

AUTOMATED IC CARD DISPENSER
SYSTEM FOR RESIDENTIAL COLLEGE

By

Zhirong Chen (zhirong4@illinois.edu)

Xiaoyang Chu (xzhu458@illinois.edu)

Zicheng Ma (zma17@illinois.edu)

Dongshen Ye (dye7@illinois.edu)

Final Report for ECE 445, Senior Design, Spring 2024

TA: Lyudong Jin

31 May 2024

Project No. 01

ii

Abstract

There is a significant number of cases where students accidentally left their room and locked the door

while forgetting to bring their cards with them. Moreover, should it happen after the office hours of the

RC office, students would need to call the security personnel to handle the situation. The current

issuance procedure also fails to fully identify the student which introduces potential security

implications. In response to the demand, we proposed and developed a system that automatically

identifies an authorized user and issues a temporal access IC card.

iii

Contents

1. Introduction .. 1

2 Design ... 3

2.1 Design Procedure .. 3

2.1.1 KIOSK Terminal ... 3

2.1.2 Server-side Software – Authentication Part .. 7

2.1.3 Server-side Software – Backend Server and Web Server Part ... 8

2.1.4 Face Recognition – Local Model or Online Model ... 9

2.2 Design Details .. 11

2.2.1 KIOSK Terminal – User Interface .. 11

2.2.2 KIOSK Terminal – Mechanical Subsystem .. 12

2.2.3 Server-side Software – Authentication Part .. 13

2.2.4 Server-side Software – Backend and Web Server Part .. 14

2.2.5 Server-side Software – Facial Recognition Part ... 14

2.2.6 Server-side Software – Access Control Part ... 15

3. Design Verification .. 17

3.1 QR Code Generation Test ... 17

3.2 Request Card and Return Card Test .. 17

3.3 Facial Recognition Test ... 18

3.4 Mechanical Test .. 18

4. Costs .. 19

5. Conclusion ... 20

5.1 Accomplishments .. 20

5.2 Uncertainties ... 20

5.3 Future Work .. 20

5.4 Ethical Consideration .. 20

5.4.1 Safety of Authentication and Access control System .. 20

5.4.2 Reliability of Facial Recognition ... 21

5.4.3 Safety Concerns of Mechanical Systems .. 21

References .. 22

iv

Appendix A Requirement and Verification Table ... 24

Appendix B Circuit Diagram for Mechanical Control ... 25

Appendix C Similarity Score and Latency of Facial Recognition ... 27

1

1. Introduction
Briefly In the recent analysis of the access card system at our residential college, it was found that

between February 25th and March 3rd, 2024, there were 287 incidents where residents requested

temporary access cards due to misplacing their original cards. This number excludes requests outside of

office hours, which involve a cumbersome process requiring intervention from security personnel. This

procedure not only poses challenges due to the diverse linguistic backgrounds of our student population,

but also raises significant safety concerns due to the risk of unauthorized access, as the current method

of issuing temporary cards lacks rigorous identity verification.

To address these issues, we propose the implementation of an automated system that enhances both

security and convenience. This system includes a server and multiple kiosk terminals strategically placed

within the college. As depicted in Fig. 1, this system is designed to integrate two robust methods of

authentication: QR code verification and facial recognition.

Fig. 1 Solution Structure

The division of the project into distinct blocks—server management, kiosk terminal interface, Kiosk

mechanical subsystem, QR code generation, and facial recognition—allows for focused development

and troubleshooting in each area, ensuring that each component meets its specific performance criteria.

In general, the following criteria should be met:

⚫ Reliable, robust, and convenient authentication methods should be adopted to keep the issuance

process secure. The system should be invulnerable to conventional cyber-attacks. A successful

issuance process should take less than 60 seconds.

⚫ The mechanical card dispenser should have a failure rate less than 1/500.

⚫ The system should support multiple languages and can be easily maintained and managed.

2

The mechanical subsystem is supposed to dispense cards automatically. Originally the mechanical

subsystem was designed to be hang on the shell of the card dispenser. But during the designing process,

the mechanical subsystem is set up on the ground with two pieces of board supporting its bottom to

keep its balance so that the mechanical subsystem can operate stably.

Throughout the development of this system, we adhered strictly to performance requirements that

mandate a seamless user experience and robust security measures.

3

2 Design
The entire project consists of two major parts: the KIOSK terminal and the server.

2.1 Design Procedure

2.1.1 KIOSK Terminal

The KIOSK Terminal consists of two subsystems: the user interaction subsystem and the mechanical

subsystem. The composition of the KIOSK terminal is shown in Fig. 2.

Fig. 2 Block Diagram of KIOSK Terminal Hardware

The client-side software will run on Raspberry Pi 4B which interacts with the user and controls the

mechanical subsystem. The hierarchy of the client-side software is shown in Fig. 3

Fig. 3 Block Diagram of Client-side Software

The design of the KIOSK terminal emphasizes human-computer interaction and robustness of the

automated card dispensing process, as well as the secure processing of the card information.

