
ECE 445

SENIOR DESIGN LABORATORY

FINAL REPORT

Actions to Mosquitoes

Team #4

XIANGMEI CHEN (xc47@illinois.edu)
PEIQI CAI (peiqic3@illinois.edu)

YANG DAI (yangdai2@illinois.edu)
LUMENG XU (lumengx2@illinois.edu)

TA: Guo Hao Thng
Sponsor: Said Mikki

May 28, 2024

Abstract

This project presents an automated machine designed to detect, localize, and capture mosquitoes.
The detection subsystem leverages audio analysis to identify mosquito-specific wingbeat frequen-
cies using MFCC and CNN techniques. It is complemented by a localization subsystem with a
high-resolution camera and advanced imaging model for real-time mosquito tracking. The attack
subsystem employs a fan unit and a mechanical structure for precise capture, while the power
and control subsystem, managed by a Raspberry Pi, oversees sensory data processing and mo-
tor control. The machine’s design is ethically grounded, emphasizing privacy, humane mosquito
elimination, and strict safety protocols.

i

Contents

1 Introduction 1
1.1 Problem and Solution Overview . 1
1.2 Functionality . 1

1.2.1 Detection Subsystem . 1
1.2.2 Localization Subsystem . 1
1.2.3 Attack Subsystem . 2
1.2.4 Power and Control Subsystem . 2

1.3 Subsystem Overview . 2
1.3.1 Detection Subsystem . 3
1.3.2 Localization Subsystem . 3
1.3.3 Attack Subsystem . 3
1.3.4 Power and Control Subsystem . 4

2 Design 4
2.1 Audio Detection Module . 4

2.1.1 Design Ideas and Algorithm . 4
2.1.2 Neural Network Description . 5

2.2 Computer Vision Module . 6
2.2.1 Design Ideas . 6
2.2.2 Data Augmentation . 6
2.2.3 Inference Acceleration . 7

2.3 Movement and Rotation Module . 8
2.3.1 Configuration Space Calculation . 8
2.3.2 Finite State Machine Design . 10
2.3.3 PWM Design . 10

2.4 Control and Integrated Module . 11
2.4.1 Deployment of the audio detection to Raspberry Pi 11
2.4.2 Deployment object detection model to Raspberry Pi 12
2.4.3 Connection and Control of Motors . 13

2.5 Mechanical Structure . 14
2.5.1 Design description and drawings . 14
2.5.2 Simulation results . 15
2.5.3 Design alternatives . 15

2.6 Power Supply Module . 16
2.6.1 Design Ideas . 16
2.6.2 RT8279 for Raspberry Pi . 17

3 Cost and Schedule 18
3.1 Cost Analysis . 18

3.1.1 Cost of labor . 18
3.1.2 Cost of parts . 18
3.1.3 Sum of Costs . 19

3.2 Schedule . 19

ii

4 Requirements and Verification 20
4.1 Audio Detection Module . 20

4.1.1 Model Training Accuracy . 20
4.1.2 Audio Processing and Detection Latency 20

4.2 Computer Vision Module . 21
4.2.1 Model Metrics . 21
4.2.2 FPS and Inference Latency . 21

4.3 Movement and Rotation Module . 22
4.3.1 Servo Motor Response . 22

4.4 Power and Control Module . 23
4.4.1 PCB Functionality and Soft Start Time 23

5 Conclusion 24
5.1 Accomplishments . 24
5.2 Uncertainties . 24

5.2.1 Uncertainty in Localization Subsystem 24
5.2.2 Uncertainty in Power Subsystem . 24

5.3 Future Work / Alternatives . 25
5.4 Ethical Considerations . 25

References 26

iii

1 Introduction
1.1 Problem and Solution Overview

Mosquitoes are not just a source of irritation due to their itchy bites; they are also public
health threats, as documented by the World Health Organization (WHO), which identi-
fies them as vectors for diseases like malaria and dengue [1]. The challenge of controlling
these agile insects is compounded by the limitations of current methods, which can be
less effective and potentially harmful, as noted in studies on the environmental impact of
mosquito control. To address these issues, we’ve developed an innovative device that ac-
tively positions and captures mosquitoes. It operates by moving through the environment
and sucking up mosquitoes upon detection, offering a more targeted and safer alternative
to traditional repellents and swatters.

We design our project by four subsystems: a detection subsystem, a localization sub-
system, an attack subsystem, and a power and control subsystem. The detection sub-
system serves as the trigger, using audio cues to activate the machine when mosquitoes
are present. The localization subsystem employs a camera to locate the mosquito and
provides real time location data to the attack subsystem, which then mobilizes to capture
the mosquitoes using a powerful fan. The power and control subsystem is strategically
divided to supply continuous energy to the detection subsystem and activated power to
the localization and attack subsystems, optimizing energy usage, and ensuring sustained
operations.

1.2 Functionality

1.2.1 Detection Subsystem

The detection subsystem is designed to identify the presence of mosquitoes through their
unique wingbeat frequency. This subsystem operates using a microphone that captures
and processes sound waves within the 300 to 600 Hz range, which is specific to mosquitoes,
leveraging the Mel-Frequency Cepstral Coefficient (MFCC), spectrogram and a machine
learning model [2].

By accurately identifying mosquito presence, the device can operate efficiently, triggers
the localization subsystem for the camera to work once the mosquito is detected.

1.2.2 Localization Subsystem

Localization subsystem is responsible for visually localizing the mosquito’s position via a
high-resolution USB camera mounted on the Raspberry Pi. The Roboflow Train 3.0 model
[3], one of the best algorithms for real-time object detection is used by this subsystem,
which gives the mosquito’s position in the camera’s field view.

The localization subsystem’s precision is essential for the device’s ability to navigate to-
wards and capture mosquitoes. By accurately determining the mosquito’s location, the
device can go and suck the mosquito using attack subsystem.

