pixels), 

𝑍  is the depth value at pixel(𝑢,  𝑣)from the depth sensor. 

The implementation includes boundary checking for pixel validity and ignores points with 

invalid or zero depth. This conversion is essential for mapping image-based hand gestures into 

spatial control commands for robotic applications. 

Table 8: Requirements and Vertification of Pixel-to-3D algorithm 

Requirement Verification Method 

The algorithm must correctly convert valid 

2D pixel coordinates with depth into 3D 

coordinates using intrinsic parameters. 

Test with known calibration parameters and 

check that 3D points lie within expected 

spatial range. 

The function must return a sentinel value 

(e.g., Z = -1) when pixel coordinates are out 

of bounds. 

Provide out-of-bound pixel inputs and verify 

that output contains Z = -1 for invalid data. 

The function must return a sentinel value 

when depth value is zero or invalid. 

Input pixels with zero depth and verify 

returned Z = -1. 

The conversion must use camera intrinsics 

including focal length and principal point. 

Check that the implementation references 

`fx`, `fy`, `px`, `py` from the camera 

intrinsics. 

The conversion accuracy must be within ±2 

cm at 30–50 cm distance. 

Compare output of pixel_to_3d against 

ground truth positions measured in real-

world test setup. 

The conversion must process at least 1000 

pixels per second to meet real-time 

requirements. 

Benchmark the function by running pixel-

to-3D conversion on 1000 random pixels 

and ensure total time < 1 second. 

 

2.6.4 3D position to angle mapping 

Finger flexion angles are computed using a vector-based approach. For each finger, three key 

joints (proximal, intermediate, and distal) define two vectors: one from the proximal to the 

intermediate joint and another from the intermediate to the distal joint. The angle between these 

vectors is calculated using the dot product formula: 



cos(𝜃) =
�⃗� ⋅ �⃗⃗�

||�⃗�|| ⋅ ||�⃗⃗�||
 

which is converted from radians to degrees for intuitive interpretation. To handle tracking 

instability, the system retains the previous valid angle if any joint’s depth data is invalid, 

preventing sudden jumps in the output.  

To further reduce noise, an Exponential Moving Average (EMA) filter smooths the computed 

angles across frames. The EMA applies a smoothing factor (α = 0.2), balancing responsiveness 

and stability. Additionally, a threshold-based state machine classifies each finger as either 

straight (state0) or bent (state1). Hysteresis is implemented to avoid rapid toggling between 

states: a finger must remain above a 0.95 cosine threshold for five consecutive frames to be 

considered straight, or below 0.85 for five frames to be considered bent. This debouncing 

mechanism ensures reliable state transitions. The whole process of this part can be summarized 

by Figure 6. 

 

Figure 6: 3D position to angle mapping algorithm 

The requirement and verification for this algorithm are summarized in Table 9 and Table 10 

below: 



Table 9: Functional Requirements 

Requirement Verification Method 

Real-time 3D Hand Tracking The system must detect and track 21 hand 

landmarks at ≥30 FPS. 

Depth-Enhanced 3D Mapping Each landmark must be converted to 3D 

world coordinates using depth data. 

Finger Flexion Angle Calculation Compute angles between finger joints (e.g., 

MCP, PIP, DIP) using vector math. 

Noise-Robust Angle Smoothing Apply EMA filtering to stabilize angle 

outputs. 

Finger State Classification Classify fingers as "straight" or "bent" using 

hysteresis thresholds. 

 

Table 10: Functional Verification 

Requirement Verification Method 

Run MediaPipe on a test video with known 

hand poses. 

All 21 landmarks detected with ≥95% 

accuracy. 

Compare RealSense depth-based 3D 

coordinates against a motion-capture 

system. 

Mean error <5mm in XYZ coordinates. 

Manually measure finger angles with a 

goniometer and compare with algorithm 

output. 

Computed angles within ±5° of ground 

truth. 