We decided to use Raspberry Pi 4B as the main platform for terminal software development. There are

other alternatives such as LubanCat, Orange Pi and Jetson Nano. We chose Raspberry Pi 4B for its

4

relatively low price and large group of users. Its broad community largely facilitated the development

process. Domestic brands such as LubanCat and Orange Pi are more economical options, but there are

issues with hardware compatibility and supportive software utilities.

In terms of the KIOSK software design, we considered a range of GUI libraries and frameworks. We’ve

considered the following options: Flutter, Qt Desktop, Qt EGLFS, and PyQt. We initially considered

allowing Raspberry Pi to boot into a desktop environment and then start software from there. But the

approach risks malicious user takeover through the OS managed response to user input. We wish to

keep the system secure and allow as few user inputs as possible. Hence, we decided to directly manage

the frame buffer and user input without an OS managed window manager, such as Wayland or X-11. We

explored a range of existing frameworks for this purpose. We initially tried Flutter for Embedded Devices,

yet we discovered that the framework was in its early stage and not easily compatible with existing

libraries interacting with cameras. We then tried to develop the software with Qt with EGLFS. EGLFS is a

Qt application mode that directly interacts with the Direct Rendering Manager (DRM) embedded in

Linux kernel and perfectly matches our demand. However, despite its high performance, developing

with C++ also comes with its shortages. Firstly, since Raspberry Pi 4B is equipped with Arm-based

processors, a cross-compilation toolchain and remote debugging are necessary. The process was

relatively slow, and it takes a lot of effort to achieve successful compilation. Secondly, the memory

management in C++ was an error-prone task and it is critical for 24x7 running software. Hence, we again,

migrated our software to PyQt framework which preserves most features of Qt while providing the

flexibility and translatability of Python. It turns out that the task is not too heavy, and we didn’t sense

tangible performance degradation after the migration. We also preserved the user interface design as it

is written with QML language and dynamically loaded to the QML engine when the software initializes.

We chose the existing NXP RC522 module as the card reader mainly because of their support for the

most popular communication protocols and their reliability. Alternatively, we could design our own

reader and integrate it into our PCB, but there are a few issues to consider. The most prominent issue is

that the design includes an antenna that is to be embedded in the PCB, and such design requires efforts

on EMI analysis and fabrication considerations for the high frequency of the signals, which will be too

time-consuming for the purpose of the project.

Initially we planned to install a stand-alone bar code scanner for QR code scan, but later we changed the

design as we realized that the camera for facial recognition is capable of the task. In this way, the cost of

the project is reduced. We chose to interact with users via a 7’ touchscreen as it’s highly efficient in

terms of human-computer interaction, compared to keypads or mouses.

To control the mechanical system, we used a standalone Raspberry Pi Pico. We’ve also considered

alternatives such as STM32 based microcontrollers. The major reason for the choice is that Pico is

economic and supports MicroPython, which is a reduced version of Python and allows easy

programming and testing. Also, it uses the same voltage level as the Raspberry Pi 4B for communication,

which obviates extra voltage level conversion circuits.

Design Tools & Libraries:

5

⚫ Visual Studio Code: General purpose IDE for software development

⚫ Qt Design Studio: User interface designer for Qt Quick application.

⚫ Qt Linguists: Multilanguage support for the user interface.

⚫ Altium Designer: Circuit & PCB Design

The libraries included in our software are listed in Table 1.

Table 1 List of Libraries Used

Library License Description

PyQt5 [1] GPL v3 This framework is used to render user interface and

manage the events and signals

paho-mqtt [2] OSI Approved

(EPL-2.0 OR

BSD-3-Clause)

The library provided a Python implementation of the

MQTT protocol, allows us to communicate with the

broker easily.

PiCamera2 [3] BSD-2-Clause The library interfaces with the new open-source

camera stack “libcamera” and provide video feed from

the camera

Pyzbar [4] MIT The library allows us to detect and decode QR codes in

the frame.

RPi.GPIO [5] MIT The library provides a simple interface to manipulate

the GPIO interface on Raspberry.

Spidev [6] MIT The library provides an easy way to interact with SPI

devices

mfrc522-

python [7]

GPL v3 Based on spidev library, the library provide interface

to interact with the RFID module

Pyserial [8] BSD The library provides an interface to communicate via

UART.

opencv-

python [9]

Apache 2.0 The library provides a pretrained model for face

detection.

6

Fig. 4 Block Diagram of Mechanical Subsystem

In terms of the mechanical design, we adopt a vacuum suction system to grab and carry IC cards. Beside

the vacuum suction system, the mechanical subsystem includes two linear screw actuators driven by

step motors. One linear actuator is placed horizontally while the other is placed vertically so that the

mechanical subsystem can move cards in the plane where card storage box and exit of the card

dispenser locate. During operation, the mechanical subsystem picks up cards from the card storage box

and moves the cards to the exit to send cards to users. When the users return the cards, the mechanical

subsystem picks cards at the exit and moves them back to the same card storage box.