1

1.2.3 Attack Subsystem

The attack subsystem is tasked with the physical capture of mosquitoes. It is equipped
with a fan capture unit that generates an airflow to draw in mosquitoes and a mechan-
ical structure that allows for precise positioning. The subsystem’s mechanical structure,
including the chassis, wheels, and lead screw, enables 360-degree rotation and accurate
movement towards the mosquito’s location.

The attack subsystem’s efficiency and precision are paramount to the device’s eradica-
tion capabilities. By receives signals from control subsystem, the subsystem effectively
capturing mosquitoes.

1.2.4 Power and Control Subsystem

The power and control subsystem is the central part of the device, ensuring that all other
subsystems function harmoniously. It comprises a control unit based on the Raspberry
Pi, which processes sensory data and formulates commands for the motor control sys-
tem. The motor control system, in turn, generates PWM signals to manage the motors,
enabling the precise movement and positioning of the device.

The power and control subsystem is indispensable for the device’s autonomous function-
ality. It ensures the power supply unit provide a stable and regulated power source. This
subsystem’s stability and efficiency are foundational to the project’s success, powering
and controlling all other subsystems.

Figure 1: The overall visual graph of the design: One motor chip powers and controls all
other parts, the microphone works as a trigger to enable the camera and the attacker, then
the main part starts to localize and move to attack the mosquitoes.

1.3 Subsystem Overview

This machine is designed to detect, locate, and attack mosquitoes autonomously. It com-
prises four main subsystems, each playing a crucial role in the machine’s operation and
interacting seamlessly. See Figure1 for the overall visual graph of the design.

2

1.3.1 Detection Subsystem

The detection subsystem identifies mosquitoes through their characteristic wingbeat fre-
quencies between 300 to 600 Hz. It uses a specialized microphone and the MFCC tech-
nique to process audio signals, also CNN is applied to train the data, enabling the system
to efficiently detect and respond to mosquito presence. Figure2 is The frequency plot of
some mosquitoes wingbeats noise.

Figure 2: The frequency plot of some mosquitoes wingbeats noise.

Once a mosquito is detected, the detection subsystem activates the localization subsys-
tem, initiating the camera for mosquito tracking.

1.3.2 Localization Subsystem

To aid our mosquito attack unit, we have developed the localization subsystem which is
capable of detecting and localizing the mosquito visually. A high resolution USB camera
is connected to a Raspberry Pi to capture images. Using the state-of-the-art Roboflow
Train 3.0 model, the pipeline performs real-time object detection and is able to precisely
localize the mosquito within the camera view.

Figure 3: Accuracy of Roboflow 3.0. Figure 4: Training time of Roboflow 3.0.

The localization sub-system is always enabled and ready to provide the coordinates of
the detected mosquito to the attack subsystem.

1.3.3 Attack Subsystem

The attack subsystem, built around a Raspberry Pi control unit, integrates inputs from
a microphone and camera to manage a motor system for precise mosquito capture. It

3

features a fan for capturing mosquitoes and a mechanical structure that allows for 360-
degree rotation and movement. This subsystem works with the detection and localization
subsystem to receive real-time data, guiding it to the mosquito’s location. The control unit
processes this data and uses PWM signals to keep the mosquito in view for capture.

1.3.4 Power and Control Subsystem

The power and control subsystem is the heart of our machine, with a Raspberry Pi con-
trol unit that processes real-time data to distinguish mosquito sounds and identify their
positions. It commands the motor control system to generate PWM signals for precise
movement and positioning of components like the camera and capture mechanism. The
Power Supply Unit (PSU) ensures stable 12V power and converts it for all components.
This subsystem coordinates with others, receiving input for mosquito capture and man-
aging a seamless flow of commands and power for efficient operation.

(a) USB circuit of Raspberry Pi. (b) GPIO Pins expansion of Raspberry Pi.

Figure 5: Circuits of USB and GPIO

2 Design
2.1 Audio Detection Module

2.1.1 Design Ideas and Algorithm

The detection subsystem forms the first line of our mosquito attack device, leveraging
acoustic data to detect the presence of mosquitoes. Utilizing an microphone to record
sounds, the subsystem captures audio signals within a specific frequency range known
to be characteristic of mosquito wingbeats, which typically lie between 300Hz to 600
Hz.

The detection process starts with audio signal capture via the microphone. The algorithm
processes these audio inputs to extract relevant features that help differentiate mosquito
noises from other ambient sounds. The primary feature extraction method used here is
Mel-Frequency Cepstral Coefficients (MFCC). MFCCs are crucial in this context as they
efficiently represent the power spectrum of audio signals, capturing the essential charac-

4

teristics needed for mosquito identification. Its calculation formula is as follows:

MFCCs = 20 · log10
(
|FFT (Window · Signal)|2

)
The extracted MFCC features are then utilized to determine the presence of mosquitoes
through a classification process. While the specifics of the model used for classification are
detailed in a subsequent section, it’s important to note that the chosen model processes
these features to accurately identify mosquito-related audio.

2.1.2 Neural Network Description

The detection subsystem utilizes a Convolutional Neural Network (CNN) to classify au-
dio features extracted as Mel-Frequency Cepstral Coefficients (MFCCs), distinguishing
mosquito sounds from other ambient noises.

The CNN architecture comprises:

• Input Layer: Processes input MFCCs, a time-series representation of audio.

• Convolutional Layers: Multiple layers with ReLU activation functions extract pat-
terns from the audio data.

• Pooling Layers: Max pooling layers follow convolutional layers to reduce dimen-
sionality and prevent overfitting.

• Fully Connected Layers: One or more layers that finalize the classification process.

• Output Layer: A softmax activation function provides the probabilities for each
class, enabling a clear classification decision.

