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1 Introduction

1.1 Problem

The ability of robotic arms to grasp objects based on human instructions is increasingly
vital as human-robot collaboration becomes a popular research and application field.
However, this task presents substantial challenges. It requires the seamless integration
of advanced computer vision, natural language processing, and precise robotic control to
perform accurate grasping actions according to oral instruction. Many existing robotic
systems are limited to specific contexts or require extensive retraining for new objects,
lacking the generalization needed for a broad object vocabulary. Overcoming these hur-
dles is essential to creating adaptable robotic systems that enhance human productivity
and independence in dynamic, human-centric settings. This task is crucial for the inte-
gration of robots in everyday environments, as millions of households and industries are
expected to adopt robotic assistance by the coming decades, necessitating intuitive and
flexible interaction capabilities.

1.2 Solution

Our expected solution is a smart robotic arm equipped with a well-designed recognition
system based on computer vision and natural language processing. The image analysis
module of the robotic arm will be trained using RGB images and corresponding captions,
allowing it to categorize objects in the robotic arm camera. We will also use a language
processing module to extract the name of the intended objects from the input text or voice
command. Then, the robotic arm will move along the optimal path to grab the object to
the designated position. The visual illustration of our robotic arm is shown below.

Figure 1: The Visual Illustration

1.3 High-level Requirements List

• Reliability: The system should maintain a high level of reliability, such as the accu-
racy of 80% recognition when matching input instructions and figures.
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• Generalization: The system should support grasping for at least 10 distinct objects
and be able to deal with out-of-vocabulary phenomena.

• Efficiency: The system should avoid collisions during the path execution and com-
plete each grasping task in 2 minutes.
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2 Design

2.1 Block Diagram

Figure 2: Model Layout

The high-level diagram of our proposal. The AI agent is responsible for object selection,
and the robotic arm will fetch the corresponding object according to agent’s decision.
With more details, after a language instruction sent in, it will be transformed into high-
dimensional vectors in the Text Embedding module. At the same time, the image em-
bedding module reads the image taken by the camera on the robotic arm, picks out all
the objects, and performs another embedding to get a series of arrays. The agent then
compare the similarity between these object arrays and the text vector, and choose the
object with the highest similarity score. The position of this object can be obtained di-
rectly through the camera, and an inverse-kinematic algorithm is used to compute the
movement of each node on the robotic arm. And finally, the arm will grasp the intended
object.

2.2 Subsystem 1: AI Agent

2.2.1 Overview

Our AI agent integrates natural language understanding with visual perception to enable
precise object manipulation. The agent accepts either text input or speech commands,
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intelligently identifying objects for robotic arm grasping task.

The first task is Automatic Speech Recognition (ASR). There are some traditional ways
to do this task like HMM-GMM. However, as the deep learning method growing up, end-
to-end models seems to have higher performance. Among which, we choose a lightening
framework from Meta AI: Wav2Vec 2.0 [1]. It is a self-supervised speech recognition
framework that learns powerful speech representations directly from raw audio using
Transformer architectures and contrastive learning.

The second task is Text-Image Alignment. We have two proposed plans for this.

• YOLOv11 [2] and Semantic Approximation: We first use COCO dataset as our train
and test dataset. COCO dataset is designed for image understanding with 91 object
categories, 328,000 images and 2,500,000 labeled instances. We would pick part of
the dataset to train the YOLOv11 models for image extraction. After this, we need to
do semantic approximation to match the label with the input text to help the robot
arm grasp target object.

• Edge-optimized multi-modal solution: We directly use small models like LLaVA-
Phi [3] and TinyLLaVA [4]. We can directly input text and let the model help us
identify the target in the image. It can enhance contextual understanding with zero-
shot generalization, better suited for out-of-domain (OOD) condition.

2.2.2 Requirements

• Computational Resource: For small models like LLaVA-Phi(2.7B), TinyLLaVA (2.7B)
and MobileLLaMa (1.4B), we have RTX 4090 GPU, which is large enough to do
inference for the models. Also, we have enough space to save the models.

• Image input: Upon receiving the image, the agent will first distinguish candidate
objects from the background. This functionality should be achieved in the base
model. After this step, the image should be fragmented into several pieces, with
only one object in each piece.

• Embedding and Alignment: We want embedding (for both text and object’s image
fragment) and the text-image alignment module to be efficient, such that the simi-
larity of correct text-object pair is maximized and the similarity of wrong text-object
pair is minimized. The cosine similarity between an object’s image fragment em-
bedding fI(xi) and a text embedding fT (yj) can be formally as:

Sij =
fI(xi) · fT (yj)

∥fI(xi)∥∥fT (yj)∥
and this requirement can transform to minimizing the loss function below, where Sii

is the similarity between a correct (matching) image-text pair and τ is a temperature
parameter that controls the sharpness of the similarity distribution[5].

Loss =
1

2N

N∑
i=1

[
− log

exp(Sii/τ)∑N
j=1 exp(Sij/τ)

− log
exp(Sii/τ)∑N
j=1 exp(Sji/τ)

]
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2.3 Subsystem 2: Robotic Arm

2.3.1 Overview

We plan to use the YahBoom DOFBOT SE Robotic Arm, which is driven by an STM32
controller and uses a virtual machine as the master to generate control decisions. This
robotic arm has 6-degree-of-freedom serial bus servo and is controlled by the ROS oper-
ating system. By installing a microphone and a USB camera on the outside of the robotic
arm, we give the robotic arm visual and auditory perception capabilities. For the end
effector, we plan to design a mechanical claw with a maximum opening width of 6 cm
and a maximum load of 200 g, so that it can grasp common small objects. Figure 3 shows
the specifications of this robotic arm [6].