There exist other options to dispense cards. The simplest design might be to use an actuator to push out

the cards. But this design is not suitable for the situation discussed in this report as the pushing

mechanism cannot satisfy the requirement of getting back the returned cards. And the cards must be

placed with a distance between adjacent cards to leave space corresponding to the width of the pushing

actuator so that only one card will be pushed out at one time, which dramatically reduce the number of

cards can be stored in the card dispenser. An alternative method is using a friction wheel to roll the

cards out from the storage box to the exit. However, we did not adopt a friction wheel because we were

worried that a friction wheel would send out more than one card or cause the card to be stuck in the

machine if the size of the opening is not designed properly. In addition, it is difficult to return cards back

to the storage box using a friction wheel since the friction wheel must press on the cards to produce the

friction force needed to send out cards. Another option is to replace the suction cup with a clamp. But

clamps will also suffer from the issue of sending out two or more cards for one user. By contrast,

vacuum suction system can relatively easily move cards back to the storage box. Moreover, the vacuum

suction system is robust at picking up exactly one card from the storage box, which can be a challenging

task for other card dispensing options, including using a friction wheel or using a clamp to pick up cards.

To ensure that the suction cup can provide sufficient pressure to pick up an IC card, the equation (1) can

be used.

𝑭 =
𝝅𝒅𝟐

𝟒
𝑷 (1)

7

where F is the suction force, d is the diameter of the suction cup, P is the vacuum pressure provided by

the pump and 𝜋 is circumference ratio.

Design Tools:

⚫ Autodesk Fusion 360: CAD modeling

2.1.2 Server-side Software – Authentication Part

The design of the authentication system was guided by two main objectives: securing the transmission

of information and verifying user identity efficiently and securely. In considering the architectural

framework, we explored several alternatives:

⚫ Information propagation - HTTP vs. HTTPS: Initially, HTTP was considered for simplicity; however,

the need for secure transmission made HTTPS the preferable choice. HTTPS provides an encrypted

channel, thus enhancing security against interception and unauthorized access. The way we

authenticate HTTPS data segments is using a certificate signed by CA (Certificate Authority).

⚫ User Identity Verification - AD vs. Custom Database: We had the option to develop a custom

database for user credentials or utilize an existing system. A custom database would have required

users to register and maintain another set of credentials, but this requires the user to register

before they use the login functionality. Instead, we opted to leverage the existing Windows Active

Directory (AD) system. This choice was driven by AD's widespread use on campus because AD is

already in use across campus services, providing a consistent user experience. And AD has a robust

security model that has been battle-tested over the years. We can seamlessly integrate with

Microsoft Azure Active Directory what our campus is currently using after we tested our application.

⚫ Request Verification - Token-based vs. PIN-based: PIN-based is an approach where each user is

assigned a personal identification number (PIN) that they use to authenticate requests. This method

is commonly used in banking and access control systems. However, it requires users to remember

an additional set of credentials and is susceptible to security risks if the PIN is compromised. We

selected a token-based verification system for its simplicity and effectiveness. This method

integrates seamlessly with our existing infrastructure and leverages the secure environment

provided by HTTPS, ensuring that tokens are transmitted securely. Our token will expire in 10

minutes so the risks of PIN compromission is also lowered.

Design Tools and Equations:

⚫ Windows Cloud Server: We used a Windows Cloud Server to boot up AD.

⚫ LDAP Queries: To interact with AD, Lightweight Directory Access Protocol (LDAP) queries were used.

These queries allow for efficient retrieval of user data from the AD servers.

⚫ SSL/TLS Protocols: For securing data transmissions, SSL/TLS protocols were employed to establish

encrypted links between the client and the server.

8

2.1.3 Server-side Software – Backend Server and Web Server Part

In the development of the backend server for our project, the selection of server architecture was

crucial to accommodate high traffic and maintain efficient performance. Our primary objectives were to

ensure high concurrency, efficient resource utilization, and scalability. We considered several

architectural frameworks and technologies before finalizing our choices.

⚫ Web Server - Nginx vs. Apache: We initially evaluated traditional web servers like Apache; however,

Nginx emerged as the superior option due to its ability to handle significantly higher volumes of

concurrent connections, which is pivotal during peak periods such as the start of a new semester or

exam times. Nginx’s event-driven model allows it to process many requests concurrently, making it

highly efficient in environments requiring quick response times with minimal memory usage. This

selection was supported by numerous benchmarks showing that Nginx could handle approximately

four times more concurrent connections than Apache while using fewer resources.