Figure 6: The structure of the CNN.

The CNN is trained using a dataset of labeled mosquito and non-mosquito sounds, ad-
justing weights and biases through backpropagation to minimize cross-entropy loss. Op-
timization is performed using algorithms like Adam. The mathematical expression of the
calculation of the CNN can be expressed as:

y = σ (W2 · ReLU (W1 · x+ b1) + b2)

Where:

5

• x is the input vector (MFCCs).

• W1,W2 are the weights of the first and second layers.

• b1, b2 are biases for the first and second layers.

• ReLU is the Rectified Linear Unit activation function.

• σ is the softmax function applied at the output layer.

2.2 Computer Vision Module

2.2.1 Design Ideas

The vision subsystem is a pivotal element of our mosquito attack device, employing
the Roboflow 3.0 model for enhanced object detection capabilities, which is trained on a
dataset of annotated images, where it learns to recognize and localize mosquitoes within
the frames. The process initiates with the camera capturing video frames, which are then
fed into the Roboflow 3.0 model. The model utilizes advanced algorithms to process the
video inputs and extract features that are instrumental in distinguishing mosquitoes from
their surroundings[4]. The Roboflow 3.0 model is particularly adept at handling complex
visual patterns and providing high accuracy rates, thanks to its improved training infras-
tructure1.

2.2.2 Data Augmentation

The input dataset of the model during training will be the images of 640 × 640 pixels,
which will be further augmented based on several strategies to improve training perfor-
mance shown as below.

1. 90° Rotate: This step add 90-degree rotations to help the model be insensitive to camera
orientation. As stated, the environment of the dataset is set to be constant, while the
real situation could be different since our design requires the whole structure to rotate
and move to capture the mosquito. Hence, the step could improve the robustness of the
model.

Figure 7: Preprocessed. Figure 8: Clockwise. Figure 9: Counter-
clockwise.

2. Brightness: This step add variability to image brightness to help the model be more

6

resilient to lighting and camera setting changes, since the time as well as environment
may affect the brightness of the captured image. Both brighten and darken images are
considered and brightness is set to −15% to 15%.

Figure 10: 0%. Figure 11: -15%. Figure 12: 15%.

After data augmentation, the amount of the dataset is doubled to 2258 in total, and is
further split to the fraction: 85%, 10%, 5%, as the train-valid-test set.

2.2.3 Inference Acceleration

Design issue:

One of the greatest challenging we are facing in Localization subsystem is the time taken
for processing each frame was higher than desired, leading to delays in mosquito detec-
tion. This was quantified by the latency equation.

L =
1

N

N∑
i=1

(tresponse,i − trequest,i)

where L is the average latency, N is the number of requests, and tresponse,i and trequest,i are
the response and request times for the i-th inference. Due to the performance constraint
of Raspberry Pi 4B, object detection models with large number of parameters such as
YOLOv8[5], which we desired to use at the beginning, are abandoned.

Corrective Actions Taken:

The first measurement is to adopt model with fewer parameters, which we have men-
tioned above as Roboflow Train 3.0, which has faster speed in training and inference.

Another way is to use inference server service using Python package inference and set
up our own Self-Hosted Inference Server. The basic principle diagram of inference server
is illustrated as below.

7

Figure 13: The diagram of using inference over HTTP.

Our linux server works on a Ubuntu 22.04 server with 64bit and a dual-core CPU of
2 threads and is set up in Shanghai, so that there will not be too much latency due to
internet connection. The overall latency can be quantified as:

Lserver =
1

N

N∑
i=1

(tresponse server,i − trequest server,i + Internet latency)

Since the direct distance from ZJUI to Shanghai is within 100 km, the internet latency can
be calculated as

Linternet =
s

v
=

100km
300, 000km/second

≈ 0.4ms

.

Although, according to the real situation the latency may not be ideal, it’s still acceptable
comparing to deploy the model locally on Raspberry Pi.

2.3 Movement and Rotation Module

The Movement and Rotation Module is pivotal to our mosquito detection and elimination
system, ensuring precise maneuvering for effective mosquito tracking and capture. It in-
tegrates the Roboflow object detection and custom bounding box detection to accurately
pinpoint mosquito locations in images, guiding the system’s movements. Utilizing PWM
signals, it dynamically adjusts motor speeds for optimal approach patterns, controlling
three omnidirectional wheels for advanced maneuvers in complex environments.

2.3.1 Configuration Space Calculation

The primary goal is to keep the mosquito centered within the camera’s view, facilitating
effective tracking and eventual capture.

Design Procedure:

In the mosquito tracking system, the configuration space is defined by the camera’s field
of view, which measures 640 × 480 pixels. The motor adjustments are determined based
on the detected position of the mosquito within this field:

8

Figure 14: Visual Detection Boundary of Camera View.

• The mosquito detection system utilizes a Raspberry Pi-connected USB camera to
capture live video, which is then processed by the high-precision Roboflow model
to identify and locate mosquitoes. The system extracts the mosquito’s position
through bounding box coordinates, calculating the necessary motor speed adjust-
ments to center the mosquito in the camera’s field of view for enhanced tracking
and positioning.

Design Details:

The operational logic is as follows:

Mosquito Position Analysis

• Center Extraction: The center (x, y) of the bounding box is used to determine the
mosquito’s current position.

1 x , y , w, h = i n t (p r e d i c t i o n [’ x ’]) , i n t (p r e d i c t i o n [’ y ’]) ,
2 i n t (p r e d i c t i o n [’ width ’]) , i n t (p r e d i c t i o n [’ height ’])
3 cv2 . r e c t a n g l e (frame , (x , y) , (x + w, y + h) , (0 , 255 , 0) , 2)
4 cv2 . putText (frame , f ” { ’ mosquitoes ’} { p r e d i c t i o n [’ conf idence ’] : . 2 f }” ,
5 (x , y − 10) , cv2 . FONT HERSHEY SIMPLEX, 0 . 5 , (0 , 255 , 0) , 1)

Listing 1: Bounding Box Coordinates.

