

ECE445: Senior Design Laboratory

Project Proposal

Human-Robot Interaction for Object Grasping

with Virtual Reality and Robotic Arms

Team #

Jiayu Zhou, jiayu9

Ziming Yan, zimingy3

Yuchen Yang, yucheny8

Jingxing Hu, hu80

Professor: Gaoang Wang, Liangjing Yang

TA: Tielong Cai, Tianci Tang

March 16, 2025

1. Introduction

1.1 Objective and Background

Current robotic systems lack intuitive and seamless human-robot interaction

for object manipulation. Traditional teleoperation methods often require

complex controllers, making it difficult for users to interact naturally. With

advancements in Virtual Reality (VR) and robotic systems, it is possible to

develop an intuitive interface where users can manipulate objects in a virtual

space, and a robotic arm replicates these actions in real-time. This project

aims to bridge the gap between human intention and robotic execution by

integrating VR with robotic grasping, enabling precise and efficient remote

object manipulation. Such design opens up to a wide potential market

catering to various customer needs, such as remote working with precise

control of streamline, dining requests of the Parkinson’s, etc.

1.2 High-Level Requirements List

• Successfully generate and import at least 10 digital twin objects into

Virtual Reality.

• The system should accurately map hand trajectory to robotic arm

movements in real-time.

• The robotic arm should replicate the grasping motion within 2 minutes

of user interaction.

2. Design

2.1 Block Diagram

2.2 Digital Twin Creation Subsystem

The digital twin creation subsystem utilizes depth camera data for image

acquisition and subsequent point cloud processing.

2.2.1 Depth Image Acquisition & Point Cloud Generation

Acquisition Hardware:

A depth camera (e.g., Intel RealSense or Microsoft Kinect) is deployed to

capture both RGB and depth data simultaneously.

The depth camera generates dense point cloud images, accurately

representing the spatial geometry of the environment.

Point Cloud Generation:

Raw depth data is processed in real-time to produce detailed point clouds,

serving as the primary data source for 3D reconstruction.

The system ensures that the spatial resolution is sufficient for distinguishing

between closely placed objects.

Requirements:

Requirement 1: The depth camera must deliver point clouds with a spatial

resolution accurate to within ±0.5 mm.

2.2.2 Point Cloud Segmentation & Tabletop Recognition

Tabletop Detection:

An initial segmentation algorithm analyzes the point cloud to detect the

tabletop by fitting a planar model (using techniques like RANSAC) to

identify a consistent horizontal surface.

The detected plane provides the reference height for subsequent object

segmentation.

Object Segmentation:

Following tabletop identification, objects are segmented based on the

criterion that their boundary points extend above the detected table surface.

This rule effectively differentiates individual objects from the continuous

plane of the tabletop.

Requirements:

Requirement 3: The tabletop detection algorithm must reliably identify the

table surface with an error margin below 2 cm.

Requirement 4: Object segmentation must accurately distinguish separate

items, achieving a segmentation accuracy of at least 90% even when objects

are in close proximity.

2.2.3 3D Reconstruction & Unity Integration

3D Model Reconstruction:

The segmented point clouds are converted into mesh representations using

algorithms such as Poisson surface reconstruction.

Subsequent optimization with tools like Blender or Meshlab reduces

polygon count by up to 70% while maintaining essential visual and

structural details.

Integration into Unity:

Optimized digital twin models are imported into Unity, where they are

aligned spatially using the Mixed Reality Toolkit (MRTK).

Unity’s physics engine is leveraged to assign appropriate physical properties

to the models, ensuring dynamic interaction fidelity.

Requirements:

Requirement 5: Reconstructed models must be fully compatible with Unity

and support real-time rendering at a minimum of 60 fps.

2.3 Robotic Arm Execution

This subsystem translates user interactions into real-world robotic grasping

by integrating three core modules: the UR3 robotic arm, the robotic

gripper, and the depth camera. These components work together to enable

accurate, real-time grasping through motion planning, visual perception,

and controlled actuation.

The system receives user interaction data, processes it through motion

planning algorithms, and executes robotic grasping actions. The UR3

robotic arm provides the primary actuation, while the robotic gripper

ensures a stable grip on objects. The depth camera supplies crucial spatial

data for object localization and trajectory optimization.

2.3.1 Robotic Arm

• Function: Executes planned motion trajectories to approach and

manipulate objects.

• Connection: Receives trajectory commands from ROS MoveIt,

integrating with the depth camera for dynamic adjustments.

• Role in System: Acts as the primary actuator, responsible for positioning

the gripper to execute precise grasping tasks.