⚫ Database System Comparison – MySQL vs MongoDB: For the database management system of our

project, the decision to use MySQL over MongoDB was guided primarily by ease of use and

suitability to our specific needs. Here's why MySQL was favored:

◼ SQL vs NoSQL: MySQL, a relational database management system (RDBMS), uses structured

query language (SQL) which is beneficial for our application that requires complex queries and

precise data integrity. MySQL's ability to handle structured data and support complex

transactions is crucial for the operational demands of our server.

◼ Ease of Use: MySQL is generally considered easier to use for our requirements, especially

when dealing with relational data structures. Its widespread adoption makes it easier to find

resources and community support.

◼ Schema Management: The structured schema in MySQL is advantageous for our application,

which depends on well-defined data formats and relationships. This ensures data consistency

and integrity across different parts of our application.

⚫ Web Server Framework – Python Flask & Gunicorn v.s. React: In the web server stage, the choice

of the Flask framework over React was driven by its compatibility with our system requirements

and ease of integration with other features such as face recognition technologies: Python Flask:

Chosen for its flexibility and ease of use, Flask supports rapid development, which is crucial in a

fast-paced project environment. It allows for efficient handling of dynamic content requests, such

as user authentication and QR code generation.

◼ Integration Flexibility: Flask provides more flexibility in integrating various backend

functionalities, which is crucial for incorporating advanced features like face recognition into

our system seamlessly.

◼ Ease of Use with Python: Flask, being a Python framework, naturally integrates with the

Python programming environment. This integration is beneficial because Python offers

9

extensive libraries and tools that simplify the implementation of additional functionalities,

such as data processing and machine learning, which are integral to our project.

◼ Simplicity and Rapid Development: Flask is designed to be simple and easy to use, enabling

quick development and deployment of web applications. This is particularly useful in a project

with tight deadlines and the need for frequent updates and iterations.

These design choices form the foundation of our backend server architecture, ensuring it is robust,

scalable, and capable of handling our specific needs efficiently.

Design Tools and Equations:

⚫ Nginx: We utilized specific Nginx configurations to optimize handling of concurrent connections and

resource allocation. These configurations help in tuning the server according to the expected load

and traffic behavior.

⚫ Docker: Used to boot up Nginx and MySQL in a more lightweight way.

⚫ MySQL: Used to boot up the database and manage the database. Chosen for its robust transactional

support and ease of use in managing structured data and complex transactions. MySQL excels in

environments where data integrity and precise query handling are necessary.

⚫ Python Flask: Utilized for its simplicity and flexibility, enabling rapid development and easy

integration of various functionalities, such as face recognition. Flask's compatibility with Python also

facilitates the use of extensive libraries for additional features.

2.1.4 Face Recognition – Local Model or Online Model

We tried two different ways to implement the face recognition function. The first one is to deploy the

model in our own server, the other is to use the online model from Hikvision, which is broadly used in

the campus. We first tried to deploy the face recognition on our server, but we met two main problems:

⚫ Since the financial support from residential college is not enough, we don’t have enough money to

buy the server with GPU. Without GPU, it’s hard to accelerate the machine learning model. In our

experiment, mapping a face picture in a dataset of 10 images takes 49.8 seconds with the model

from https://github.com/ageitgey/face_recognition.

⚫ Another problem is dataset collection. If we deploy the model in our own server, we need to collect

the face images of all students, which would cause two problems: 1. Collecting the images from all

students needs many human resources. 2. We need to guarantee the data security of face dataset.

Because of the above problems, we begin to consider the second method: use the online model from

Hikvision. This online model is broadly used in several buildings in campus: Library, Residential College,

Campus Gate, etc. The average latency of detecting a face image using the Hikvision online model is 0.82

seconds, which is acceptable. Additionally, the server from Hikvision has the face datasets from students,

https://github.com/ageitgey/face_recognition

10

so we don’t have to collect the images ourselves. We use the Hmac-SHA256 algorithm [10] to secure the

communication between the backend server and Hikvision server, so the security of dataset is

guaranteed.

11

2.2 Design Details

2.2.1 KIOSK Terminal – User Interface

Fig. 5 KIOSK Terminal Software Flow Chart

Component Specifications:

⚫ Support for multiple languages: As described previously, the user interface supports multiple

languages, as shown in Fig. 6 below.

Fig. 6 User Interface

12

⚫ Facial / Barcode Detection: Once the user pushes the “Request” button, the camera starts, and a

preview of the camera feed is shown on the screen. Our software is responsible for forwarding the

video frames from the camera stack to the buffer, while employing OpenCV and pyzbar libraries to

detect any faces or bar codes. Once detected, the software will automatically switch to an “In-

Process” tab and informs the user of the status. Meanwhile, the software will validate the

information with the server and, should the information be valid, the software will instruct the

peripherals to issue a new card to the user.

⚫ RFID Tag Processing: The software will decode the keys and write the information to a registered

blank card. When the user tries to return a card, the reader will also check its validity and reject the

card if the card is not valid.