• Relative Position Calculation: Calculates how far x is from the image’s midpoint
to determine necessary motor adjustments.

Motor Speed Adjustment

• Adjustment Factor Calculation:

Speed Adjustment = Specific Speed −
(|xposition − xmid|

xmid
× Specific Speed

)
Where xmid is the midpoint of the image width, and xposition is the horizontal position
of the mosquito. This notation clearly defines the adjustment needed based on the
mosquito’s position relative to the center of the camera’s field of view.

9

• Motor Control:

– If xposition < mid point, decrease left motor speed and increase right motor
speed to turn left.

– If xposition > mid point, increase left motor speed and decrease right motor
speed to turn right.

• Speed Application: Adjustments to the PWM signals are dynamically applied to
control motor speeds.

Real-Time Feedback Loop

• Continuous Monitoring and Adjustment: The device continuously adjusts based
on real-time video and mosquito movement, enhancing tracking accuracy.

This balance between speed and precision ensures effective tracking and response to
mosquito movements within the visual field.

2.3.2 Finite State Machine Design

The different states of the machine dealing with different situations can be expressed as a
Finite State Machine.

Initialize

MonitoringTracking

Shut down

Proceed

No mosquitoes < 10s
Mosquitoes in View

No mosquitoes > 5s

Stop No mosquitoes > 10s

Mosquitoes in View/
No mosquitoes < 5s

2.3.3 PWM Design

Overview:

In the Movement and Rotation Module, Pulse Width Modulation (PWM) is utilized to
control the speed and direction of motors based on the detected position of mosquitoes.
By varying the duty cycle of the PWM signals sent to each motor, the system dynamically
controls the device’s movement, achieving precise positioning for optimal tracking.

Design Procedure:

The duty cycle in PWM is controlled by adjusting the duration of the high signal within
each pulse relative to the total pulse duration. A higher duty cycle increases the motor
speed, enabling quicker turns and faster reaction to mosquito movements.

10

Design Details:

Calculation of PWM Duty Cycle

The duty cycle for each motor is adjusted based on the deviation of the mosquito from
the center of the camera’s view. The formula used is:

Duty Cycle(%) =

(
Specific Speed − Adjustment Factor × Specific Speed

Maximum Speed

)
× 100

where:

• Specific Speed is the speed required based on the mosquito’s movement.

• Adjustment Factor is calculated from the positional deviation:

Adjustment Factor =
|xmid − xposition|

1
2
× Image Width

Sending PWM to Motors

Once the duty cycle is determined, it is applied to the motors using:

GPIO.PWM(pin, frequency).ChangeDutyCycle(duty_cycle)

This command controls the motor speed by adjusting the PWM duty cycle. The precise
control of PWM signals to the motors ensures effective tracking of mosquitoes. This ca-
pability allows the device to align perfectly with the mosquito’s position, optimizing the
tracking and actions taken by the system.

2.4 Control and Integrated Module

2.4.1 Deployment of the audio detection to Raspberry Pi

The deployment of the neural network model to a Raspberry Pi involves transferring the
pre-trained model and setting up real-time audio processing. The following steps and
corresponding code illustrate how this is achieved:

The pre-trained model is transferred to the Raspberry Pi using PyTorch’s functionality.
The weights are saved in a .pth or .pt file and loaded on the Raspberry Pi as fol-
lows:

• torch.load: Loads the model, ensuring compatibility with the CPU environment
of the Raspberry Pi.

• model.eval(): Sets the model to evaluation mode, which is necessary for infer-
ence as it disables training-specific layers like dropout.

Audio data is processed in real time, and the extracted features are used for classification.
The function below handles the real-time prediction:

• load and extract features: Extracts MFCC features from the audio file.

11

• torch.no grad(): A context manager that disables gradient computation to speed
up predictions and reduce memory usage.

• torch.max(outputs.data, 1): Determines the predicted class by identifying
the class with the highest probability.

The following equation models the real-time feature extraction and prediction pipeline,
which is crucial for deployment on the Raspberry Pi.

ŷ = fCNN(fMFCC(audio signal))

Where:

• fMFCC is the function extracting MFCC features from the audio signal.

• fCNN is the CNN model function for prediction.

• audio signal is the input audio data.

• ŷ is the predicted output.

These steps encapsulate the process of deploying a neural network model on a Rasp-
berry Pi, emphasizing efficient model loading and real-time processing for mosquito de-
tection.

2.4.2 Deployment object detection model to Raspberry Pi

Adaptive Frame Processing

The system dynamically calculates and displays the frames per second (FPS)[6], which
not only provides a real-time performance metric but also allows for adaptive adjust-
ments. For instance, the processing detail or frequency could be scaled based on the cur-
rent FPS, thus maintaining a balance between speed and accuracy, is essential for varied
real-world scenarios.

1 while r e t :
2 counter += 1
3 i f (time . time () − s t a r t t i m e) != 0 :
4 cv2 . putText (frame , ”FPS {0}” . format (f l o a t (’ %.1 f ’ % (counter / (time .

time () − s t a r t t i m e)))) , (3 0 , 50) , cv2 . FONT HERSHEY SIMPLEX, 1 , (0 , 0 ,
255) , 2)

5 re t , frame = capture . read ()
6 p r i n t (”FPS : ” , counter / (time . time () − s t a r t t i m e))
7 counter = 0
8 s t a r t t i m e = time . time ()

Listing 2: Video Capture and Frame Processing

Real-time Interactivity and Feedback Loop

The system is designed to provide immediate visual feedback through an annotated video
stream, which is essential for user interaction and for tasks requiring instant decision-
making.