Figure 3: The Specifications Of The Robotic Arm

2.3.2 Requirements

The robotic arm consists of the following components.

• Camera. The Camera subsystem runs continuously, capturing images once every
second, and providing real-time visual data to the Image Encoder subsystem for
further processing. By operating in a continuous manner, the system can persis-
tently collect and analyze visual information, facilitating rapid detection of changes
or anomalies in the environment. Moreover, the steady one-frame per second cap-
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ture rate ensures a stable and timely flow of image data, catering to the requirements
of subsequent algorithms and monitoring tasks in a broad range of applications.

• ROS environment. Serving as the primary control center, the ROS subsystem over-
sees hardware operations in accordance with the instructions and outputs produced
by the Large Language Model subsystem. By coordinating the execution of robotic
tasks, it ensures seamless and precise actions throughout the system. In addition,
it forwards the necessary responses to the text-to-speech subsystem, enabling real-
time vocal feedback and improving overall operational efficiency.

• The Robotic Arm subsystem features an arm and an end-effector. After receiving
the object’s coordinates from the vision system, the subsystem employs an inverse
kinematics algorithm to determine how each joint should rotate, thereby ensuring
accurate movement in three-dimensional space. This algorithm is executed on a
PC integrated within a single-chip microcomputer, allowing for real-time, efficient
computation. For the grasping mechanism, a clamp is used to hold objects securely.
Because the objects to be handled are sufficiently rigid, a force sensor is deemed
unnecessary for this design. This simplifies the overall system while still providing
reliable, stable grasping performance for tasks requiring object pick-up and place-
ment.

• Microphone. Record audio from users, then convert voice to words for VLM to
recognize.

• Path design. This subsystem is designed to receive the target point coordinates of an
object from the vision system and utilize an inverse kinematics algorithm to com-
pute the required rotation for each joint. The algorithm will be executed on a PC
integrated within a single-chip microcomputer. This approach ensures precise and
efficient calculation of joint movements, enabling the robotic system to accurately
position and manipulate objects. Additionally, the subsystem will continuously up-
date and adjust the joint angles in real-time to account for any dynamic changes in
the object’s position, thereby enhancing the overall adaptability and responsiveness
of the system.

2.4 Tolerance Analysis

• Data Transfer Analysis Between Computer and Server: Simulations have shown
that data transfer delays between the computer and server can be limited to ap-
proximately 3-4 seconds. The primary factors affecting this latency include net-
work speed, server processing capabilities, and the complexity of the data. To en-
hance processing efficiency, we can try to use Python libraries such as flashattention,
which significantly accelerate AI model computations. These libraries optimize real-
time data analysis and decision-making processes, enabling faster and more efficient
handling of information received from user devices. This approach not only reduces
latency but also improves the overall responsiveness and accuracy of the system.

• Addressing Overload Errors in Robotic Arm Gripping: An additional challenge
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arises when the robotic arm exceeds its maximum load capacity. Although robotic
arms are designed with specific weight limits, variations in the weight of handled
objects can sometimes result in loads surpassing these limits. When this occurs, the
robotic arm may struggle to securely grip the object, leading to errors during the
gripping process. To mitigate this issue, a load detection mechanism can be inte-
grated into the control system. This mechanism would detect instances of overload
and initiate appropriate responses, such as adjusting the gripping force or apply-
ing stabilization techniques, to maintain the stability and accuracy of the gripping
operation.

• Optimizing Gripping Strategies for Irregularly Shaped Objects: Irregularities in the
shape of objects can pose significant challenges to the gripping accuracy of robotic
arms. When handling complex or unevenly shaped items, the robotic arm may
struggle to fully conform to the object’s surface, resulting in deviations in the grip-
ping position. To overcome this issue, it is essential to optimize the gripping strat-
egy. Techniques such as multi-point gripping or the use of soft grippers can enhance
the arm’s ability to adapt to various shapes, thereby improving stability and accu-
racy during the gripping process.
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3 Ethics

Given that our target audience primarily includes the elderly and disabled, ethics and
safety are crucial aspects of our design. This section is divided into two parts to compre-
hensively address these concerns.

3.1 Ethics

As ZJUI students, we are committed to upholding ethical standards and ensuring the
integrity of our project. Our team will strictly adhere to the IEEE Code of Ethics [7] and
the ACM Code of Ethics [8]. We pledge to meet, but are not limited to, the following
ethical responsibilities:

• Prioritize public safety, health, and well-being by adhering to ethical design princi-
ples and sustainable practices. Additionally, we are obligated to report any potential
systemic risks that could lead to harm.

• Strive to benefit society by enhancing individual and collective understanding of
both traditional and emerging technologies and their societal implications.

• Maintain honesty and integrity in all professional activities, strictly avoiding uneth-
ical conduct such as bribery or other illegal actions.

3.1.1 Safety

To ensure the safety of both team members and others, and to mitigate any potential haz-
ards during the project, our team will strictly comply with the ECE 445 SAFETY GUIDE-
LINES [9]. We will undertake, but are not limited to, the following safety measures:

• No team member is permitted to work alone in the laboratory at any time.

• All team members must complete mandatory safety training before being autho-
rized to work in the laboratory.

• Any handling of battery charging or hazardous battery chemicals must be con-
ducted in strict accordance with established safe usage guidelines.

• The robot must be equipped with an emergency stop mechanism that automatically
ceases operation in the event of mechanical failure.
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