⚫ Mechanical Control: The Raspberry Pi 4B communicates with the microcontroller via UART. The

communication is in a request-response manner. Specifically, when Pi asks the mechanical

subsystem to move, the microcontroller will immediately acknowledge the request, and later an

“in-position” response is returned. Should there be any unexpected mechanical error or a time-out

exception, the microcontroller will respond with an error signal, in which case the software should

notify the server of the incident.

2.2.2 KIOSK Terminal – Mechanical Subsystem

The vacuum suction system consists of a 5 Volts vacuum pump, a 30-mm diameter suction cup, and a 12

Volts solenoid valve. The vacuum pump provides a 55 KPa vacuum pressure by pumping out air,

resulting in a suction force of 38.87 N, which is much larger than the weight of an 8-gram IC card, also

ensuring that the card will not fall from the suction cup during motion even though the card might suffer

from collision or friction. The solenoid valve is adopted to destroy vacuum situation to speed up card

releasing process.

Fig. 7 Sensor Setup

13

Several sensors are added to the mechanical subsystem to enhance its robustness, as shown in Fig. 7.

⚫ Tact sensor [11]: used to detect the height of the card stack so that the suction cup can stop at the

proper height where the suction cup can grab the card and the suction cup will not run into the

card stack.

⚫ SN04-N proximity sensor [12]: Define the origin position of two linear actuators. Based on the

origin of the linear actuators, the actual positions of two linear actuators can be determined. By

defining the origin position, the motion of two linear actuators can be limited to a certain range,

preventing collisions with other parts in the system.

⚫ Photo interrupter [13]: Used to detect whether there is a card at the exit. This function is added to

ensure that the card has been sent to a proper position when the user returns the card so that the

suction cup can get the card back.

⚫ Photo reflector [13]: Installed below the card stack, the photo reflector is used to detect whether

there is card available in the card storage box.

2.2.3 Server-side Software – Authentication Part

Fig. 8 Authentication Procedure

Component Specifications:

⚫ Database Configuration: In MySQL database, we created a table called “tokens” and an action which

will delete all the record generated 10 minutes ago.

Fig. 9 Database Content

14

⚫ Security Protocols: The certificate we used is signed by CA.

⚫ AD Server we used: Booted up on 10.105.5.97 named as izju.

2.2.4 Server-side Software – Backend and Web Server Part

Here, we want to mainly discuss the workflow about how to give a card and return a card in our backend

server.

The workflow about receiving a request sending a card is shown in Fig. 10 below.

Fig. 10 Workflow about Receiving a Request

2.2.5 Server-side Software – Facial Recognition Part

The facial recognition server is responsible for receiving images of faces from a terminal, analyzing them

using a machine learning (ML) model, and comparing them against a predefined facial dataset to identify

the student in the image. This system primarily employs advanced ML models such as Deepface [14],

FaceNet [15], and VGGFace [16]. If the server cannot find a match in the dataset, it immediately sends

an error message back to the client. However, if a match is found, the server sends a request with the

student's information to the RC server to facilitate the issuance of a temporary card.

The workflow for this facial recognition subsystem is as follows: First, a terminal captures an image of a

student using a camera and sends it to the backend server. This server converts the image into binary

data and encodes it in Base64 format before transmitting it to the facial recognition server. Upon

receiving the data, the facial recognition server decodes it back into an image format. It then uses a

computer vision model to compare this image with the stored images in the student database, looking

15

for the highest similarity. The server then sends the student's information along with the computed

similarity score back to the backend server. For security purposes, the authentication process is deemed

successful only if the similarity score, which ranges from 0 to 100, exceeds a set threshold of 80.

Fig. 11 Workflow for Facial Recognition Authentication

2.2.6 Server-side Software – Access Control Part

The door access system comprises three distinct parts: dorm room access, block access, and residential

college door access. Each segment is controlled by different entities, necessitating varied approaches.

For dorm room access, we face a limitation as the company managing this part, along with the workers

at the residential college, have declined to share their dataset with us. Therefore, we can only duplicate

the door access key from the student ID card into our database system during the student registration

process. Team members Zicheng Ma and Xiaoyang Chu are tasked with overseeing this component.

For the block and residential college door access, we are supported by the Hikvision platform, with the

residential college staff granting us the necessary permissions to manage access control. The access

control subsystem operates as follows:

Initially, we must authenticate using the Hikvision platform, which employs an Access Key/Secret Key

(AK/SK) system for client identity verification. Upon user registration, the platform assigns an AppKey

and an AppSecret to each user. The authentication process involves generating a signature that

incorporates the Http Method, headers, and Url (including path, query, and bodyForm). This signature,

using the AppSecret as a cryptographic key, is hashed with the Hmac-SHA256 algorithm to create a

message digest, which is then encoded in BASE64 format using UTF-8. The resultant signature is

included in the HTTPS request header, enabling the platform to verify the client’s identity using the

AppKey.