12

1 f o r p r e d i c t i o n in srcimg . j son () [’ p r e d i c t i o n s ’] :
2 x , y , w, h = i n t (p r e d i c t i o n [’ x ’]) , i n t (p r e d i c t i o n [’ y ’]) , i n t (p r e d i c t i o n [’

width ’]) , i n t (p r e d i c t i o n [’ height ’])
3 cv2 . r e c t a n g l e (frame , (x , y) , (x + w, y + h) , (0 , 255 , 0) , 2)
4 cv2 . putText (frame , f ” { ’ mosquitoes ’} { p r e d i c t i o n [’ conf idence ’] : . 2 f }” ,
5 (x , y − 10) , cv2 . FONT HERSHEY SIMPLEX, 0 . 5 , (0 , 255 , 0) , 1)
6 cv2 . imshow (” video ” , frame)

Listing 3: Model Prediction and Annotation

The ‘predict‘ method of the local model is called with each frame, demonstrating how
real-time detection is implemented. The system annotates detected objects in the video
stream and displays these annotations in real time, highlighting the application’s interac-
tivity and immediacy.

2.4.3 Connection and Control of Motors

The L298N motor driver is commonly used for controlling motors in robotics due to its
ability to drive two motors simultaneously and support motor directions with a high
current output. In this design, a Raspberry Pi is used to control the motors through the
L298N, enabling precise manipulation of motor speeds and directions based on real-time
data processing from a camera.

Circuit Configuration

The GPIO (General Purpose Input/Output) pins of the Raspberry Pi are utilized to inter-
face with the L298N motor driver[7]. The motor driver’s input pins (INT1 to INT8) are
connected to specified GPIO pins on the Raspberry Pi[8], which allows for controlling up
to four motors (two motors with bidirectional control).

(a) Schematic diagram of circuit con-
nection

(b) L298N and Raspberry PI connec-
tion diagram

Figure 15: Two kinds of circuit diagrams of L298N

13

2.5 Mechanical Structure

2.5.1 Design description and drawings

The mechanical structure has been greatly improved since the design document. We
need it to be concise and easy to manufacture while implementing functions such as self-
rotation, straight movement, and turning. As shown in Figure 16, we use acrylic layers
and copper pillars to build the body of the machine and three omni wheels to control
its movement, based on the principle of force balance. For self-rotation, all three wheels
rotate at the same speed and in the same direction. For straight movement, one wheel’s
speed is set to zero, while the other two wheels rotate at the same speed but in opposite
directions.

Figure 16: CAD model.

The current design significantly reduces mechanical and electrical complexity. Once the
mosquito is detected to exist, the machine will rotate by itself to provide the camera with
a 360-degree view; once the mosquito is localized, the machine will move towards it by
issuing different commands to the three wheels.

Figures 17 depict CAD drawings of the mechanical system. The system has few compo-
nents. The top and bottom layers of the cart are made by laser-cutting acrylic boards. All
electrical components will be taped to the acrylic boards.

(a) Drawing for the bottom layer. (b) Drawing for the top layer. (c) Drawing for the omni wheel.

Figure 17: Drawing for the layers and wheels.

14

2.5.2 Simulation results

In summary, simulation results indicate that our mechanical design is theoretically safe.
The stress distribution provides suggestions on where to place weight during physical
testing.

The material for the top and bottom layers is 3 mm acrylic. For the bottom layer, we
assume a downward force of 5 N at each hole and a moment of 1 N*mm. The maximum
stress observed is 0.094 MPa, which is below the yield stress of acrylic (40 MPa). It is
notable that the maximum stress occurs at three edges; therefore, if weight is to be added
to the board, it is advisable to place it in the dark blue area.

Regarding the top layer, we assume a downward force of 2.5 N and a moment of 1 N*mm.
While the overall stress is higher than that of the bottom layer, it still does not exceed the
yield stress. Interestingly, the different geometry provides insights into where weight
should be placed. Unlike the triangular bottom layer, the circular top layer exhibits a
distinct stress distribution.

I also conducted a simulation analysis for the shaft, as shown in Figure 13. The material
used is stainless steel, with a yield stress of 250 MPa. This analysis is for the scenario
involving a quick turn, resulting in a torque of 5 N*mm being exerted on it. The maximum
stress observed is 0.234 MPa, indicating that it is well within the safe range.

(a) Simulation results for the bottom layer. (b) Simulation results for the top layer. (c) Simulation re-
sults for shaft.

Figure 18: Simulation results for the components.

2.5.3 Design alternatives

As seen in Figure 22, we manufactured and built the first physical model. During testing,
we found that electrical components were crowded at the bottom layer, which was very
messy. Another issue was that the bottom layer was large compared to those three wheels.
Though the acrylic board can withstand the weight, it was deformed, resulting in the
three wheels not holding a vertical angle with the ground. There were also issues with
the way the motor was fixed because screws and nuts would loosen during moving.

To address these issues, we improved the design. We made the machine in three layers
while reducing the size of the bottom layer. The drawings for the three acrylic layers are
shown in Figures 21.

15

(a) Drawing for the bottom layer. (b) Drawing for the middle layer. (c) Drawing for the top layer.

Figure 19: Drawing for the layers.

The connection between the motor and acrylic board is made using 502 glue. The overall
appearance of the machine is shown in Figure 20.

(a) Physical model during the first
test.

(b) Appearance of the design al-
ternative.

Figure 20: Physical models.

2.6 Power Supply Module

2.6.1 Design Ideas

The Power Supply Module, a cornerstone of our mosquito attack device, is meticulously
crafted to cater to the power demands of the Raspberry Pi in Control Subsystem. The de-
sign philosophy is rooted in the principle of efficiency, where we harness the potential of
a 12V lithium battery to power the system. This choice is pivotal for several reasons:

Firstly, the 12V lithium battery is renowned for its high energy density, which translates
to longer operational times without the need for frequent recharging.