2.3.2 Robotic Gripper

• Function: Clamps and releases objects based on control signals,

ensuring a stable grasp.

• Connection: Directly mounted on the UR3 robotic arm, following

grasping commands from the system.

• Role in System: Ensures secure object manipulation, preventing slip or

excessive force application.

2.3.3 Depth Camera

• Function: Captures 3D spatial information to improve grasping

accuracy through object localization.

• Connection: Interfaces with ROS perception modules to generate real-

time depth data for motion planning.

• Role in System: Provides essential visual feedback, allowing adaptive

adjustments to grasping trajectories.

2.3.4 Communication Module

• Function: Facilitates real-time data transfer between HoloLens and

ROS via WebSocket or ROS Bridge.

• Connection: Ensures that user commands from HoloLens are translated

into executable robotic actions.

• Role in System: Serves as the interface between the user and the robotic

system, enabling intuitive operation.

2.3.5 Grasping Algorithm Modue

• Function: Optimizes grasping execution by ensuring stability and

preventing object damage.

• Connection: Uses force feedback and environmental constraints to

refine grasping strategies.

• Role in System: Enhances the success rate of grasping operations by

dynamically adjusting grip force and trajectory.

2.4 Meta Quest App

The Meta Quest (or Oculus Quest VR headset) App block enables Meta

Quest users to interact with the digital twin scene. In the runtime, it receives

user hand trajectory from real world input. Then it processes the information

for object recognition and finally sends the object index as well as the hand

trajectory to the unity digital twin.

2.4.1 Scene

The predefined scene serves as a VR counterpart to our Digital Twin in

Unity. It incorporates physical models of the following elements: 10 objects,

table and robotic arm.

Requirements: The elements in the scene must have less than 5% precision

tolerance in scales. The 10 objects must be viewed as separable entities from

the table. The robotic arm could be simplified as a rigid body, but the end-

point gripper must manifest the same level of detail with other elements.

2.4.2 Hands Tracking

This module captures user hands trajectories and sends them to the Digital

Twin in Unity via proprietary API databus1 and object recognition module

in real time. This is the key element to enable human robot interaction and

is implemented by Unity First-Hand Dependencies.

Requirements: Must capture hand trajectory every 0.2 seconds. Must

convert the trajectory data to unity-readable format.

2.4.3 Object Recognition

This module predicts which object the user is targeting based on hand

trajectories and records the object is grasped. It constantly receives data

from Hands Tracking module and reads the real-time object locations in the

scene as input, and after processing it sends the “predicted_object” data

packet to the Digital Twin Unity via proprietary API databus 2. The

prediction task is a classification problem on the 10 objects with input of a

string of hand trajectory in the past 10 seconds. The code is written into

Meta Quest App Build.

Requirement: The classification task should be performed in a limited time,

e.g. 0.2 seconds. The prediction result must be accurate as the user hand

https://github.com/oculus-samples/Unity-FirstHand

approaches close (within 10 cm) to the target object.

2.5 Risk Analysis

The component at highest stake is the Unity control unit. It not only

recalculates the calibration of the two different frames of VR and reality but

should also perform object recognition as a classification task in very short

delay. The component also constantly renders the scene and the digital twin.

Such parallel computing places the response time at risk and therefore adds

difficulty to our high-level requirement 3.

3. Ethics and Safety

3.1 Ethics

We should constrain the use of our VR + Robotic Arm design to beneficial

but not destructive use. (Ethics Code 1)

We will improve the community’s understanding of VR-Robotic Arm

Interaction by writing technical reports with substantial details. (Ethics

Code 2)

We should be honest with all kinds of technical references. (Ethics Code 5)

We should treat all people alike and not let our target users be restricted to

certain race or gender. (Ethics Code 7)

We should avoid injuries caused by any unexpected activities of our design

especially by the robotic arm. (Ethics Code 9)

3.2 Safety

Electrical Safety: Ensure our voltage is within the safety range.

Mechanical Safety: Set halt conditions for the robotic arm. Unit test and

simulate every module before finally running in the lab. End users should

stay away far from the robotic arm.

Lab Safety: Always experiment under the supervision of a TA or instructor.

References

Universal Robots, "UR3 Robot User Manual," Version 3.4, May 2016.

[Online]. Available: https://www.universal-

robots.com/media/240787/ur3_us.pdf. [Accessed: 17-Mar-2025].

https://www.universal-robots.com/media/240787/ur3_us.pdf
https://www.universal-robots.com/media/240787/ur3_us.pdf