16

Fig. 12 Workflow for Facial Recognition Authentication

Post-identity verification, we utilize the student's name and ID to fetch their dorm room number from

our SQL database. This allows us to ascertain the corresponding block ID and residential college ID. We

then request the Hikvision platform to assign a personID (distinct from the student ID) for the student,

using their name and student ID. We also retrieve the ID for the relevant devices (door locks) using their

names. With both the personID and device ID, we set up the access permissions for the student by

uploading the student ID, card ID, and device ID to the platform, thereby enabling access. The same

process is employed to revoke access once the student returns their card.

Fig. 13 Workflow for Facial Recognition Authentication

17

3. Design Verification

3.1 QR Code Generation Test
Objective: Ensure that the QR codes generated by the system are accurate and reliable for

authentication purposes. Besides, the QR code really carries the 32 bytes token we want.

Procedure: QR codes were dynamically generated on a web server accessible via ZJUWLAN at port 8002.

The generated codes were then tested at kiosk terminals to authenticate user access, assessing the

correctness of the encoded information and the scanning system's reliability. The robustness of QR

codes was also evaluated under varying physical conditions, including different lighting levels and angles.

Outcome: All QR codes were successfully recognized and authenticated by the kiosk scanners without

any discrepancies, confirming the effectiveness of the encoding and decoding processes. The tests also

verified the resilience of QR codes, maintaining readability under diverse environmental conditions.

3.2 Request Card and Return Card Test
Objective: To validate the functionality of the card request and return system, using QR codes for card

issuance and authentication, and ensuring backend and terminal communication for successful key

writing and door access control.

Procedure:

 Card Issuance: QR codes generated by the backend system were scanned at the terminal using

an integrated camera setup. The terminal established communication with the backend to request card

issuance.

 Key Writing: Upon successful QR code verification, a unique key was written to the card, which

was then used to unlock a test door lock, demonstrating the operational effectiveness of the card in a

real-world scenario.

 Card Return: After use, the card was returned to the terminal, which triggered the backend

system to rewrite the database entries associated with the card, ensuring that all information was

updated and consistent with system requirements.

Outcome:

 Issuance and Authentication: The QR code scanning and verification process was flawless, with

no errors in recognition or decoding. The backend efficiently handled the card issuance request and

communicated the necessary data to the terminal.

 Key Functionality: The key written to the card successfully activated the door lock, confirming

the system’s ability to handle secure transactions and control access effectively.

18

3.3 Facial Recognition Test
We test the similarity scores and the latency with four resolution sizes and 20 images. For the image

dataset, we include all angles of the face photos, including left face, right face and the middle face.

Based on the latency and similarity score result shown below, we finally decided to resize the input

image into 384 x 512 pixels, which can maximize the similarity score and minimize the latency as much

as possible.

Fig. 14 Average Latency and Similarity Score by Resolution

3.4 Mechanical Test
To test the stability of the mechanical subsystem, the mechanical subsystem is run to simulate the

scenario of borrowing and returning cards 20 times. And it turns out that the mechanical subsystem

operates properly every time without human intervention. Although the number of tests is not sufficient

to prove that the failure rate of the mechanical subsystem is below 0.2%, it still provides evidence about

the mechanical subsystem’s robustness.

The test of repeating borrowing and returning cards also shows the results that it takes the card

dispenser about 36 seconds to successfully dispense a card and about 52 seconds to finish recycling a

returned card. These results verify that the card dispenser satisfies the high-level requirement that

successful card issuing should be less than 60 seconds.

19

4. Costs
Table 2 Human Labor Cost Analysis

Labor Quant. Amount

(CNY)

Develop the face recognition subsystem 50 h 2000

KIOSK Software Development 75 h 3000

Build a QR code web server 40h 1200

Build database and import RC data 30h 1000

Build mechanical subsystem 40h 1200

Table 3 Parts Cost Analysis

Parts Quant. Amount

(CNY)

Raspberry Pi 4B Development Kit 1 775.90

RFID Analyzing Tool 1 345.92

Vacuum pump and suction cup 1 30.39

XY actuator 1 480

Raspberry Pi Pico Microcontroller 1 39

Camera Module 1 29.9

Miscellaneous Cables & Components 276.43

20

5. Conclusion

5.1 Accomplishments
We finish the implementation and verification of the backend subsystem, facial recognition subsystem,

access control subsystem, Kiosk Terminal Subsystem, and Mechanical Subsystem. The automatic card

dispenser can satisfy the requirements of issuing or recycling cards in 60 seconds. The card dispenser

includes a screen that makes interaction with users easy and convenient. The automatic dispenser

allows users to verify their identities by scanning QR codes or facial recognition, providing a convenient

and secure way of authentication.

5.2 Uncertainties
Since some of the students don’t register their face images in the Hikvision system, we are not sure how

many students can pass the face recognition authentication.

5.3 Future Work
Currently, the card issued by the card dispenser should be taken by a user so that the card dispenser can

continue providing service. However, in practice, the card might not be taken away for some reason.