Secondly, by stepping down this 12V supply to 5V specifically for the Raspberry Pi rather
than using another 5V power supply, it significantly reduces the weight of the device,
which is critical for enhancing portability.

16

2.6.2 RT8279 for Raspberry Pi

The RT8279 [9] is a highly efficient and compact step-down voltage regulator designed
to power the Raspberry Pi in the Control Subsystem of our mosquito attack device. It
employ feedback control mechanisms to regulate output voltage, ensuring stable power
supplies. The components such as feedback resistors, inductors, capacitors, and soft-
start capacitors are crucial for achieving the desired output voltages and protecting the
devices.

Feedback resistor dividers R1 and R2:

For the resistor dividers, the formula that calculates the values of resistors is given by

VOUT = VREF (1 +
R1

R2

)

where VREF is the reference voltage with typical value 1.222V . At the same time, the value
of R1 is restricted to 100kΩ rather than giving a wide range to select. Therefore, the value
of R2 can be calculated as

R2 =
R1

VOUT

VREF
− 1

=
100kΩ
5V

1.222V
− 1

≈ 32.3kΩ

Output inductor L:

The formula the determines the value of inductor that operates the ripple current is shown
as below. During calculation, the oscillator frequency is the same as 500kHz, while the
maximum output current reaches to 3A.

L =
VOUT (1− VOUT/VIN,MAX)

FSW × IOUT,MAX × 20%
=

5V (1− 5V/12V)

500kHz × 3A× 20%
≈ 9.7µH

Input capacitor CIN and Output capacitor COUT :

For the capacitors that connects to VIN pin, it’s shown above in the application circuit
with two capacitors with value 4.7µF . And COUT is designed to be two capacitors with
value 22µF .

Enable Operation:

The enable pin should be driven higher than 1.4V to turn on the IC, where we chose to
connect it to VIN in series with a resistor of 100kΩ since the EN pin can also be externally
pulled to High by adding a 100kΩ or greater resistor from the VIN pin.

The circuit diagram of RT8279 we designed is shown as below, which takes 12V as input
and output voltage of 5V without the heating issue running continuously at 3A.

17

Figure 21: Designed Circuit Diagram Figure of RT8279.

3 Cost and Schedule
3.1 Cost Analysis

3.1.1 Cost of labor

We take the average salary of UIUC graduates as our hourly wage, which is $20 per hour.
Assume our team works three hours a day and five days a week, and there are 13 weeks
to work. So, the total labor is $20× 3× 5× 13× 2.5× 4 = $39000.

3.1.2 Cost of parts

Part # Description Manufacturer Quantity Cost
1 Raspberry Pi 4B

plus camera
Raspberry Pi Foundation 1 589 RMB

2 Arduino Devel-
opment Board
ATMEGA16U2

ArduinoLLC 1 80 RMB

3 Microphone for
Raspberry Pi 4B

ArduinoLLC 1 9 RMB

4 Small fan Telesky 1 7 RMB
5 Single chip small

car
Beikemu 1 30 RMB

6 Bogie Boxi 1 90 RMB
7 L298N STMicroelectronics 1 6 RMB
8 Delipow 18650

lithium battery
pack

Delipow 1 46 RMB

9 1080P Camera Linboshi 1 196 RMB
10 printed PCB &

components
JLC Technology Group 1 57 RMB

11 ball bearing Tao Factory 1 3 RMB
Total 1113 RMB

Table 1: Cost Table.

18

3.1.3 Sum of Costs

The grand total costs is approximately $40000.

3.2 Schedule

19

4 Requirements and Verification
4.1 Audio Detection Module

4.1.1 Model Training Accuracy

Requirements: The machine learning model must correctly identify mosquito sounds
with an accuracy of at least 85%.

Verification: Prepare some test datasets consisting of non-mosquito sounds. Executing
the model and recording outcomes to calculate accuracy (A):

A =
Correct

Total
;

where Correct is the number of labels where the outcome equals to the predicted, and
Total is the number of all outcome labels. We need to ensure A ≥ 85%.

Results: We chose three datasets containing different pronunciations of English words
”cat”, ”dog” and ”bird” and imported them into our model to test, and all the three accu-
racy are 90% or so, which is above our requirement.

Figure 22: Testing Accuracy Result of Audio Detection Module.

4.1.2 Audio Processing and Detection Latency

Requirements: The total time from mosquito sound detection by the microphone to the
identification of the sound by the software should not exceed 25 seconds. This ensures
timely activation of the subsequent subsystems for effective mosquito targeting and erad-
ication.

Verification:

1. Record the timestamp t0 when mosquito sound is detected by the microphone.

2. Record the timestamp t1 when the audio capture finishes.

3. Record the timestamp t2 when mosquito detection is confirmed.

20

4. Calculate Ttotal = t2 − t0 for each trial and ensure Ttotal ≤ 10 seconds.

We need:
1

n

n∑
i=1

Ttotal,i ≤ 10 seconds

where n is the number of trials.

Results: We tested the code with different audio files, containing mosquito sounds and
non-mosquito sounds, for 15 times, and the average timestamp duration is 22.4s.

4.2 Computer Vision Module

4.2.1 Model Metrics

Requirements: The Roboflow 3.0 model must correctly identify at least 90% of mosquitoes
in the validation dataset with a precision of 85% or higher and a recall of 85% or higher.

Verifications: Process the captured images with the Roboflow 3.0 model. Calculate the
precision and recall with different confidence based on the documented data and the
formula

Precision =
TP

TP + FP
, and Recall =

TP

TP + FN

Also, use other metrics such as Mean Average Precision (mAP) to determine the perfor-
mance and the value of confidence, where mAP = 1

n

∑n
k=1 APk

Results: The training results shows sufficient performance of the model, where precision
and recall reach 88.2% and 87.4% for the best checkpoint. The map also reaches 90.5% in
this version.