Introduce synthetic noise to angle data and 

verify EMA reduces jitter. 

Filtered angles show ≤2° fluctuation under 

noise. 

Simulate finger bending/straightening and 

check state transitions. 

Correct classification with no false triggers. 

 

2.7 Tolerance Analysis  

 

 

3 Cost analysis (parts and labor) 

Parts Description  Price (RMB) Qty Total 

MG 995 Servo motor 

 

10 5 50  

DJI A Board  Microcontroller 

intergrade part 

495 1 495 



DJI TB47 24V Battery 200 1 200 

CH 340 UART TO USB 20 1 20 

Finger Hinge 85A TPU 50 1 50 

     

     

4 Schedule 

Already finished: Low level control, vision identification, ME design and printing.  

Apr 1 – Apr 15: Finish unit test for each module. Check if there are any mistakes. 

Apr 15 – Apr 30: Assemble the hand and finish basic function test. Improve stability. 

May 1 – May 15: Making demo code for presentation. 

May 15 – May 30: Finish rest of thesis. 

5 Ethics and Safety  

5.1 Ethics 

Privacy and Data Protection:  

Since the system relies on vision-based tracking, it must ensure that user data is handled 

securely. Potential concerns include:  

– Unauthorized data collection or storage. 

– Risk of surveillance or misuse of visual data. 

– Measures such as local processing, encryption, or anonymization should be implemented to 

mitigate these risks. 

 • Reliability and Safety in Hazardous Environments: 

– Errors in real-time mimicry could result in dangerous situations, such as mishandling toxic 

materials or explosives. 

– Fail-safe mechanisms and rigorous testing are necessary to prevent malfunctions that could 

endanger workers. 

5.2 Safety 

Our project follows ECE 445 Safety Guidelines to ensure a safe working environment for both 

developers and end-users. Below, we address potential safety concerns related to electrical, 

mechanical, and lab safety while justifying areas with minimal safety risks. 



5.2.1 Electrical Safety 

Our system primarily uses low-voltage electronics for gesture tracking and robotic hand control. 

Since it does not involve high voltage, the risk of electrical hazards is minimal. 

If modifications introduce high-voltage components in the future, we will complete the required 

high-voltage safety training and follow safe electrical handling procedures. 

The system does not involve direct electrical contact with human users, eliminating risks related 

to electric current exposure. 

5.2.2 Mechanical Safety 

 

The robotic hand is 3D-printed and designed to operate with low force and torque, minimizing 

the risk of injury. 

Moving parts could pose a pinching hazard during testing. To mitigate this: 

Team members will keep hands away from moving parts during testing and use tools for 

assembly or adjustments. 

5.2.3 Lab Safety 

Lab Presence Requirement: At least two team members will always be present in the lab when 

working on the project. 

Mandatory Safety Training: All team members will complete the online safety training and 

submit certificates on Blackboard before starting lab work. 

5.2.4 End-User Safety 

The robotic hand system is designed for remote teleoperation in hazardous environments, 

reducing risks to human workers. 

Software reliability is crucial to prevent misinterpretation of gestures, which could lead to 

incorrect robotic actions. To address this: 

We will implement closed-loop feedback mechanisms to ensure accurate mimicry. 

Thorough testing will be conducted before deployment in real-world hazardous environments. 

5.2.5 Safety Plan 

Prevention: Strict hardware and software testing to identify failure points. 

Fail-Safe Mechanisms: Emergency stop features to halt movement in case of errors. 

Protective Measures: Ensure non-harmful force output from robotic movements. 



Training & Documentation: Team members will review safety protocols before operation. 

5.2.6 Justification for Minimal Safety Concerns 

The project does not involve hazardous chemicals, explosive materials, or biological risks. 

It operates at low voltage and does not require direct human-electrical contact. 

The robotic hand has low mechanical force, and risks such as pinching are mitigated through 

design and controlled movement. 
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