Since the card dispenser does not have a sensor to detect the existence of the card at the exit, the

program of the card dispenser cannot realize the existence of the card at the exit. Once a new request of

card issuance is made to the card dispenser, the card dispenser will try to issue a card but result in card

stuck at the exit. Also, the card which is not taken by a user can lead to privacy concerns. Therefore, it is

worth adding one more sensor so that the card dispenser can recycle the card which is not taken in 3

minutes.

5.4 Ethical Consideration

5.4.1 Safety of Authentication and Access control System

The safety concerns for the software system primarily relate to data protection, system reliability, and

user privacy. Ensuring the safety of these aspects is critical, as breaches could lead to identity theft,

unauthorized access, or service disruptions.

⚫ User Privacy and Encryption: The system must maintain user privacy by ensuring that personal data

is not exposed to unauthorized entities. This requires all data stored and transmitted to be

encrypted using industry-standard cryptographic protocols to prevent unauthorized access.

Therefore, we plan to adopt SHA-256, which is a relatively secure, difficult, and costly encryption

method in the current industry.

⚫ System Reliability: The RC Server must offer high availability and fault tolerance to avoid service

interruptions, which could lead to safety issues in systems that rely on constant connectivity for

critical functions. Although the traffic and demand on campus may not be large, the stability and

load capacity of the server are also to be considered.

21

5.4.2 Reliability of Facial Recognition

It is guaranteed that the face dataset of students is safely stored in the facial recognition system. We will

also make sure that when the camera take a picture of student, the picture will only be used for facial

recognition, but not for other purpose.

5.4.3 Safety Concerns of Mechanical Systems

To produce the vacuum in the suction cup so that the suction cup can suck up IC cards, a vacuum pump

is involved to suck air out of the suction cup. It should be guaranteed that the vacuum pump deals with

compressed air properly. Also, the connection between tube and the vacuum pump, the pipe teeth and

the suction cup should be properly maintained to prevent possible leakage.

It should be ensured that the mechanical subsystem will not hurt the users’ hands when the user puts

his or her hand at the exit of the card dispenser to pick up the card or return the card. The shell of the

KIOSK terminal should prevent people from being hurt by mechanical components in the shell.

The mechanical subsystem should have the ability to recycle IC cards at the exit back if the users do not

pick up the cards in 5 minutes after the cards are sent out. That function can prevent the risk that

someone else taking away the cards, in order to protect security of privacy [17]. However, currently this

function is unavailable since there is no sensor that can detect cards half-exposed at the card exit, as

discussed in Section 5.3.

The mechanical subsystem should wear the card as little as possible to enhance sustainability of cards

[17] and reduce the frequency of replacement of cards. Suction cup is adopted since it will do little wear

to the cards. However, it is discovered that IC cards will be deflected due to the suction force when

being sucked by the suction cup.

22

References

[1] Riverbank Computing Limited, The Qt Company, "PyQt5 Reference Guide," [Online]. Available:

https://www.riverbankcomputing.com/static/Docs/PyQt5/. [Accessed 15 April 2024].

[2] Eclipse Foundation AISBL, "Paho," [Online]. Available: https://eclipse.dev/paho/. [Accessed 15 April

2024].

[3] Raspberry Pi Ltd, "The Picamera2 Library," 27 November 2023. [Online]. Available:

https://datasheets.raspberrypi.com/camera/picamera2-manual.pdf. [Accessed 15 April 2024].

[4] D. Ferens, Alex, I. Bento and @jaant, "pyzbar," [Online]. Available:

https://github.com/NaturalHistoryMuseum/pyzbar/. [Accessed 15 April 2024].

[5] B. Croston, "raspberry-gpio-python," [Online]. Available: http://sourceforge.net/p/raspberry-gpio-

python/wiki/Home/. [Accessed 15 April 2024].

[6] S. Caudle, "py-spidev," [Online]. Available: https://github.com/doceme/py-spidev. [Accessed 15

April 2024].

[7] Aditya and N. Downing, "MFRC522-python," [Online]. Available:

https://github.com/1AdityaX/mfrc522-python. [Accessed 15 April 2024].

[8] C. Liechti, "pySerial," [Online]. Available: https://pyserial.readthedocs.io/en/latest/pyserial.html.

[Accessed 15 April 2024].

[9] OpenCV Team, " OpenCV Team," [Online]. Available: https://github.com/opencv/opencv-python.

[Accessed 10 May 2024].

[10] National Institute of Standards and Technology, “Secure Hash Standard (SHS),” U.S. Department of

Commerce, Aug. 2015. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-

4.pdf

[11] E-Switch, "What is a Tact Switch and How Does it Function?," E-Switch, 27 October 2023. [Online].

Available: https://www.e-switch.com/zh-CN/blog/what-is-a-tact-switch-and-how-does-it-function/.

[Accessed 27 May 2024].