Figure 23: Training Metrics Result of Roboflow 3.0 Object Detection model.

4.2.2 FPS and Inference Latency

Requirements: The inference speed should be fast enough so that the control unit is able
to receive 3-4 frames per second.

21

Verifications: Build the SSH tunnel connection between Raspberry Pi and inference server
and transfer the image to the server to infer. Calculate the frames per second (FPS)
by:

FPS =
1

end time− start time

where end time − start time is the time interval for each time the control unit reads a
frame. Calculate the average FPS by averaging the processing time across 15-20 frames
and verify if the average FPS meets the real-time processing constraint.

Results: After transferring the image to the inference server, received the inferred result
and calculate the inference time, we get the FPS result for the 18 samples as follows.

Figure 24: FPS of the image captured for 18 samples.

where we get the average FPS FPSavg =
∑

FPSi ≈ 5.11 frames per second, which is
above our requirements.

4.3 Movement and Rotation Module

4.3.1 Servo Motor Response

Requirements: Servo motors must respond within 0.5 seconds of a control signal.

Verification: Servo motors must respond to control signals within 0.5 seconds, ensuring
immediate adjustment of camera positioning,

Tres ≤ Tres,max = 0.5s

where Tres is the servo motor response time .

Results: After testing our model for ten times, we measured the time duration between
the signal received moment at the Raspberry Pi from the state at the camera and the mo-
ment when the motor started to act accordingly, and calculated the average time duration
by the formula

Tavg =
1

n

n∑
i=1

Tres = 0.48s

22

where n is 10, and the result shows that our motor response time meets the require-
ment.

4.4 Power and Control Module

4.4.1 PCB Functionality and Soft Start Time

Requirements: The PCB should be able to regulate the 12V input to the required 5V
and the output voltage deviation is within ±5%, with the soft start time at around 4.5-
5.5ms.

Verification: Connect the PCB to a 12V power source and measure the output voltage
using an oscilloscope. Observe the output voltage waveform and calculate the soft start
time using the oscilloscope data.

Soft Start Time = t2 − t1

Analyze the output voltage waveform and ensure that it remains stable at 5V with mini-
mal fluctuations after the soft start period and verify that the output voltage is within the
specified tolerance of ±5% from the 5V target:

Voltage Deviation =
|Vout − 5V |

5V
∗ 100%

Where Vout is the measured output voltage.

Results:

Figure 25: Oscilloscope data to measure peak value and soft start time.

The output voltage of the PCB took around 4.8ms to reach from 0V to 5V and can be iden-
tified from the oscilloscope data. According to the measurement, the minimum value of
voltage is -468.7mV, which is the background voltage of the oscilloscope, and the maxi-
mum value of voltage is 4.844V. The voltage deviation is calculated as:

Voltage Deviation =
|4.844V − 5V |

5V
∗ 100% = 3.12%

which satisfied the requirements.

23

5 Conclusion
5.1 Accomplishments

Our machine successfully detects, localizes, and captures mosquitoes within a 2-meter
range. It utilizes a microphone and camera, guided by machine learning models, to de-
tect and track mosquitoes. The machine features a mechanical structure with 360-degree
rotation capability and a fan unit for effective mosquito capture. These capabilities are
made possible by a power and control subsystem with a useful PCB that provides sta-
ble power and coordinates operations through a Raspberry Pi control unit. Overall, our
design almost meets our requirements and can effectively deal with mosquitoes.

5.2 Uncertainties

5.2.1 Uncertainty in Localization Subsystem

Camera Resolution and Field of View (FoV): The high-resolution USB camera’s perfor-
mance may be affected by lighting conditions and lens cleanliness. For instance, if there
are reflections in the camera’s FoV or dust on the lens, it could reduce localization accu-
racy.

Assuming optimal conditions, pixel density might be 300 PPI (Pixel Per Inch). Under ad-
verse conditions (e.g., lens dirt or poor lighting), effective pixel density could drop to 150
PPI, potentially doubling the error margin in localization. The mathematical expression
of the effective pixel density is:

Peffective = Poptimal −∆P

Where Poptimal is the optimal pixel density and ∆P is the decrease in pixel density due to
adverse conditions.

5.2.2 Uncertainty in Power Subsystem

Input Voltage Fluctuations:

Although lithium battery is stable, the input voltage to the power supply module may
vary due to battery discharge or environmental factors. Assuming the battery discharge
follows an exponential decay model, the input voltage can be expressed as:

Vin(t) = Vinitial ∗ exp(−t/τ)

where Vin(t) is the input voltage at time t, Vinitial is the initial battery voltage, t is the
elapsed time, and τ is the time constant of the battery discharge.Fluctuations in input
voltage can lead to variations in the output voltage, since RT8279 has an input constraint
of 5.5V to 36V operating input range. If the voltage of the battery drops to lower than
5.5V, the output of PCB may not be stable anymore.

24

5.3 Future Work / Alternatives

For future improvements, we can examine the subsystems one by one.

For the detection subsystem, future work should focus on real-time detection. Sounds
made by mosquitoes are actually very small compared to environmental noise. Addi-
tionally, the frequency of the sound varies with temperature and humidity, making it a
very complex issue.

For the localization and attack subsystems, future work should aim at reducing time lag
and improving resolution so that our machine can accurately differentiate mosquitoes
from other objects. When it comes to sucking in mosquitoes using a fan, we must find an
easier way to clean the container after mosquitoes are captured.

As for the power and control subsystem, it can be enhanced by using a lighter-weight
battery.