[12] Handson Technology, "SN04-N Inductive Proximity Sensor – Metal Detector," [Online]. Available:

https://handsontec.com/dataspecs/sensor/SN04-Metal%20Detector.pdf. [Accessed 27 May 2024].

[13] ROHM Semiconductor, "What is a Photointerrupter?," ROHM Semiconductor, [Online]. Available:

https://www.rohm.com/electronics-basics/photointerrupters/what-is-a-photointerrupter.

[Accessed 27 May 2024].

23

[14] Taigman, Y., Yang, M., Ranzato, M. A., & Wolf, L. (2014). DeepFace: Closing the Gap to Human-Level

Performance in Face Verification. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR).

[15] Schroff, F., Kalenichenko, D., & Philbin, J. (2015). FaceNet: A Unified Embedding for Face

Recognition and Clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR).

[16] Parkhi, O. M., Vedaldi, A., & Zisserman, A. (2015). Deep Face Recognition. In British Machine Vision

Conference (BMVC)

[17] IEEE, “IEEE Code of Ethics,” ieee.org, Jun. 2020.

https://www.ieee.org/about/corporate/governance/p7-8.html

24

Appendix A Requirement and Verification Table
Table 4 System Requirements and Verifications

Requirement Verification Verification
status

(Y or N)

1. Robust and stable card dispensing
a. Able to dispense cards
b. Successful issue of cards

within 60 seconds
c. Failure rate less than 0.2%

1. Cards dispensing tests
a. Try to dispense a card and

check if the card has the access
to the desired door

b. Count the time used for card
issue to check if it is less than
60 seconds

c. Repeat card dispensing for 500
times

Y

Y

N

2. Robust and stable card returning
a. Able to accept returned cards
b. Successful cards return in 60

seconds
c. Failure rate less than 0.2%
d. Able to detect and reject

invalid cards

2. Cards returning tests
a. Try to accept a returned card

and check if access is removed
from the card

b. Count the time used for card
return to check if it is less than
60 seconds

c. Repeat card dispensing for 500
times

d. Insert an invalid card to see if it
can be rejected

Y

Y

N

Y

3. Abnormal detection and failure
prevention

a. Able to detect empty card
storage box

b. Able to detect that card
storage box is full

c. Able to deal with inserted card
at the card exit when
performing card dispensing
process

3.
a. Check if the system can detect

that no card is available when
making a card dispensing
request

b. Check if the system can detect
the card storage box is full when
making a return request

c. Insert a card at the card exit,
check if the system can solve
the situation

Y

Y

N

25

Appendix B Circuit Diagram for Mechanical Control

Fig. 15 Circuit Diagram for Vacuum Pump Control

Fig. 16 Circuit Diagram for Solenoid Valve Control

26

Fig. 17 Circuit Diagram for Proximity Sensor Signal Processing

27

Appendix C Similarity Score and Latency of Facial Recognition
Table 5 Similarity scores with different image resolution

Image Index / Resolution 1536 x 2048 768 x 1024 384 x 512 192 x 256

1 89 88 89 86

2 89 88 90 88

3 90 92 91 89

4 88 87 90 87

5 84 87 87 86

6 87 86 89 91

7 87 91 91 90

8 86 89 90 91

9 85 86 86 88

10 94 85 86 86

11 88 88 90 90

12 89 89 90 87

13 83 89 86 86

14 85 87 86 87

15 88 89 87 85

16 88 89 88 88

17 89 91 90 89

18 86 88 88 87

19 82 90 89 91

20 86 89 89 88

28

Table 6 Latency of online model with different image resolution

Image Index/Resolution 1536 x 2048 768 x 1024 384 x 512 192 x 256

1 0.738295794 0.628719091 0.651124716 0.640042067

2 0.758849859 0.642990112 0.58182621 0.545042753

3 0.744408131 0.633938551 0.583513021 0.558713436

4 0.751494408 0.581557751 0.691009521 0.584634542

5 0.854304314 0.726917028 0.721786499 0.612939596

6 0.83710289 0.766220093 0.70773983 0.555555582

7 0.761623383 0.744357347 0.682974577 0.598637581

8 0.712453604 0.672476292 0.618635416 0.578127861

9 0.798819304 0.730727196 0.705238342 0.652128696

10 0.815337896 0.669465542 0.653531075 0.609490156

11 0.785992622 0.710080385 0.683963537 0.603325844

12 0.826137781 0.816992521 0.665312529 0.599835396

13 0.755683184 0.722836018 0.642542124 0.606658936

14 0.749848127 0.730558157 0.657264948 0.635754347

15 1.25428915 0.696682215 0.637785673 0.680992126

16 0.772652388 0.728740931 0.672860622 0.583869934

17 0.804905891 0.740184069 0.644750595 0.536188602

18 0.75211525 0.670586586 0.635467529 0.550262451

19 0.801511526 0.684829712 0.679459095 0.591224909

20 0.77336359 0.738835573 0.643973112 0.595976114