5.4 Ethical Considerations

A qualified project must adhere to the ethics codes outlined in IEEE Policies and ACM
[10], [11]. As stipulated in the team contract, the four of us will collaborate to ensure mu-
tual respect and fairness, committing to upholding these codes collectively and making
requisite risk mitigation plans accordingly.

Our project seeks to manage mosquitoes for a healthier public environment, addressing
the spread of diseases caused by them. It consists of mosquito detection, localization
using a camera, and elimination. While there are no ethical concerns in detection, using
a camera raises privacy issues. We respect life and ensure humane mosquito elimination
without endorsing cruelty.

To mitigate risks, we inform individuals about monitoring in the experimental area to pro-
tect privacy. We use audio files and mosquito images for testing, avoiding real mosquitoes
to prevent cruelty and harm to people during testing.

25

References
[1] WHO. “Mosquitoes.” (2021), [Online]. Available: https ://www.who.int/news-

room/fact-sheets/detail/mosquitoes (visited on 03/27/2024).
[2] H. Mukundarajan, F. J. H. Hol, E. A. Castillo, C. Newby, and M. Prakash, “Us-

ing mobile phones as acoustic sensors for high-throughput mosquito surveillance,”
eLife, vol. 6, 2017. DOI: https://doi.org/10.7554/eLife.27854.

[3] J. Gallagher. “Announcing roboflow train 3.0.” (2023), [Online]. Available: https :
//blog.roboflow.com/roboflow-train-3-0/ (visited on 05/10/2024).

[4] R. Parthasarathi, Computer Architecture. INFLIBNET Centre, Jul. 2018, Licensed un-
der a Creative Commons Attribution-NonCommercial 4.0 International License.
[Online]. Available: https://www.cs.umd.edu/∼meesh/411/CA-online/chapter/
computer-architectureintroduction/index.html (visited on 04/15/2024).

[5] J. Solawetz. “What is yolov8? the ultimate guide.” (2023), [Online]. Available: https:
//blog.roboflow.com/whats-new-in-yolov8/ (visited on 03/05/2024).

[6] Lenovo, Lenovo 500 fhd webcam - overview and service parts, https://support.lenovo.
com / us / en / accessories / acc500143 - lenovo - 500 - fhd - webcam - overview - and -
service-parts, [Online; accessed 15-April-2024], 2024.

[7] Raspberry Pi Foundation, Raspberry pi 4 model b datasheet, [Online; accessed 15-
April-2024], 2024.

[8] Components101, L293n motor driver module, https://components101.com/modules/
l293n-motor-driver-module, [Online; accessed 15-April-2024], 2024.

[9] 5a, 36v, 500khz step-down converter, RT8279, Richtek Technology Corporation, Dec.
2011.

[10] IEEE. “IEEE Code of Ethics.” (2016), [Online]. Available: https://www.ieee.org/
about/corporate/governance/p7-8.html (visited on 03/05/2024).

[11] ACM. “ACM Code of Ethics and Professional Conduct.” (2018), [Online]. Available:
https://www.acm.org/code-of-ethics (visited on 03/05/2024).

26

https://www.who.int/news-room/fact-sheets/detail/mosquitoes
https://www.who.int/news-room/fact-sheets/detail/mosquitoes
https://doi.org/https://doi.org/10.7554/eLife.27854
https://blog.roboflow.com/roboflow-train-3-0/
https://blog.roboflow.com/roboflow-train-3-0/
https://www.cs.umd.edu/~meesh/411/CA-online/chapter/computer-architectureintroduction/index.html
https://www.cs.umd.edu/~meesh/411/CA-online/chapter/computer-architectureintroduction/index.html
https://blog.roboflow.com/whats-new-in-yolov8/
https://blog.roboflow.com/whats-new-in-yolov8/
https://support.lenovo.com/us/en/accessories/acc500143-lenovo-500-fhd-webcam-overview-and-service-parts
https://support.lenovo.com/us/en/accessories/acc500143-lenovo-500-fhd-webcam-overview-and-service-parts
https://support.lenovo.com/us/en/accessories/acc500143-lenovo-500-fhd-webcam-overview-and-service-parts
https://components101.com/modules/l293n-motor-driver-module
https://components101.com/modules/l293n-motor-driver-module
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.acm.org/code-of-ethics

	Introduction
	Problem and Solution Overview
	Functionality
	Detection Subsystem
	Localization Subsystem
	Attack Subsystem
	Power and Control Subsystem

	Subsystem Overview
	Detection Subsystem
	Localization Subsystem
	Attack Subsystem
	Power and Control Subsystem

	Design
	Audio Detection Module
	Design Ideas and Algorithm
	Neural Network Description

	Computer Vision Module
	Design Ideas
	Data Augmentation
	Inference Acceleration

	Movement and Rotation Module
	Configuration Space Calculation
	Finite State Machine Design
	PWM Design

	Control and Integrated Module
	Deployment of the audio detection to Raspberry Pi
	Deployment object detection model to Raspberry Pi
	Connection and Control of Motors

	Mechanical Structure
	Design description and drawings
	Simulation results
	Design alternatives

	Power Supply Module
	Design Ideas
	RT8279 for Raspberry Pi

	Cost and Schedule
	Cost Analysis
	Cost of labor
	Cost of parts
	Sum of Costs

	Schedule

	Requirements and Verification
	Audio Detection Module
	Model Training Accuracy
	Audio Processing and Detection Latency

	Computer Vision Module
	Model Metrics
	FPS and Inference Latency

	Movement and Rotation Module
	Servo Motor Response

	Power and Control Module
	PCB Functionality and Soft Start Time

	Conclusion
	Accomplishments
	Uncertainties
	Uncertainty in Localization Subsystem
	Uncertainty in Power Subsystem

	Future Work / Alternatives
	Ethical Considerations

	References

